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Abstract: Dynamic RON is a key parameter in terms of device reliability and the efficiency of power-
switching converters. In this study, commercial off-the-shelf GaN-on-Si power high-electron-mobility
transistors (HEMTs) were irradiated using different regimes of accumulative gamma rays with a
60Co source of photon energy (1.33 MeV), while a base temperature of 53 ◦C and 133 ◦C during
the irradiation test was applied. This test campaign had the objective of investigating how the
combination of gamma irradiation and temperature affects dynamic on-resistance (RON) behaviour.
The results indicated that gate voltage bias stress affected the degradation of dynamic on-resistance
when irradiation was applied, and that temperature was an accelerating factor in dynamic on-
resistance degradation. Finally, we obtained a partial reduction in dynamic RON when a total ionising
dose of around 140 krad(SiO2) was applied and the base temperature during the irradiation test was
not high.

Keywords: high-electron-mobility transistor (HEMT); gallium nitride (GaN); radiation hardness;
assurance testing; radiation effects; total ionising dose (TID)

1. Introduction

GaN high-electron-mobility transistors (HEMTs) are promising next-generation power
devices that can be used in numerous applications [1–3]. In space applications, extreme
environments due to radiation are among the main reasons for the reduced reliability of
semiconductor components. When GaN HEMTs are used in space, they suffer from fluxes in
high-energy protons and electrons during low Earth orbits, as well as neutrons and gamma
rays in nuclear applications. Therefore, the effects of high-energy particle irradiation should
be considered when HEMT devices are proposed for applications in these extreme envi-
ronments [4,5]. The effects of total ionising dose (TID) radiation on AlGaN/GaN HEMTs
have been studied in the past but have focused on theoretical studies, simulations, and
the effects on experimentally static electrical characteristic metrics (e.g., transconductance,
threshold gate voltage, leakage current) [6–11]. GaN devices have been demonstrated to
be robust materials for the development of high-power radiation-hardened electronics for
satellites and space probes, as well as to support electronics in high-energy and nuclear
experiments. Many radiation tests have been performed to determine the reliability of GaN
HEMTs under different radiation conditions, and they have always shown high stability
and inappreciable DC parameter drifts for total ionising doses around 2 Mrad.

However, the measurement of GaN HEMT sensitivity to radiation depends on the
biased conditions during the radiation tests. Usually, the components are biased at room
temperature in DCs at low power dissipation or they are short-circuited. These testing
conditions are valid most of the time, but our objective was to analyse the sensitivity of GaN
technology when radiation tests were performed under real operating conditions (high
power and temperature). Additionally, the failure mechanisms of compound semiconductor
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devices have frequently shown high values of activation energy at higher temperatures;
therefore, the combined effects of temperature and radiation were the focus of this study.

In particular, the use of GaN transistors could represent a potential breakthrough for
aerospace applications as it would allow the switching frequency to be increased from
100 kHz to more than 1 MHz using devices that are capable of blocking high voltages
(>600 V) with very low channel resistance. This would represent a very considerable
reduction in the size and weight of converters in power sector satellites since the size of
the converter coils and their capacitors would be reduced, as well as the cooling system
because they would be able to work in higher junction temperatures than their silicon
transistor counterparts.

However, some commercial off-the-shelf GaN HEMTs still have problems with com-
pletely removing charge trapping effects, which implies the presence of higher on-state
resistance during switched power converter operation and may also result in the instability
of positive or negative threshold voltages. The existence of dynamic RON is a critical issue
among GaN-based HEMTs in terms of the reliability of achieving high power densities in
future aerospace power electronic converters.

In this paper, we define the test campaign that we carried out in which types of
commercial p-GaN HEMTs were irradiated with 60Co gamma rays under different bias
and temperature conditions. This campaign had the purpose of simulating the real ther-
mal and radiation conditions that occur simultaneously during low Earth orbit (LEO)
satellite missions.

Finally, the experimental results that were obtained and the conclusions that were
reached are presented. The objective of this study was to establish whether gamma irradia-
tion could affect switching and conduction losses due to changes in dynamic resistance
(RDSON) as a function of device temperature during irradiation tests. In terms of reliability
and DC–DC converter design, the transient behaviour of RDSON during switching could
reduce the future application of GaN HEMTs as power switches in space applications.

2. Materials and Methods

The analysis was carried out using commercial 650 V Schottky-type p-GaN gate
AlGaN/GaN power transistors (part reference: GS-065-011-1-L [12]). In total, 12 devices
were used and different bias conditions and base temperatures were applied during the
irradiation tests. The goal was to evaluate the influence of the combination of gamma
irradiation, stress voltage and temperature on dynamic on-resistance (RON). In addition,
two samples were selected as references (control devices) to confirm the proper operation
of the measurement system, i.e., unirradiated devices that were only subjected to electrical
measurements after each step of irradiation, without any bias or radiation conditions being
applied. Table 1 shows the test conditions that were applied during the irradiation tests.

Table 1. Bias conditions that were applied during the irradiation tests.

Condition Sample Serial
Number Temperature Units Radiation Gate

Bias 1
Drain
Bias 1

Control A10, A11 Room Temp. 2 No N/A N/A
Drain Bias G8–G10 53 ◦C 3 Yes 0 V 500 V
Drain Bias G3–G4 133 ◦C 2 Yes 0 V 500 V

Drain–Gate Bias G5–G7 53 ◦C 3 Yes −5 V 500 V
Drain–Gate Bias G1–G2 133 ◦C 2 Yes −5 V 500 V

1 Bias conditions during irradiation exposure: N/A: not applicable to unirradiated control samples.

The test campaign was carried out in the CNA’s RADLAB facility at the National
Accelerator Centre in Seville, Spain. The gamma irradiation contained a 60Co gamma
source with associated photon energies of 1.17 and 1.33 MeV (mean value = 1.25 MeV).
The selected dose rate was 2.8 krad(Si)/h, which was within the “standard rate” window
(0.36–180 krad(Si)/h) of the European Space Agency, according to the TID Test Method [13],
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and achieved a total dose of 374 krad(Si). The dose rate was obtained by measuring the
charge in two TM30013 ionisation chambers (PTW-FREIBURG, Freiburg im Breisgau,
Germany) and one MultiDOS multichannel electrometer (PTW-FREIBURG, Freiburg im
Breisgau, Germany) and considering the environmental correction factor. The dose rate
uniformity in the filter box was 98.5%. The devices under test (DUTs) were mounted
on a printed circuit board, which was placed into a sample holder inside the thermal
vacuum radiation chamber. This chamber was described in [14] and was composed of a
structure that supported a vacuum chamber, in which the sample holder was connected
to a temperature-controlled external system. Figure 1 shows the devices that were inside
the chamber.
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Figure 1. The sample holder inside the thermal vacuum radiation chamber, which was developed at
the National Accelerator Centre (CAN) in Spain.

Overall, five irradiation steps were carried out during the test campaign. During the
pristine stage and after each irradiation step, all devices were measured using a Keysight
B1505A semiconductor device power analyser to obtain the electrical characteristic metrics.
The V-I characteristics were measured at 25 ◦C after irradiation for 30 min.

Figure 2 shows a block diagram of the test procedure. The static electrical measure-
ments (transfer (Ids-Vgs), gate Schottky diode (Ig-Vgs), drain to source leakage current
(Idss-Vds), and gate leakage current (Igss-Vds)) were performed after each exposure step
for all devices, including the control devices.

At the end of the total irradiation, two annealing steps were implemented. The
first annealing step consisted of room temperature annealing under bias conditions for
24 h. Afterwards, accelerated ageing was carried out, in which the devices were baked at
100 ± 5 ◦C under bias conditions for 168 h. In both annealing steps, the bias voltage that
was applied to each DUT was the same as that applied during the irradiation steps.

During irradiation, the devices were biased under two different conditions with two
different controlled temperatures: (1) OFF with voltage stress in the drain and the gate
(Vds = 500 V and Vgs = −5 V); (2) OFF with voltage stress in drain (Vds = 500 V and
Vgs = 0 V). The devices that were irradiated under these two different bias conditions were
also subjected to two different temperatures: half of the devices were irradiated at 53 ◦C
and the other half of the devices were irradiated at 133 ◦C.

Concerning the measurements, two types were performed: the I–V measurements
were conducted using a power device analyser (B1505A) and the RON measurements were
conducted using a custom double pulse circuit (Figure 3) [15]. The implemented switching
circuit had the benefit of being able to fully control the time that the voltage stress was
applied to the GaN HEMT. Basically, it consisted of two transistors that were connected in
series between the drain and the source with a resistive load in between.
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Figure 3. The circuit diagram that was used to measure the dynamic RON.

Transistor Q1 was used to control the stress/trapping time. A resistive load (Rload) was
used to set the current level when the DUT was in the on state. Due to the inherent parasitic
inductance (Lp) of the power Rload, two SiC diodes (D1 and D2) offered a freewheeling path
for the current when either Q1 or the DUT was switched from on to off. The test sequence
of the double pulse measurement is shown in Figure 4. This sequence consisted of stressing
the device with a drain voltage for 60 s while it was in the off state and then switching the
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device to the on state for two pulses of 200 µs, which were separated by an off state of 20 µs.
These consecutive pulses that followed the voltage stress provided information about the
main trappings, which were the trappings that were induced by the voltage stress and hot
electron effects during the switching events [16,17]. For all tests, the drain voltage stress
was 500 V, which represented a derating of 80% as it was fixed [18].
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For the electrical measurements, we used a 98 mΩ shunt resistor (SDN-414-10) to
measure the current and a passive voltage probe (300 V and 500 MHz PP018, Teledyne-
Lecroy, CA, USA) to measure the voltage. Owing to the high voltage that was applied to
the DUTs, the voltage across the devices had a large dynamic range that could overload the
oscilloscope input amplifier, so the on-state voltage could not be determined accurately.
To avoid this problem, a voltage clamp circuit was used together with the passive voltage
probe. A commercial voltage clamp (clp1500V15A1, Springburo GmbH, Emmendingen,
Germany) was used. A low range (2 V) was selected in the voltage clipper to obtain a
fast response of 100 ns, which was affected by the passive voltage probe and the voltage
clipper. Precise frequency response compensation was applied to the passive voltage probe
to compensate for the whole measurement chain of the clipper and voltage probe.

3. Results and Discussion

The effects of gamma radiation on voltage and temperature stress conditions were
different. In this section, we analyse the changes in the static and dynamic characteristics
by considering the combinations of stress bias conditions and base temperatures that
were applied.

3.1. Irradiation at a High Temperature (133 ◦C)

The devices that were irradiated at 133 ◦C, regardless of the stress bias voltage condi-
tions, suffered from degradation due to the monotonous increase in drain leakage current
(Id), which mostly originated from the increase in gate leakage current (Ig) while the
source and substrate currents only offered minor contributions when the total dose was
progressively increased. Figure 5 presents the drain leakage current that was measured
at 25 ◦C after each step of irradiation for 30 min using a B1505A semiconductor power
parameter analyser. We observed a fourfold increase in the gate current of the G3 device
and a sevenfold increase in that of the G4 device, both of which were measured at 600 V.
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Figure 5. The leakage currents versus drain voltages in the off state (VGS = 0 V) before (black lines)
and after (magenta lines) gamma radiation with a total ionising dose of 374 krad(SiO2) which were
stressed during irradiation with VDS = 500 V and VGS = 0 at a base temperature of 133 ◦C. (a) Device
G3 (b) Device G4.

With higher temperatures, the trapping process became faster and the time constants
decreased. Additionally, in the off-state condition, when a high drain bias was applied to the
device, the drain leakage increased and was favoured by the injection of electrons from the
substrate into the GaN layer, which was also strongly dependent on the temperature [19,20].

Figure 6 shows a schematic representation of the trapping processes for two different
bias conditions that were used. In the figure, we present the two drain leakage paths that
appeared during the GaN HEMT reverse condition tests. In the off state, the trapping
processes could occur both at the gate–drain surface (due to the high electric fields between
the gate and the drain terminal) and the buffer (due to the large vertical field under
the drain).
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Figure 6. A schematic representation of the trapping processes in the analysed GaN HEMTs during
the two off-state stresses. (a) Whit negative gate voltage. (b) Whit zero gate voltage.

The drain–source current path was established across the silicon substrate and the
silicon/nucleation layer interface due to inefficient isolation between the GaN buffer and
the Si substrate. It has been reported [21] that the reverse drain leakage of GaN-on-Si
HEMTs is due to the injection of electrons into the GaN buffer layer and the tunnelling
leakage current of the Schottky gate reverse bias. Therefore, the accumulation of negative
charge in the buffer, which is favoured by the positive drain voltage, originates from the
increase in dynamic on-resistance (RON). This vertical leakage that fills the buffer traps is
interrelated between the trapping rate and the vertical drain–substrate current [22].
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During the process of reverse gate bias, the AlGaN/GaN interface trap captured
electrons in the channel and caused a negative shift of the threshold voltage. Additionally,
the Schottky contact of the gate electrode began to irreversibly degenerate under both
the high temperature that was applied during radiation and the high electric field that
decreased the height of the Schottky barrier.

Considering the voltage stress that was applied during radiation, it was also observed
that when a negative voltage (Vgs = −5 V) was applied to the gate together with a positive
drain voltage (sample G2), the increase in the leakage gate current was lower (or even
decreased) compared to samples that only had voltage stress in the drain and gates that
were shorted to the source terminals (sample G4). Negative gate-to-source voltages induced
lateral trappings due to the injection of electrons at the gate–drain surface. This injection
of electrons could help to reduce the number of holes that were created by the gamma
irradiation and, therefore, helped to reduce the increases in gate leakage current (Figure 7).
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Figure 7. The leakage currents versus drain voltages in the off state (VGS = 0 V) before (black lines)
and after (magenta lines) gamma radiation with a total ionising dose of 374 krad(SiO2) at a base
temperature of 133 ◦C. (a) Device G2 stressed during irradiation with VDS = 500 V and VGS = −5 V.
(b) Device G4 stressed during irradiation with VDS = 500 V and VGS = 0.

The dynamic on-resistance is a parameter that is dependent on the trapping or detrap-
ping rate. Thus, we needed to consider the influence of gamma radiation on the trapping
processes to establish the relationships between the obtained results and the dynamic on-
resistance. The effects of irradiation depend on the structures, temperatures, pre-existing
trap densities, dose rates, total accumulated doses, and experimental bias conditions that
are applied during irradiation. The improvement or degradation of the electrical character-
istics (e.g., gm, ID, RON, Vth) have been discussed in the literature [23–25].

When gamma rays are focused on matter, a process of matter ionisation occurs, primar-
ily via indirect ionisation. Electrons interact and may become absorbed, scatter, or produce
electron–positron pairs, depending on their energy. Overall, low doses of accumulated
radiation result in improvements and when higher doses are applied, degradation begins.
In our case, the rate that was achieved was not very high (374 krad) and we distinguished
between improvement or degradation depending on the temperature that was applied
during the irradiation tests.

In any case, the effects of gamma radiation together with the higher temperature
created an increase in the gate leakage current and a shift in the threshold voltage to the left,
which caused the degradation of the HEMT and an increase in the dynamic on-resistance,
as we explain later.
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3.2. Irradiation at a Low Temperature (53 ◦C)

In the case of irradiation with a lower temperature, regardless of the applied voltage
stress, a decrease in the drain current was observed, which was mainly caused by a
reduction in the source–substrate current of around 60%. There was no increase in the gate
leakage current; however, differences were observed depending on whether the DUT was
stressed with VDS = 500 V and VGS = −5 V or VDS = 500 V and VGS = 0. The devices that
were stressed during irradiation with VDS = 500 V and VGS = −5 V (G6 and G7) showed
a higher reduction (60%) in the drain leakage current than the devices (G8 and G10) that
were only stressed with VDS = 500 V (45%). With a negative gate voltage, there was an
indicative reduction in the gate leakage current that was additional to the reduction in the
source–substrate leakage current, which was due to the compensation of the hole traps by
the existence of additional electron traps under the gate that were induced by the negative
gate bias during irradiation (Figure 8).
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Figure 8. The leakage currents versus drain voltages in the off state (VGS = 0 V) before (black lines)
and after (magenta lines) gamma radiation with a total ionising dose of 374 krad(SiO2) at a base
temperature of 53 ◦C. (a) Device G6 stressed during irradiation with VDS = 500 V and VGS = −5 V.
(b) Device G7 stressed during irradiation with VDS = 500 V and VGS = −5 V. (c) Device G8 stressed
during irradiation with VDS = 500 V and VGS = 0. (d) Device G10 stressed during irradiation with
VDS = 500 V and VGS = 0.

In off-state conditions, trapping could occur both at the gate–drain surface and the
buffer. The increase in RON mainly originated from buffer traps. This process could
be explained by two different mechanisms: an electrostatic effect of the high negative
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gate–drain voltage that depleted the hole traps in the buffer and the flow of vertical
drain current.

Our results, in concordance with previous investigations [25], showed an improvement
in the electrical properties of the devices due to the decrease in leakage current when
gamma irradiation was applied. This reduction could be attributed to the reduction in
the density of traps, along with the ordering of native defects, but it needs to be verified
by scanning transmission electron microscopy (STEM) to characterise the defects and
elemental distributions. The reduction in the drain–substrate leakage helped to reduce
on-state trapping in the device and, therefore, the dynamic RON.

3.3. Dynamic RON

The results of the dynamic on-resistance tests are shown in Figure 9. After a stress
of VDS = 500 V was applied to the GaN HEMTs in the off state, two pulses were applied
(Figure 4) using a double pulse test (DPT) circuit to measure the dynamic on-resistance.
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Figure 9. The dynamic RON double pulse measurements in the off state (VDS = 500 V and VGS = −5 V)
and on state (VGS = 3 V and IDS = 2.5 A): (a) device G2, which was subjected to drain and gate voltage
stress during irradiation at 133 ◦C; (b) device G3, which was subjected to drain voltage stress during
irradiation at 133 ◦C; (c) device G7, which was subjected to drain and gate voltage stress during
irradiation at 53 ◦C; (d) device G9, which was subjected to drain voltage stress during irradiation at
53 ◦C.
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In all of the devices that were subjected to gamma radiation at the higher temperature
(133 ◦C), regardless of the voltage stress that was applied (Table 1), a degradation of the
dynamic RON was observed, which increased with the total ionising dose and was not
recoverable after the two-step annealing process (Figure 9a,b). For the devices that were
irradiated at the lower temperature (53 ◦C), the dynamic on-resistance increased with the
accumulated dose until it reached step 4 (184 krad(SiO2)) when the RON started to reduce
in value and it only increased after the 100 ◦C annealing process, which was permanent
(Figure 9c,d).

In Figure 9, increases in dynamic RON can be observed that were higher in the second
pulse than in the first. This was evidence of a trapping process, which was induced by
hot electrons during the semi-on state of the switching events. Under hard-switching
conditions, the GaN HEMTs were simultaneously subjected to high drain voltages and a
rising drain current. The electrons that were injected from the source to the drain were
accelerated by the high electric field (usually called “hot electrons”).

In order to quantify the evolution of dynamic RON during the irradiation process, we
measured the average value of RON during an interval of 20 µs at the end of the second
pulse. Figure 10 shows the evolution of the dynamic RON values for all of the devices
during all of the radiation steps throughout the test campaign.
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Figure 10. The RON double pulse measurements: (a) devices G1–G4, which were irradiated at 133 ◦C;
(b) devices G5–G10, which were irradiated at 53 ◦C.

All of the devices that were irradiated at 133 ◦C suffered from an increase in RON
that reached saturation at 99 krad(SiO2) or 132 krad(SiO2), which was indicative of the
saturation of the electric charge traps in the devices that, in turn, limited the total ionising
dose (TID) effects. However, in the devices that were irradiated at the lower temperature
(53 ◦C), the resistance increased with the total accumulated dose and become saturated
close to 99 krad(SiO2) and began to decrease in the range of 132–184 krad(SiO2). Finally, in
the annealing step at 100 ◦C, a permanent degradation was observed.

It was also mandatory to investigate the behaviour of dynamic RON when multiple
pulses were applied. The multi-pulse test (MPT) was conducted using the circuit setup
that was shown in Figure 3, but with a driving signal test sequence of multiple pulses, a
stress time of 500 ms, and an on-time of 6 us. The multi-pulse sequence finished once the
stationary value of RON was found, using a mathematical function in the digital oscilloscope
that was used to record the drain current and drain voltage waveforms [15]. The results are
shown in Figures 11 and 12.
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Figure 11. The results of the multi-pulse test for the RON values of devices G2–G4, which were
irradiated at 133 ◦C.
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irradiated at 53 ◦C.

Figure 11 confirms the irreversible increase in RON when the temperature during
irradiation was 133 ◦C, regardless of the stress that was applied to the drain and/or gate.

Similarly, Figure 12 shows the influence of the negative voltage stress that was applied
to the gate during irradiation. Despite being irradiated at a lower temperature (53 ◦C),
the devices with stress at the drain and gate (VDS = 500 V and VGS = −5 V) demonstrated
degradations in dynamic RON once the radiation accumulated. The RON value was five
times higher, regardless of the applied stress voltage. It could be seen that, for VDS = 500 V
in the off state, the RON reached its maximum value and did not change when a higher
stress voltage was applied.
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In the devices to which voltage stress was applied to the drain and in which the gate
was short-circuited with the source, the RON remained practically constant between 50 and
400 V of applied stress, and it started to increase almost exponentially from 500 V.

4. Conclusions

In this work, we investigated the impacts of gamma radiation on commercial off-the-
shelf Schottky-type p-gate AlGaN/GaN HEMTs by considering temperature and voltage
bias stress as influence variables. The acceleration of the trapping kinetics (due to the higher
temperature) and the injection of electrons from the substrate into the trap sites (due to the
high off-state voltage stress) caused an increase in RON that could seriously undermine the
device’s performance.

This trapping rate was higher than the accumulation rate of positive charges (holes
or ionised donors). These positive charges, which resulted from electron–hole pairs that
were created by radiation-induced ionisation, had lower mobilities at higher tempera-
tures and, thus, did not allow the holes to migrate or recombine, thereby reducing the
radiation impacts.

However, at lower temperatures, the trapping effects were less and as the rate of
accumulated radiation increased, there was a partial recovery in dynamic RON that could
be attributed to dispersion effects from the buffer traps, according to different explanations
from the literature: trapped holes in C-related traps partially neutralise negative ionised
acceptors [26]; the neutralisation of negative and positive buffer charge storage [27], which
is induced by leakage paths between 2D electron gas (2DEG) and C-doped buffer; the
generation of positive charges via the ionisation of donor traps in the unintentionally
doped (UID) GaN channel layer [28].

From the point of view of the design of power converters for space applications, where
silicon MOSFET technology is to be replaced by GaN HEMTs, reliability is an essential
requirement due to the harsh environments. The multi-pulse test confirmed that RON
could permanently degrade five times faster (for an accumulated dose of 374 krad(SiO2)),
depending on the temperature and the voltage stress that was applied during the off
interval. The most favourable conditions were when the temperature of the device during
irradiation was in the order of 60 ◦C (in accordance with the standard base temperature of
power stages in satellites) and negative voltage stress was not applied to the gate of the
device and the only stress was the voltage in the drain and the semi-on conditions during
the switching operation. In that case, the degradation was lower and did not appear until a
voltage stress of around 450 V was applied.

The impact of gamma radiation on the RDS(ON) performance of the device is an im-
portant issue due to an increase in this value will have a very significant impact on the
power converter losses, especially in hard-switching mode, where the overlap between
voltage and current favours the trapping effect. In addition, this increase in power losses
will cause an increase in temperature and the effects of charge trapping can be favoured by
this increase in temperature. This effect and temperature dependency lead to a difficult
thermal design of the converter. Additionally, the increase in temperature can degrade the
forward Schottky characteristic of the gate resulting in a positive shift of the gate to the
source voltage threshold, affecting the driving requirements of the driver circuit.

Therefore, it would be necessary to control the temperature of GaN HEMTs in radiation
environments in addition to the drain–source blocking voltage so that they can withstand
the conditions during the off intervals and the passivation phases of satellites.
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