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Abstract: Software-defined networking (SDN) is the fastest growing and most widely deployed
network infrastructure due to its adaptability to new networking technologies and intelligent applica-
tions. SDN simplifies network management and control by separating the control plane from the data
plane. The SDN controller performs the routing process using the traditional shortest path approach
to obtain end-to-end paths. This process usually does not consider the nodes’ capacity and may
cause network congestion and delays, affecting flow performance. Therefore, we evaluate the most
conventional routing criteria in the SDN scenario based on Dijkstra’s algorithm and compare the
found paths with our proposal based on a cellular genetic algorithm for multi-objective optimization
(MOCell). We compare our proposal with another multi-objective evolutionary algorithm based on
decomposition (MOEA/D) for benchmark purposes. We evaluate various network parameters such
as bandwidth, delay, and packet loss to find the optimal end-to-end path. We consider a large-scale
inter-domain SDN scenario. The simulation results show that our proposed method can improve the
performance of data streams with TCP traffic by up to 54% over the traditional routing method of the
shortest path and by 33% for the highest bandwidth path. When transmitting a constant data stream
using the UDP protocol, the throughput of the MOCell method is more than 1.65% and 9.77% for the
respective paths.

Keywords: quality of service; routing; software-defined network; genetic algorithms

1. Introduction

In recent years, there has been a rapid expansion of the Internet and the continuous
development of information and communication technologies such as 5G [1], cloud com-
puting [2], Internet of Things (IoT) [2,3], and Big Data [4]. However, the evolution of these
technologies requires network operators and Internet service providers (ISPs) to adopt new
strategies and technologies to meet the emerging traffic demands that cannot be met by
traditional networks.

The traditional network design originated as a simple distributed system to provide
best-effort packet communication services in a reliable environment using network devices
to forward packets and make routing decisions by implementing packet routing rules. The
traffic accounts for routing tables on devices such as switches/routers.

However, with the rapid evolution of networks, the constant increase in devices and
the excessive consumption of bandwidth lead to specific performance problems such as
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a higher rate of packet loss, a more significant increase in end-to-end transmission delay,
and, in the worst case, network collapse [5].

Software-defined networking (SDN) is an emerging centralized network architecture
technology that differs from traditional networks by decoupling the control plane from the
data plane [6]. The data plane is responsible only for forward and switch data and consists
of the network’s physical infrastructure, such as switches and routers, both physical and
virtual, accessible through an open interface. The control layer is the essential layer of the
architecture, consisting of SDN controllers that centralize the intelligence and management
of the network and provide a global view of the network [7,8]. SDN has a third layer, the
application layer, which provides users with services such as traffic engineering, quality of
service, and network security.

The SDN architecture also has two communication interfaces that allow the controllers
to interact with the other layers:

• Southbound interface: Provides a communication environment between the controller
and communication devices. Installs the appropriate flow rules in the device forward-
ing table. OpenFlow [9] is the open-source community’s most widely implemented
Southbound interface standard.

• Northbound interface: Provides communication between the SDN controller and
network applications running on the application plane. This communication is critical,
as each network application’s requirements can be very different. Applications can
communicate with the SDN using various APIs, such as ad hoc and REST APIs, to
request network resources or services according to their needs.

SDN promises to solve several problems in traditional networks due to its flexibil-
ity. However, there are still some open problems and challenges, such as the design of
routing algorithms that guarantee QoS. The SDN controller typically employs the short-
est path method when an application requires the transfer of a flow between end-to-end
networks [10]. As the variety of services increases, so do the requirements for service
improvement, which include latency, bandwidth, packet loss rate, and network stability.
The conventional best-effort routing algorithm results in the network architecture having
certain constraints in order to optimize the performance parameters for the diversity of
demands [11]. Figure 1 shows an example of a data flow that requires a path with a band-
width of more than 80 Mbps and a delay of less than 7 ms. In the case of the traditional
routing algorithm based on the shortest path, the traffic flows along the path R1,R2,R3,R7,
which has the following values: bandwidth = 70 Mbps and delay = 8 ms. This does not
meet the criteria for bandwidth service. This path may result in poor service performance
and cause problems such as congestion. Therefore, it is helpful to consider different criteria
for selecting a good path. For example, using the highest bandwidth path (R1,R2,R5,R6,R7)
results in a bandwidth of 90 and a delay of 6, which meets the data flow requirements.
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These problems can be avoided by effectively routing flows while considering available
network parameters and QoS requirements. The selection of paths in the routing process
must evaluate the network conditions through the multiple available metrics, which can be
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represented as objectives. The goals may conflict in this type of problem, and each purpose
has a different solution. With more than one optimization criterion, this routing process is
known as a multi-objective optimization problem (MOP) [12].

Discovering paths that provide QoS in a network according to different data flow
requirements is a difficult problem, which is usually solved optimally using heuristic
algorithms [13], especially those based on integer linear programming, game theory, and
evolutionary algorithms (EA). Algorithms based on game theory and approximation are
usually computationally intensive. Therefore, these two methods are usually not suitable
for providing acceptable solutions. On the other hand, EAs search for global optima by
developing an iterative search within a finite time. They have proven to provide high-
quality solutions to the problem within a limited computation time [14]. Genetic algorithms
(GA) are a family of models of EAs. They have emerged as a method for optimizing difficult
search problems based on the principle of genetic selection, such as inheritance mutation,
selection, and crossover. Their advantage is that they can handle large search spaces and
generate multiple solutions in a single pass, which is suitable for this type of QoS routing
optimization for SDN [15].

Our proposal (Figure 2) resides in the application plane and communicates with the
SDN controller using the REST API provided by the Northbound interface. We use these
SDN capabilities to create, query, and delete flow rules on OpenFlow (OF) switches, in order
to forward data flow according to the path established by our path selection proposal or
optimization criteria, based on a cellular genetic algorithm for multi-objective optimization
(MOCell).
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The main contributions of our proposal are as follows:

• An SDN strategy for routing data flows based on QoS that considers an inter-domain
approach and compares its performance with traditional routing algorithms in the
context of SDN.

• Using MOCell, the routing strategy considers some of the most critical network
parameters: available bandwidth, delay, and packet loss.

The MOCell algorithm differs from conventional methods in evaluating multiple pos-
sible solutions from the first iteration. Its population is structured into small neighborhoods
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that generate high-quality solutions. They are fed back with the non-dominant solutions
stored in each iteration. This algorithm has shown better performance in extensive test-
ing than the NSGA-II and SPEA2 algorithms, which are widely recognized and used in
practice [16].

Alongside this research, we set aside for future work the analysis of time complexity
and computational delay. The fastest output results and least computational effort will
likely be the result of Dijkstra’s algorithm, rather than the MOCell method. However, the
network performance results of this work presented in Section 4 show how the MOCell
method obtains better results than Dijkstra’s algorithm and the multi-objective evolutionary
algorithm based on decomposition (MOEA/D). Additionally, the stationary state of the
SDN network connection processes allows the implementation and evaluation of the
MOCell method for a new inter-domain routing proposal.

The rest of the article is organized as follows: Related work is presented in Section 2.
Section 3 presents our proposed system and describes the experimental setup. In Section 4,
the performance evolution is presented, and the results are discussed. Finally, Section 5
describes the conclusions of the work and future directions.

2. Related Work

This section describes the research works on routing proposals to improve the quality
of service (QoS) implemented in the SDN architecture. We describe the works according
to the network parameters considered for QoS improvement, the use of SDN architecture
resources, and their contribution depending on a single domain or multiple.

In OpenQoS [17], the authors developed an architecture that classifies incoming data
streams into multimedia or data streams and provides quality service support for the
different multimedia streams, considering the application’s requirements. Their proposed
algorithm focuses on the shortest path according to the delay as a constraint, while for data
streams, it provides the best possible path according to the controller (hops).

In CECT [18], a network congestion avoidance scheme was proposed in which re-
sources are reallocated based on data flow requirements. It should be noted that the routing
algorithm uses a secondary genetic algorithm when there is a congestion problem. There-
fore, the data streams are reallocated according to the minimum bandwidth required by
the application. Jungmin et al. [19] proposed a method based on distributed data centers
in an SDN cloud that guarantees bandwidth allocation for critical applications through
priority queues in each network device. In AmoebaNet [20], a service is proposed that
guarantees the QoS of services on campus or local area networks based on SDN and fa-
cilitates the transfer of large-scale scientific data (Big Data) depending on the application.
The algorithm is based on the bandwidth constraint to calculate the end-to-end network
path. Bastam et al. [21] proposed a dynamic method for traffic engineering in SDN data
centers based on a linear propagation model and decomposition techniques to partition the
flow allocation problem by determining the available capacity of paths for the redirection
of the flows. In VSDN [22], the authors proposed an architecture within a domain for
video transmission over SDN. This architecture includes a routing module and a network
topology monitor that verifies network conditions. The authors monitored bandwidth,
jitter, and link delay network parameters to forward data packets using a constraint-based
routing algorithm. In PRIME-Q [23], a multi-domain routing method with end-to-end
quality of service is presented, which considers privacy in a multi-domain SDN network.
The algorithm can classify path flows according to three categories of QoS, bandwidth,
delay, and the combination of both parameters in an optimization function.

In QosComm [24], the authors designed a strategy for routing data flows among
an SDN-based distributed data center according to the application’s QoS requirements.
The algorithm selects the path with the minimum delay that satisfies the application
requirements based on bandwidth, packet loss rate, and jitter. Li et al. [25] proposed a
QoS-compatible routing method based on an evolutionary algorithm for multi-objective
optimization (NSGA-II). This method considers the bandwidth threshold required by a
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flow and minimizes the parameter delay and packet loss. These parameters are determined
by monitoring the network regularly to avoid bottlenecks, unlike most previous studies
based on the assumption of the same domain.

In VQoSRR [26], a video streaming adaptive QoS-based routing and resource reserva-
tion scheme is proposed that shifts traffic to an alternate path when the QoS is violated,
which satisfies video demands and enhances user experience more effectively than best-
effort networks. In Civanlar et al. [27], the authors proposed a multi-domain design where
each domain has an SDN controller, which shares the summarized topology of their domain.
Each controller has end-to-end decision-making capabilities, and the flow decision selection
is based on the effective bandwidth theory of the martingale process.

In MCEAACO-QSRP [28], the authors designed a multi-objective optimization strategy
based on adaptive ant colonies to guarantee the quality of service in the industrial Internet
of Things (IoT), considering the QoS constraints of delay, security, and power consumption.

Li-Sheng et al. [13] proposed a routing algorithm based on a multi-objective genetic
algorithm for the QoS of the optical burst communication network. The algorithm takes
the parameters of the minimization of delay, bandwidth, and packet loss.

As a summary of the reviewed works (Table 1), we can argue that the most imple-
mented routing model to guarantee QoS is focused on the available bandwidth parame-
ter [18–21,26,27]. VSDN [22] and PRIME-Q [23] classified flows according to the multimedia
flows’ required bandwidth and delay parameters. PRIME-Q has the particularity of of-
fering three options: the first is path selection with maximum available bandwidth; the
second is path selection with the minimum delay; and the third is both network parameters
as restrictions. Another approach is to reallocate resources when a congestion problem
occurs [18,19,21,27], where the parameter to consider when improving the QoS is the band-
width available in the network, without considering the delay and packet loss that may
occur on the links, except for OpenQoS [17], which obtains a better performance by giving
higher priority to delay than bandwidth. On the other hand, multi-objective techniques
have been implemented to meet the requirements of multiple QoS parameters such as
bandwidth, delay, packet loss, and jitter [24,25,28,29]. These methods focus on optimizing
one objective function, while the other parameters satisfy the minimum requirements of
the data streams. Our routing proposal differs mainly by considering the minimization of
these parameters, which gives us a set of feasible and balanced solutions since they are
non-dominated solutions.

Table 1. Comparison of QoS routing methods.

Reference Network Parameters Path Selection Domain

[17] Bandwidth, Delay, Jitter Min delay and bandwidth as constraints Single

[18] Bandwidth Min bandwidth Single

[19] Bandwidth Max bandwidth Inter-domain

[20] Bandwidth Max bandwidth Single

[21] Bandwidth Max bandwidth Single

[22] Bandwidth, Delay, Jitter Max bandwidth and delay as constraints Single

[23] Bandwidth, Delay (1) Max bandwidth, (2) min delay, and (3)
max bandwidth and delay as constraints Inter-domain

[24] Bandwidth, Delay, Jitter, Packet Loss Application requirements as constraint Inter-domain

[25] Bandwidth, Delay, Jitter, Packet Loss Application requirements as constraint Single

[26] Bandwidth Bandwidth as constraint Single

[27] Bandwidth Bandwidth as constraint Inter-domain

[28] Delay, Security, Power Consumption Application requirements as constraint Single

[13] Bandwidth, Delay, Packet Loss Min delay and application requirements
as constraints Single

MOCell Routing Bandwidth, Delay, Packet Loss Min (bandwidth, delay, and packet loss) Inter-domain
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3. Materials and Methods
3.1. Problem Formalization

Generally, a network topology can be represented as a directed graph G(V, E), where
V represents all nodes in the network and E represents all of the connections between the
nodes. n = |V| is the number of nodes and m = |E| is the number of edges in the network.
Each connection e(i,j) ε E has associated properties, such as λe, the available bandwidth, µe,
the delay, and ρe, the packet loss. The status and measurements of the network are updated
when a routing request is made, in order to obtain the better accuracy of the available
resources and to choose a path that satisfies the QoS parameters [29,30].

The path search problem must solve a path P from a source node s to a destination
node d that satisfies the values of different network parameters. We define the following
function for a path P:

Hops path computes the number of links between s and d node. For this case, the cost
of each link is assigned to 1.

h(P) = ∑
u,v∈P

e (1)

The bandwidth path is the minimum available bandwidth between s to d node, and
the cost metric of each link is set to be inversely proportional to the bandwidth capacity of
that link.

λ(P) = min∀e∈P

{
1
λe

}
(2)

The delay path is the total path delay.

µ(P) = ∑
eεP

eµ (3)

The packet loss path is the percentage of packets lost in comparison with the number
of packages sent (0 means no packet loss).

ρ(P) = 1−∏
eεP

(
1− eρ

)
(4)

The delay function is additive, while the bandwidth function is concave, and the
packet loss function is multiplicative but can be converted to an additive function by taking
the logarithm of the ratio; with this parameter, we can provide network QoS.

Table 2 shows the network parameters described as variables.

Table 2. Description of the network parameters used.

Variable Description

G (V,E) Represents communication network topology.

V Sets all nodes in the network.

E Sets all links between nodes.

n = |V| Number of nodes.

m = |E| Number of edges in the network.

λe The available bandwidth on a link.

µe The delay on a link.

ρe The packet loss on a link.

s Source node.

d Destination node.

P Path from a source node to a destination node.

h(P) Computes the number of links for a path.

λ(P) Computes the minimum available bandwidth link on a path.

µ(P) Computes the total path delay.

ρ(P) Computes the percentage of packets lost concerning the number of packages sent.
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To evaluate path performance, we consider throughput [31] (Equation (5)) as a per-
formance measure that refers to the successful delivery of data Es,t over a communication
channel; in our case, a path where Es,t is the received data drx from source stx excluding
retransmitted data rdata during the entire observation time Tt.

th =
Es,t

Tt
(5)

where

Es,t =
stx − (drx − rdata)

stx
(6)

3.2. QoS Routing

The shortest path algorithm determines the path with the lowest connection cost,
specified by a value inversely proportional to the available bandwidth of each connection.
Dijkstra’s algorithm is usually used for this type of search. In our case, we create variations
of the shortest path using Dijkstra’s algorithm to consider the path metrics with the lowest
bandwidth cost and minimum hops, delay, and packet loss. [32].

• The minimum hops path computes the shortest path with the minimum number of
links between the source and destination node.

H = min (h(P)) (7)

• Minimum cost of available bandwidth path:

B = min(λ(P)) (8)

• Minimum delay path:

D = min(µ(P)) (9)

• Minimum packet loss path:

PL = min(ρ(P)) (10)

3.3. Dijkstra’s Algorithm

Dijkstra’s algorithm (Algorithm 1) is widely used in the shortest path routing algo-
rithm. It is based on a set of candidate neighbor nodes, and the calculation to identify
the shortest path between a source s and a destination d; in other words, it computes the
shortest paths to all destinations [33].

For the path calculation with Dijkstra’s algorithm, we need to calculate the cost
between two nodes i, j and the path with the least cost to node j, where j (j 6= i). We can
represent this as two parameters:

dti,j = link cost between node i and node j (11)

Dti,j = cost o f the minimum cost pathbetween node i and node j (12)

Dijkstra’s algorithm uses two lists to specify the minimum cost of nodes, one contain-
ing the computed nodes of the permanent list S and another for the nodes still missing from
the provisional list S′. At each iteration, the algorithm computes the shortest path from a
neighboring node k to node i with the lowest cost to node i. The list S is incremented by
adding the computed node. In contrast, the list S′ is decremented by removing the nodes
that are added to S.

Our work evaluated the shortest path using different QoS parameters (B, D, PL,
Equations (8)–(10)). We use Dijkstra’s algorithm, modifying the minimum cost of the links
with the metric we want to evaluate, and select the path that corresponds to the source and
destination of the data flow.
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Algorithm 1. Dijkstra’s shortest path algorithm (centralized approach)

1: S = {i} //permanent list; start with source node i
2: S’ = N\{i} // tentative list (of the rest of the nodes)
3: Find k ε S′ such that Dik = minmεS′Dim //identify a neighboring node k not in the list S with
the minimum cost path from i.
4: S = S U {K} //Add k to the permanent list S
5: S’ = S’\{K} //Drop k from the tentative list S’
6: if S’ = ø //if S’ is empty stop
7: end
8: For j ε Nk∩ S’ do //consider the list of neighboring Nk, of the intermediary k.
9: Dti,j= min (Dtij, Dtik + dtkj) //check for improvement in the minimum cost path
10: return to step 3,

3.4. Multi-Constrained Optimal Path (MCOP)

The problem in this work considers three conflicting objectives that must be optimized
simultaneously. The general formula of a MOP (multi-objective problem) [34] is as follows:

Find a vector X∗ =
[
x∗1 , x∗2 , . . . , x∗n

]T , where m inequality constraints gi(x) ≥ 0,
i = 1, 2, . . . , m, p equation constraints hi(x) = 0, i = 1, 2, . . . , p, and minimizing the
function f (x) = [ f1(x), f2(x), . . . fk(x)]T are satisfied, and where x = [x1, x2, . . . xn]

T is the
decision variable vector.

The solution for an MOP may not be clear-cut because the objectives often conflict
and cannot be met simultaneously, so no solution minimizes all objectives. The key is to
construct the evaluation function for the objective problem. Two main approaches are
usually used to formulate these functions. The first is to combine all of the objectives into
a single objective using a feasible method or to select a particular objective and consider
the other objectives as constraints. The second is to determine a representative set for
all non-dominated solutions, called the Pareto front. For this case study, we consider
approaching the problem using both approaches. We use the weighted sum for the first
method and, for the second, the MOCell genetic algorithm. The forms are described in
more detail below:

1. The weighted sum method [35] is the sum of the values corresponding to the different
objectives, each multiplied by a weighted coefficient. This method provides a weight
for the various network parameters that can be used as a cost for path computation.
We use it as a fitness function for our proposed routing method.

wB,D,PL = minx∈X

k

∑
i=1

wi fi(x) = mine∈p ∑
(u,v)εp

wk(u, v) (13)

2. The method based on Pareto dominance determines all non-dominated solutions that
satisfy the conditions defined for the problem S (feasible region). Any point x ε S
is a feasible solution. The feasible region is defined as follows [36]: Given 3 vectors
u = (ui, . . . , uk), v = (vi, . . . , vk), and w = (w, . . . , wk), we say that u dominates v
and v dominates w (denoted by u < v and u < w), if and only if u is less than v and w.

Each vector in the Pareto set has some correspondence in objective function space,
obtaining the so-called Pareto front. Formally:

Pareto optimality: A solution X∗ε S is Pareto optimal if and only if it is non-dominated
by any other solution X′ε S.

Pareto optimal set: For a given MOP, f (x) is the Pareto optimal set, and ps is defined
as follows:

pS =
{

x ∈ S
∣∣@x ′ ∈ S f

(
x ′

)
≺ f (x)

}
(14)

Pareto front: For a given MOP, f (x), and Pareto optimal set, pS, the Pareto front, pF, is
defined as follows:

pF = { f (x) εR k
∣∣∣ x ∈ p∗} (15)
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MOPs can have a Pareto front composed of a possibly infinite number of solutions.
The algorithms that use stochastic techniques, such as metaheuristics, aim to find an
approximation pF, which represents the actual Pareto front.

To solve our problem with our proposed method, we need to find the path with the
minimum end-to-end delay (D), packet loss (PL), and minimum cost of available bandwidth
(B), as represented in Equation (16). The values of the functions are normalized to the
minimum cost of delay and bandwidth for the QoS of the application.

Mine∈p (B, D, PL) (16)

3.5. MOCell-Based QoS Optimal Path

In this work, we consider the implementation of cellular GA for path selection con-
sidering the QoS of flows, particularly MOCell. The main feature of this algorithm is the
distribution of its population in small neighborhoods, where each individual (possible
solution to the problem) can be recombined only in the surrounding cells (neighborhood
cells). Neighborhoods can be grouped with 4, 8, and 16 neighbors, with eight neighbors
being the default configuration in the MOCell algorithm [37]. The population is represented
on a two-dimensional toroidal grid so that everyone has the same number of neighbors.
The main idea is to explore the search space further since overlapping neighborhoods cause
a slow spread of solutions in the population. At the same time, genetic operators exploit
each neighborhood (see Figure 3). MOCell maintains a file that stores the non-dominated
solutions found in each iteration; the grouping distance of NSGA-II [38] is used to compute
them. MOCell differs from other genetic algorithms by maintaining a diverse solution
set and a feedback mechanism of non-dominant solutions to replace individuals in the
population after each generation.
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The genetic algorithms [39] start from a set (population) of potential solutions (indi-
viduals). The best solutions are selected according to a fitness function through a selection
process to assign the parents of each neighborhood and carry out the crossover and muta-
tion processes in order to find better solutions to the problem (Algorithm 2 introduces the
MOCell pseudocode).
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Algorithm 2. Pseudocode of metaheuristic based on MOCell

1: data = parameters //initial parameter MOCell
2: pop = solution // Create an initial population
3: grip = (pop) //distribute the population in a toroidal grip.
4: PF= [] //create pareto front = empty
5: While (terminal Condition = = false) do
6: For individualεpop do
7: neighborhood = (individual) //everyone individual builds a neighborhood
8: parents = (neighborhood) //selection parents
9: offspring = recombination (data, parents) //crossover
10: offspring = mutation (data, offspring)
11: pop = replacement ([parents], offspring)
12: PF = insert (Offspring)
13: End
14: pop = feedback (ParetoFront)
15: End

One of the simplest methods for generating routing paths is random search. This
involves using arrays of random integers to symbolize different paths. The population is
generated by randomly assigning different priority IDs for each device, considering the
size of the topology, as well as validating the path with the decoding process mentioned
above. All individuals are distributed in a toroidal grid.

For the generation of an encoded path, a chain is created containing the total number
of randomly ordered network devices. The positions of the numbers represent the genes
(priority IDs) that make up a chromosome (pathway). The first gene represents the source
path, and to determine the path of a chromosome is necessary to decode the sequence using
the adjacency matrix of the topology. For example, in the coding process of a routing path
between H1 and R1 of the network topology, as shown in Figure 4, the following procedure
is defined:
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Coding:

• Generated a chain with 10 elements corresponding to network nodes.
• Filled the string with random numbers from 1 to 10.
• Created a chromosome: 5 8 2 1 4 10 6 7 3 9.

Decoding:
Table 3 shows the network adjacency matrix used to perform this procedure. The

genes’ value is defined from highest to lowest to determine the order of the path, as shown
below:

(1) The path is initialized on H1 towards R4, as it is the only adjacent node.
(2) R4 has two adjacent nodes: R2 with an ID = 8 and R5 with an ID = 4. The selected

node has the highest ID—in this case, R2.
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(3) In R2, R1 is chosen because it has the highest value ID.
(4) The decoding process is completed; the path reaches the proposed destination

node (R1).
(5) Path: H1, R4, R2, R1.

Table 3. Example topology adjacencies matrix for coding representation. The path source: H1 and
destination: R1. The hops of H1-R1 are highlighted.

Chromosome 5 8 2 1 4 10 6 7 3 9
Nodes R1 R2 R3 R4 R5 R6 R7 H1 H2 H3

R1 1 1 0 0 0 0 0 0 0 0
R2 1 0 1 1 0 0 0 0 0 0
R3 1 1 0 0 0 1 1 0 0 0
R4 0 1 0 0 1 0 0 1 0 0
R5 0 1 0 1 0 0 0 0 0 0
R6 0 0 1 0 0 0 1 0 1 0
R7 0 0 1 0 0 1 0 0 0 1
H1 0 0 0 1 0 0 0 0 0 0
H2 0 0 0 0 0 1 0 0 0 0
H3 0 0 0 0 0 0 1 0 0 0

In genetic algorithms, to improve the characteristics of solutions (chromosomes),
crossover operators are used in each generation. In the MOCell algorithm, a single-point
crossover (SPX) between two parents without the point from the origin and destination
was used to conserve the path [40]. For this method, a cut-off point between both parents is
selected, and an element of the solution vector is selected randomly to assign it as a cut-off
point. The genes of both parents are exchanged between the parents’ genes, providing two
new descendants with information about parental genetics.

In genetic algorithms, an additional operator is used to avoid falling local optima and
maintain genetic diversity from one population to another, called the mutation operator.
We employ the swap mutation operator, which proposes the random selection of a pair of
genes in the chromosome and the exchange of values between them [41]. Figure 5 shows
the operators used.
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Fitness function representation: The optimization problem is formulated with three
objective functions, f1, f2, and f3, represented by QoS parameters such as delay, packet
loss, and available bandwidth, respectively. The purpose of the first is to minimize the cost
of delay and latency covered by a specific path. The purpose of the second is to minimize
the loss of data, and that of the third is to minimize the loss of quality of service when the
demand for bandwidth consumption is not satisfactory for the correct functionality of the
flow.

The f1 function (Equation (9)) consists of the summation of all delay costs for the
path. The QoS parameters, such as delay, have an additive metric composition rule for the
end-to-end path.
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The f2 function (Equation (10)) indicates the packet loss on the path, represented as
the sum of the data losses in the links.

The f3 function (Equation (8)) consists of the bandwidth parameter; the end-to-end
path selects the minimum capacity bandwidth of the network links.

We consider a standard configuration for the algorithm parameters: a population
size of 100 for domains A and B and 400 for domain C, considering twice the number of
individuals concerning the number of nodes in each domain; a neighborhood size of 8; and
the tournament selection method with a crossover probability pc of 0.6 and operator SPX
and a mutation pm of 0.6 with operator swap.

3.6. MOEA/D QoS Optimal Path

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) [42]
decomposes a MOP into a set of scalar optimization subproblems using N uniformly
distributed weight vectors, wi, each of which is iteratively optimized using recombina-
tion operators (crossover and mutation). Each normalized weight vector is uniformly
distributed in T regions, called neighboring subproblems, and the objective is to find a
Pareto-optimal solution along each reference neighborhood. The child solutions replace
the parent solutions of the subproblems if their cost, w, is better than the previous cost. An
important aspect of the algorithm is the choice of the decomposition method. According to
Zhang and Li [43], three common decomposition methods are implemented: weighted sum,
Tchebysheff, and penalty-based boundary interaction. For simplicity, in this paper, we focus
only on the weighted sum approach according to Equation (13). The problem is divided
into three weight vectors using the weighted sum method, where each neighborhood is
assigned a network parameter priority using weight vectors, w (Algorithm 3, introduces
MOEA/D pseudocode).

Algorithm 3. Pseudocode of metaheuristics based on MOEA/D

1: data = parameters // Initial parameter MOEA/D
2: pop = solution // Create an initial population
3: W (t = 0) // Initialize Weight vectors
4: T = wi ε W(t) //Calculate neighborhoods by the weight vectors
5: PF = [] //create pareto front = empty
6: While (terminal Condition==false) do
7: For neighborhood εpop do //everyone Weight vector builds a neighborhood
8: For individualεneighborhood do
9: parents = (neighborhood) //selection parents by neighborhood
10: offspring = recombination (data, parents) //crossover
11: offspring = mutation (data, offspring)
12: pop = replacement (parents, offspring)
13: PF = Insert (Offspring)
14: End
15: End
16: pop = feedback (Pareto Front)
17: End

3.7. Simulation Model

The simulation model implements a network topology that considers the transfer of
data flows from host to host among SDN-based distributed clouds. In our research, the
experimental configuration considers an extreme network topology where a very dense
cloud is considered for communication between two data centers, presenting a three-
tier data center topology. This topology consists of the access layer to connect hosts, an
aggregation layer to connect access switches, and a core layer at the root where the network
controller is located. At the same time, the intermediate cloud presents a topology in the
form of a mesh to provide a challenge for the appropriate path selection process due to the
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multiple alternatives that can arise in scenarios containing networks with a large number,
such as IoT networks.

Figure 6 shows the topology used in the simulation model. It is based on three
domains, where two data centers are connected by a cloud, defined as Domain A, Domain
B, and Domain C (cloud). Each domain has an SDN network controller. Domains A and B
comprise a distributed topology with 29 nodes, while Domain C represents a topology with
196 nodes. The link values define a particular state that an ISP might have with bandwidth,
delay, and packet loss metrics.
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3.8. Experiment Setup

The path selection process and the MOCell algorithm implementation were developed
in the MATLAB programming language. We used the OpenDayLight (ODL) controller
with the RESTCONF module. The distributed data topology was designed using the
Mininet simulator [20]. Mininet is one of the most used platforms in the literature for SDN
emulation due to its compatibility and flexibility with other applications and controllers.
For the simulation environment, we configured a virtual machine with a Linux Debian 9
operating system with 12 CPUs, 16 RAM, and 100 GB of disk space (NLSAS disks). Below
is a list of the software specifications and tools used:

• Linux Debian 9;
• Mininet 2.3;
• OpenDayLight (ODL) SDN Controller;
• MATLAB 2021 for MOCell-based code;
• Python 3 for REST API communication scripts;
• Iperf for data stream transfers performance.

The ODL controllers for Domains A, B, and C were configured according to the
simulated network topology (Figure 6) and the link parameters (bandwidth, packet loss,
and delay) corresponding to the values in Appendix A. We simulated each domain along
with its SDN controller, and they were configured to connect with the Mininet simulator.

The network topology was divided into three domains. Controllers A, B, and C
managed the domains, respectively. Since the domains were separate, each controller had
its own domain status and network information. Therefore, it was necessary to implement
an application that coordinates the controllers to establish the routing process that allows
communication among them.
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4. Evaluation

In contrast to problems where we only try to satisfy a simple objective and where
optimality is given by a single minimal solution, in the multi-objective problem, we strive
to find the set of non-dominated solutions that satisfy the constraints associated with path
selection according to QoS criteria and simultaneously optimize two or more features.
For each domain, 30 independent runs of the genetic algorithm were performed with
a breakpoint of 500 generations. Figure 7 shows the initial and final populations for
each implementation of the MOCell in the three independent domains. The values are
normalized to the maximum value found for the scores of each parameter and domain.
A significant decrease was observed in the space of better solutions representing higher
QoS parameters. As for the path selection of the non-dominated solutions, it is possible
to consider a priority order of the functions according to the flow requirements. In this
case, we choose the delay first, packet loss second, and bandwidth third, according to the
performance of the different algorithms evaluated in Table 4 and their flows, as shown in
Figures 8 and 9.
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The experiment measured data transmission between the end-to-end hosts of data
centers H1 and H14. We compared traditional data forwarding based on the shortest path
algorithm and the highest available bandwidth. We also considered the path with the lowest
delay, the lowest packet loss, a weighting criterion, and our MOCell routing proposal.
We used the IPERF [44] application to test network performance with the connection-
oriented protocol (TCP) and connectionless protocol (UDP). Our method queries the SDN
controller to obtain the network’s topology and compute the paths from one end to the
other. Table 4 shows the network paths for hosts from source to destination according to
their optimization value and all QoS parameters used in this work.
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Table 4. Results of routing paths and network parameters.

Metric Path H
(Hops)

B
(Mbps)

D
(ms)

PL
(0–1)

Data Rate
(Mbps)

H H1-S14-S6-S2-S1-R1-R16-R31-R46-R61-R76-R91-R106-R121-
R136-R151-R166-R181-R196-S22-S26-S32-S38-S44-H14 24 78 130 5.5 × 10−3 23.8

B
H1-S14-S6-S2-S1-R1-R16-R31-R45-R46-R59-R72-R73-R86-
R101-R114-R129-R142-R155-R169-R156-R171-R172-R187-
R174-R161-R147-R162-R163-R164-R178-R193-R180-R181-

R196-S22-S24-S32-S37-R31-R38-S44-H14
42 86 166 3.7 × 10−3 38

D
H1-S14-S7-S3-S1-R1-R16-R31-R46-R33-R47-R62-R77-R91-

R106-R120-R135-R150-R164-R179-R180-R195-R196-S22-S24-
S30-S37-S44-H14

28 79 58 2.6 × 10−3 53.5

PL
H1-S14-S7-S5-S1-R1-R2-R3-R17-R30-R43-R58-57-R72-R85-

R99-R114-R129-R144-R145-R160-R174-R189-R190-R191-R192-
R193-R194-R195-R196-S22-S26-S32-S37-S44-H14

35 74 138 0 63.1

wB,D,PL

H1-S14-S7-S5-S1-R1-R2-R17-R32-R47-R48-R62-R77-R90-
R104-R103-R116-R131-R146-R147-R162-R177-R192-R193-

R194-R195-R196-S22-S24-S28-S35-S30-S37-S44-H14
34 79 85 3 × 10−3 64.4

MOCell
(Minf1, f2, f3)

H1-S14-S7-S5-S1-R1-R15-R29-R43-R57-R72-R86-R85-R100-
R115-R130-R117-R118-R133-R148-R149-R164-R179-R194-

R195-R196-S22-S24-S28-S35-S30-S37-S44-H14
33 79 75 2 × 10−3 66.9

MOEA/D
H1-S14-S7-S5-S1-R1-R2-R3-R18-R33-R48-R63-R98-R92-R107-
R121-R134-R149-R164-R178-R193-R194-R195-R196-S22-S24-

S28-S35-S30-S37-S44-H14
31 79 80 2 × 10−3 66.37
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Each test was performed under the same conditions as the experiment, where the
total availability of the network was used for path selection according to the parameters in
Tables A1–A3 from Appendix A.

The following steps were defined for the execution of the test:

• Design and execute the network topology with three domains (A, B, and C) and an
external controller per domain.

• Execute network performance tests between the end nodes with IPERF according to
the optimization parameter.

• Transfer the traffic during the specified period.
• Repeat the experiment using data stream forwarding according to the optimization

parameter.
• Obtain results.

An inter-domain approach was used to evaluate the data flow performance between
two hosts. IPERF was used to generate TCP and UDP traffic between hosts H1 and H14 to
simulate a scenario where an application transfers data among hosts.

The test used several optimization criteria to select the path (these are described in
Table 4). Paths shared by host-to-host routing methods have different network metrics. Our
proposal computes and configures the path considering all available QoS parameters in the
network. The algorithm can be configured depending on the requirements of a particular
application, but in this case, the path minimizes the parameters considered.

Network Performance

We use the IPERF tool to evaluate the performance of different routing methods
between the extreme nodes of our network topology, from H1 to H14. The values of the
IPERF tool were configured with standard TCP traffic and UDP parameters and a time
interval of 200 s for each data transmission. We executed the experiment 30 times.

Figures 8 and 9 show the first experiment where the traffic of the paths was evaluated
with the IPERF tool and the Wireshark tool [45] based on the maximum possible data
transfer rate for TCP traffic. The graphs show in black the total traffic transmitted in the
experiment, and the traffic in red represents retransmitted packets that affect the network
performance, such as data packets that arrive in a different order from which they were sent
or the re-sending of packets that were damaged or lost during their initial transmission.
We obtained the best performance with our proposed method since it minimized all of the
parameters represented in Equation (16). For evaluating path selection based on MOCell,
we considered the multi-objective functions in order of priority as f1 < f2 < f3, as described
in Equations (8)–(10).
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This evaluated comparison between algorithms shows the capacity of the selected
path for each. Next, we discuss each algorithm regarding the chosen path and how it affects
the network performance results.

As seen in Table 4, the average data transfer speeds of the traditional methods are
slower (minimum hops 23.8 Mbps and maximum available bandwidth 38 Mbps) than
the path selected by our method (66.9 Mbps), as were the paths with the lowest delay
(53.4 Mbps) and packet loss (63.1 Mbps). For the test, we used the exact Dijkstra search
algorithm to show the efficiency of different paths with optimization criteria according
to the parameters usually implemented in traditional routing: fewer hops and higher
bandwidth. We also added the path with the minimum delay and data loss.

The path with the H (fewest hops, most frequent routing) had the lowest average data
transfer rate because it had little effective traffic. A significant portion of its traffic had to be
retransmitted because its path went through several nodes where there would have been
significant losses, making it the worst path in this test.

The path with B (the highest available bandwidth) had the highest number of hops
and a high probability of packet loss and delay because it had to go through many nodes to
reach its destination.

The path with PL (the least packet loss) had a higher traffic transfer rate than the
previous paths. However, it was the path with the most packet retransmissions due to
packet delays, significantly affecting performance.

The path with wB,D,PL (weighted sum), considered the weight by the available metrics,
achieved better performance than the traditional methods.

From the obtained results, we can see that an evolutionary algorithm (MOCell and
MOEA/D) can improve the routing-related aspects by evaluating multiple available paths
for establishing routing flows and evaluating their QoS parameters.

The path performance is determined by the amount of data successfully transmitted
during the cycle period (Equation (5)). We can evaluate the throughput in terms of the
maximum data transmission capacity in the network to normalize the throughput size of
each path and calculate the area enclosed by the throughput function (Figure 10) using
the Riemann sum [46]. We find that the path proposed by Min f1, f2, f3 (MOCell) can exploit
71.08% of the network throughput on average, and MOEA/D can exploit 69.23%, while
the paths selected by the other techniques had values below 55.99% (see Figure 10). The
MOCell-based routing path improves by more than 54% on average compared with the
traditional routing method with fewer hops (H) and by 35.44% for the path with the highest
available bandwidth (B), in the case of the network topology presented in this paper. Finally,
in the case of the evolutive algorithms, MOCell had a 1.85% higher throughput than the
MOEA/D method when using the same parameters and metrics for mutations, generations,
and the method of selecting individuals by tournament; in this way, a fair evaluation was
obtained.

The path chosen by the MOCell method shows slightly better performance than the
MOEA/D method, especially in the first 30 s of transmission, since it converges earlier.
After this period, both methods show similar performance.

Figure 11 and Table 5 show the values of the throughput area (normalized by the
maximum capacity) of 30 independent runs of the Mininet experiment for each path
selected by the algorithms. This graph shows that the wB,D,PL (weighted sum) and PL
(packet loss) paths have a larger standard deviation in their performance than the other
paths. The selected path using the minimum delay algorithm (D) leads to a higher median
without considering the paths of the MOCell and MOEA/D methods.
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Figure 11. TCP performance of paths. Time interval 200 s. STDEV: H = 0.01847, B = 0.04224,
D = 0.02953, PL = 0.09682, wB,D,PL = 0.13832, Min f1, f2, f3 = 0.03777, and MOEA/D = 0.04104.

Table 5. Routing Paths Throughput Areas.

Algorithm Median Area

H (Hops) 0.1511
B (Bandwidth) 0.3622

D (Delay) 0.5924
PL (Packet Loss) 0.4825

wB,D,PL (Weighted sum) 0.5872
Minf1, f2, f3 (MOCell) 0.7174

MOEA/D 0.7046

From the results, it can be concluded that both packet loss and delay are related to not
only the available bandwidth but also the low speed of the network, as is usually considered
when assigning paths and QoS for the data streams. Retransmissions of packets in transit
lead to poor or slow network performance, and low throughput indicates problems such as
increased latency and possible congestion.
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As mentioned earlier, minimizing all of the factors that affect end-to-end link per-
formance is essential to improve the speed and efficiency of data transfer. It is critical
to leverage the various parameters in the network to improve network performance and
provide a better quality of service. Our proposal can improve the routing-related aspects
by evaluating multiple available paths to set up routing flows and evaluate their QoS
requirements.

The second experiment was performed with UDP traffic between nodes at the ends
of topology H1 to H14. As mentioned above, the performance of the paths selected by
the different algorithms presented is evaluated in this experiment. In this case, the data
transmission consisted of a constant flow of UDP traffic with a bandwidth of 45 Mbps for
200 s and the standard configuration of the IPERF tool. The network state corresponded
to the first experiment’s conditions, and the initial conditions were restarted for each
evaluated case in the Mininet simulator.

Table 4 shows that the capacities of the paths selected by each of the evaluated algo-
rithms perfectly covered the required bandwidth per UDP flow; however, the performance
of each path varied due to the other network parameters involved. Table 6 shows the
average values for the performance of the paths, and Figure 12 presents a graph of the lost
packets.

Table 6. Performance summary of UDP flow between H1 and H14.

Algorithm Data Rate
(Mbps) Jitter (ms) Packet Loss (%) Throughput

H 43.83 1.081 0.025 0.9749

B 40.56 1.958 0.1067 0.8932

D 43.10 0.952 0.0410 0.9589

PL 42.58 1.71 0.0550 0.9449

wB,D,PL 43.6 1.325 0.4519 0.9548

Min f1, f2, f3 44.56 0.986 0.0090 0.9909

MOEA/D 44.48 0.994 0.0097 0.9902
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The most critical path is chosen by the widest path, B, although it has the highest
bandwidth capacity to divert flows, followed by the path PL. However, this path consists
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of the links with the lowest losses. This severe drawback is a result of this path selecting
connections with high jitter values. It should be remembered that a packet that takes longer
than the time specified by the waiting window is usually considered to be a lost packet, as
well as packets that arrive out of order.

The weighted sum method has the same effect. This method states that even if we
consider different parameters for path selection, it is necessary to properly determine the
weights of the metrics to obtain a balanced path. We can solve these optimization problems
using evolutive algorithms, which provide a set of non-dominated paths and consider
multiple metrics. The MOCell method reaches a throughput of 99.09%, which is only 0.07%
better than MOEA/D and, compared with the other algorithms, 1.6% higher than path H,
3.2% higher than path D, 3.6% higher than path wB,D,PL, 4.6% higher than path PL, and
9.77% higher than path B. Link capacity is a necessary network parameter to guarantee
QoS. However, this is not sufficient to provide adequate service in all cases. Therefore, it
is advisable to never lose sight of the other parameters available in the network and to
use more than one criterion in the routing process to improve the quality of service and
enhance the quality of experience.

5. Conclusions and Future Work

This document provides an overview of the routing algorithms used in the SDN
network controller, including their quantitative performance characteristics, such as the
number of hops, available bandwidth, delay and packet loss, and their throughput, consid-
ering a large-scale multi-domain network topology. This work suggests that the proposal
of a genetic algorithm in the routing process can significantly improve network perfor-
mance. Minimizing the cost of network metrics and reducing the likelihood of selecting
connections with few resources or poor link performance can significantly reduce data
flow performance or, in the worst case scenario, cause congestion. The experiments in this
work show that our proposal based on the MOCell algorithm provides optimal routing by
having a global view of the network and abstracting its QoS metrics. The proposed MOCell
method adapts to any routing constraint, while the standard algorithms in the controller
do not consider any of these essential properties to improve the routing service.

Managing a centralized environment as in SDN can significantly enhance the routing
process by improving path selection and providing better service. Evolutionary algorithms
and their variants take advantage of this problem because they are scalable and can find
reasonable solutions during the first run, which helps networks to meet QoS requirements
and improves network performance.

In future work, we will consider optimizing the algorithm for different population
sizes, as well as different crossover and mutation methods. Similarly, we will evaluate the
performance of the MOCell algorithm in more detail compared with other evolutionary
algorithms such as NSGA-II and MOEA/D, considering convergence time and diversity of
solutions. In the evaluation of other evolutionary algorithms, both their convergence to the
Pareto front and the dispersion of the set of found solutions are evaluated, while in this
paper we focus exclusively on the selection of a path from the solutions found by the meth-
ods. Therefore, we consider it appropriate to use other metrics such as cardinality, accuracy,
and diversity to evaluate the performance of evolutionary multi-objective algorithms.
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Appendix A

Table A1. Controller A link metrics in the simulation model. Metrics: delay (ms), packet loss (%),
and bandwidth (Mbps).

Link (S) Metrics Link (S) Metrics Link (S) Metrics Link (S) Metrics

1,2 10,0,97 3,13 16,0.003,82 6,15 3,0,81 11,18 22,0,80

1,3 5,0,94 4,6 13,0,88 7,14 3,0,79 11,19 23,0,76

1,4 8,0,99 4,8 7,0,97 7,15 2,0,85 12,13 7,0,80

1,5 3,0,93 4,10 16,0,90 8,l9 9,0,78 12,20 21,0.003,100

2,6 18,0.002,93 4,12 18,0.001,96 8,16 18,0.002,96 12,21 12,0,77

2,8 12,0,90 5,7 17,0,84 8,17 12,0,87 13,20 6,0,80

2,10 24,0.001,98 5,9 9,0,92 9,16 7,0,76 13,21 21,0.001,79

2,12 8,0,91 5,11 21,0.002,94 9,17 14,0,83 14,15 8,0,83

3,7 11,0,86 5,13 15,0,97 10,11 11,0,80 16,17 7,0,80

3,9 21,0.004,97 6,7 8,0,82 10,18 13,0,83 18,19 6,0,80

3,11 9,0,95 6,14 23,0,86 10,19 9,0,82 20,21 9,0,79

H1-H8 0,0,100

Table A2. Controller B link metrics in the simulation model. Metrics: delay (ms), packet loss (%), and
bandwidth (Mbps).

Link (S) Metrics Link (S) Metrics Link (S) Metrics Link (S) Metrics

22,23 2,0,94 25,29 8,0,93 29,35 18,0,82 33,40 7,0,92

22,24 4,0,96 25,31 13,0.001,91 29,36 12,0,87 34,39 5,0,83

22,25 2,0,98 26,28 9,0,92 30,35 5,0,94 34,40 12,0,95

22,26 16,0,99 26,30 12,0.001,89 30,36 1,0.001,86 35,41 5,0.002,84

23,27 8,0.001,91 26,32 18,0,94 30,37 3,0,97 35,42 4,0,96

23,29 15,0,93 27,33 7,0.002,93 31,36 4,0.001,93 36,41 2,0,87

23,31 12,0.001,95 27,34 12,0,87 31,37 6,0,96 36,42 7,0,93

24,28 2,0,92 28,33 11,0,88 31,38 2,0,99 37,43 6,0,92

24,l0 7,0.001,94 28,34 6,0,93 32,37 20,0,94 37,44 3,0,94

24,32 12,0,97 28,35 2,0,97 32,38 5,0.001,86 38,43 5,0,94

25,27 12,0,98 29,34 15,0.002,97 33,39 3,0.002,82 38,44 3,0.001,95

H9-H14 0,0,100
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Table A3. Controller C link metrics in the simulation model. Metrics: delay (ms), packet loss (%),
and bandwidth (Mbps).

Link (R) Metrics Link (R) Metrics Link (R) Metrics Link (R) Metrics

1,2 2,0,89 47,48 2,0,89 46,60 2,0,97 92,106 3,0.001,93

1,15 2,0.001,86 47,60 1,0,85 46,61 3,0,86 137,152 3,0,86

1,16 1,0,91 47,61 3,0,93 92,107 1,0,98 38,139 3,0,100

2,3 3,0,97 47,62 1,0,85 93,94 3,0,93 138,151 3,0,86

2,15 1,0,97 48,49 2,0.001,94 93,106 1,0,100 138,152 4,0.001,85

2,16 2,0.001,94 48,61 2,0,99 93,107 2,0.001,92 138,153 2,0,86

2,17 4,0.001,91 48,62 3,0,97 93,108 2,0,96 139,140 4,0.001,90

3,4 1,0.001,98 48,63 1,0,97 94,95 1,0.001,97 139,152 3,0,91

3,16 4,0,87 49,50 2,0,89 94,107 2,0,96 139,153 1,0,97

3,17 4,0,95 49,62 1,0,93 94,108 2,0.001,94 139,154 1,0,97

3,18 3,0,86 49,63 1,0.001,96 94,109 4,0,90 140,153 1,0,97

4,5 1,0.001,85 49,64 2,0,86 95,96 3,0,87 140,154 3,0,85

4,17 1,0,91 50,51 1,0,97 95,108 2,0,96 141,142 2,0.001,87

4,18 1,0,84 50,63 1,0,94 95,109 2,0,98 141,166 3,0,91

4,19 4,0.001,87 50,64 2,0.001,95 95,110 1,0,95 141,156 3,0.001,71

5,6 4,0.001,82 50,65 1,0,95 96,97 1,0.001,93 142,143 2,0.001,86

5,18 2,0,82 51,52 1,0,98 96,109 4,0,85 142,155 3,0,98

5,19 4,0,90 51,64 3,0,100 96,110 4,0.001,93 142,156 2,0,91

5,20 3,0.001,94 51,65 3,0.001,91 96,111 2,0,88 142,157 2,0,91

6,7 2,0,99 51,66 1,0,86 97,98 4,0,95 143,144 2,0,89

6,19 4,0,95 52,53 4,0.001,85 97,110 3,0,87 143,156 3,0,95

6,20 2,0,94 52,65 3,0,96 97,111 2,0,88 143,157 4,0.001,96

6,21 2,0,83 52,66 1,0.001,90 97,112 3,0,100 143,158 4,0,90

7,8 3,0,96 52,67 4,0,85 98,111 1,0,98 144,145 4,0,94

7.20 1,0,86 53,54 4,0,96 98,112 1,0,91 144,157 3,0,89

7,21 4,0,95 53,66 2,0,96 99,100 2,0.001,83 144,158 4,0,85

7,22 2,0,88 53,67 2,0.001,96 99,113 1,0,99 144,159 3,0,93

8,9 2,0.001,89 53,68 1,0,89 99,114 3,0,76 145,146 4,0.001,96

8,21 2,0,96 54,55 4,0.001,85 100,101 3,0,96 145,158 1,0,96

8,22 1,0,84 54,67 1,0,93 100,113 2,0,87 145,159 3,0,98

8,23 3,0,84 54,68 4,0,95 100,114 3,0,100 145,160 4,0,89

9,10 1,0,83 54,69 3,0,85 100,115 3,0,85 146,147 1,0.001,96

9,22 3,0,87 55,56 3,0.001,100 101,102 2,0.001,86 146,159 1,0,95

9,23 4,0,95 55,68 2,0,92 101,114 1,0,99 146,160 1,0,100

9,24 4,0.001,85 55,69 4,0.001,86 101,115 2,0,94 146,161 3,0,92

10,11 3,0.001,88 55,70 1,0,91 101,116 1,0,92 147,148 3,0.001,96
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10,23 1,0,93 56,69 3,0.001,87 102,103 1,0.001,90 147,160 3,0,85

10,24 4,0,80 56,70 3,0,85 102,115 1,0,89 147,161 1,0,100

10,25 1,0.001,80 57,58 3,0,88 102,116 3,0,92 147,162 3,0,100

11,12 4,0.001,88 57,71 2,0,78 102,117 3,0,100 148,149 3,0,94

11,24 3,0,88 57,72 1,0,80 103,104 3,0,91 148,161 3,0,97

11,25 2,0,86 58,59 3,0,94 103,116 3,0.001,97 148,162 2,0,92

11,26 1,0.001,90 58,71 2,0,87 103,117 3,0,90 148,163 3,0,91

12,13 2,0,89 58,72 3,0,88 103,118 2,0,96 149,150 1,0.001,96

12,25 3,0,81 58,73 4,0,97 104,105 3,0.001,87 149,162 2,0,87

12,26 2,0,96 59,60 1,0.001,87 104,117 1,0,92 149,163 1,0.001,90

12,27 3,0.001,95 59,72 3,0,96 104,118 4,0,90 149,164 1,0,97

13,14 4,0.001,91 59,73 1,0.001,95 104,119 2,0,91 150,151 1,0.001,100

13,26 1,0,81 59,74 1,0,90 105,106 4,0,89 150,163 2,0,95

13,27 1,0,82 60,61 2,0,86 105,118 2,0,97 150,164 1,0,87

13,28 1,0,98 60,73 4,0,93 105,119 3,0,100 150,165 2,0,89

14,27 3,0,86 60,74 3,0.001,93 105,120 2,0,91 151,152 1,0.001,91

14,28 2,0.001,88 60,75 1,0,85 106,107 1,0.001,94 151,164 1,0,91

15,16 2,0.001,86 61,62 4,0,96 106,119 2,0,98 151,165 4,0.001,99

15,29 3,0,89 61,74 1,0,92 106,120 1,0,94 151,166 4,0,95

15,30 2,0.001,72 61,75 2,0,88 106,121 3,0,92 152,153 1,0.001,92

16,17 4,0.001,93 61,76 3,0,91 107,108 4,0,95 152,165 4,0,95

16,29 2,0,86 62,63 1,0.001,97 107,120 2,0,90 152,166 3,0,93

16,30 4,0,92 62,75 1,0,91 107,121 4,0,100 152,167 4,0,100

16,31 3,0,93 62,76 2,0,92 107,122 3,0,94 153,154 1,0.001,92

17,18 3,0.001,91 62,77 1,0,89 108,109 4,0,99 153,166 2,0,93

17,30 4,0,91 63,64 3,0,98 108,121 1,0,95 153,167 3,0.001,94

17,31 4,0,92 63,76 4,0,97 108,122 2,0.001,85 153,168 2,0,93

17,32 2,0,94 63,77 3,0,100 108,123 2,0,90 154,167 4,0,98

18,19 2,0,95 63,78 4,0,97 109,110 1,0.001,100 154,168 4,0,100

18,31 4,0,86 64,65 2,0.001,86 109,122 1,0,100 155,156 2,0,72

18,32 3,0.001,90 64,77 3,0,99 109,123 3,0,90 155,169 1,0,98

18,33 4,0,90 64,78 4,0,87 109,124 4,0,85 155,170 1,0,70

19,20 1,0,98 64,79 3,0,91 110,111 2,0.001,98 156,157 2,0.001,86

19,32 3,0,96 65,66 3,0.001,93 110,123 2,0,96 156,169 3,0,98

19,33 4,0.001,89 65,78 4,0,90 110,124 4,0,95 156,170 2,0,95

19,34 2,0,100 65,79 3,0.001,97 110,125 3,0,91 156,171 3,0,100
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20,21 2,0.001,86 65,80 4,0,92 111,112 1,0,91 157,158 4,0,94

20,33 2,0,97 66,67 3,0.001,87 111,124 4,0,94 157,170 2,0,88

20,34 4,0.001,98 66,79 1,0,99 111,125 3,0,89 157,171 3,0.001,94

20,35 4,0,93 66,80 4,0,88 111,126 2,0,89 157,172 4,0,91

21,22 4,0.001,97 66,81 1,0,100 112,125 4,0.001,88 158,159 4,0.001,99

21,34 4,0,93 67,68 2,0.001,92 112,126 3,0,88 158,171 2,0,95

21,35 3,0.001,95 67,80 2,0,86 113,114 1,0.001,81 158,172 2,0,86

21,36 3,0,97 67,81 3,0,89 113,127 1,0,81 158,173 2,0,94

22,23 1,0,90 67,82 4,0,93 113,128 3,0.001,87 159,160 4,0,88

22,35 4,0,92 68,69 4,0.001,91 114,115 3,0,95 159,172 2,0,99

22,36 3,0.001,100 68,81 4,0,87 114,127 4,0,86 159,173 1,0,94

22,37 4,0,100,87 68,82 3,0.001,100 114,128 3,0.001,98 159,174 2,0,91

23,24 4,0,86 68,83 4,0,99 114,129 1,0,98 160,161 2,0.001,98

23,36 3,0,99 69,70 2,0.001,88 115,116 3,0.001,92 160,173 2,0,93

23,37 3,0,89 69,82 2,0,100 115,128 4,0,92 160,174 4,0,95

23,38 2,0,100 69,83 2,0.001,92 115,129 2,0.001,85 160,175 4,0,92

24,25 3,0,100 69,84 2,0,94 115,130 1,0,95 161,162 3,0,95

24,37 1,0,95 70,85 1,0.001,94 116,117 4,0,92 161,174 1,0,96

24,38 3,0.001,98 70,84 2,0,96 116,129 2,0,94 161,175 4,0,88

24,39 2,0,86 71,72 2,0,70 116,130 3,0,91 161,176 3,0,86

25,26 3,0,98 71,85 2,0,74 116,131 1,0,95 162,163 4,0.001,99

25,38 2,0,95 71,86 3,0.001,95 117,118 1,0,89 162,175 3,0,94

25,39 4,0.001,96 72,73 3,0,98 117,130 1,0,92 162,176 3,0.001,85

25,40 4,0,91 72,85 1,0,96 117,131 3,0,90 162,177 1,0,94

26,27 4,0.001,100 72,86 2,0,93 117,132 3,0,90 163,164 3,0,98

26,37 3,0,90 72,87 3,0,94 118,119 4,0,87 163,176 4,0,88

26,40 4,0,90 73,74 2,0.001,94 118,131 2,0,94 163,177 2,0.001,97

26,4 4,0,91 73,86 1,0,98 118,132 3,0,96 163,178 3,0,92

27,28 3,0.001,97 73,87 2,0,86 118,133 1,0,94 164,165 3,0.001,97

27,20 3,0,96 73,88 3,0,92 119,120 2,0.001,90 164,177 1,0,91

27,41 4,0.001,99 74,75 1,0,100 119,132 2,0,86 164,178 1,0.001,99

27,42 2,0,91 74,87 3,0,86 119,133 4,0.001,87 164,179 1,0,95

28,41 4,0.001,97 74,88 4,0.001,88 119,134 1,0,88 165,166 1,0,90

28,42 1,0,96 74,89 4,0,97 120,121 4,0.001,91 165,178 1,0,91

29,30 3,0,96 75,76 3,0,94 120,133 3,0,93 165,179 4,0,97

29,43 1,0,84 75,88 4,0,95 120,134 4,0,91 165,180 3,0,87

29,44 2,0.001,81 75,89 2,0,91 120,135 1,0.001,89 166,167 1,0,89
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30,31 3,0,90 75,90 3,0,90 121,122 3,0,89 166,179 1,0,85

30,43 2,0,88 76,77 1,0.001,91 121,134 1,0,87 166,180 2,0,87

30,44 4,0.001,99 76,89 3,0,98 121,135 4,0,88 166,181 3,0,91

30,45 1,0,85 76,90 4,0.001,92 121,136 4,0,100 167,168 3,0,88

31,32 2,0,91 76,91 4,0,94 122,123 3,0,86 167,180 4,0,95

31,44 2,0,95 77,78 4,0,97 122,135 2,0,88 167,181 4,0.001,85

31,45 1,0,95 77,90 2,0,92 122,136 3,0,91 167,182 4,0,94

31,46 1,0,89 77,91 1,0.001,85 122,137 1,0.001,91 168,181 3,0.001,88

32,33 4,0,85 77,92 4,0,99 123,124 2,0,98 168,182 3,0,93

32,45 1,0,88 78,79 3,0.001,96 123,136 4,0,92 169,170 1,0.001,87

32,46 1,0,94 78,91 2,0,89 123,137 3,0.001,99 169,183 2,0,99

32,47 2,0,97 78,92 1,0.001,98 132,138 3,0,88 169,184 2,0,70

33,34 3,0.001,89 78,93 1,0,99 124,125 2,0.001,98 170,171 1,0.001,94

33,46 1,0,93 79,80 3,0,97 124,137 3,0,100 170,183 4,0,96

33,47 1,0.001,98 79,92 1,0,89 124,138 4,0.001,85 170,184 3,0,100

33,48 3,0,89 79,93 3,0,88 124,139 1,0,100 170,185 1,0,86

34,35 2,0.001,89 79,94 2,0,85 125,126 1,0,97 171,172 4,0,97

34,47 4,0,90 80,81 4,0,94 125,138 2,0,100 171,184 1,0,93

34,48 4,0,86 80,93 4,0,100 125,139 4,0.001,94 171,185 1,0.001,99

34,49 1,0,97 80,94 1,0.001,85 125,140 4,89,89 171,186 1,0,96

35,36 4,0,86 80,95 4,0,98 126,139 1,94,84 172,173 1,0.001,94

35,48 1,0,89 81,82 4,0,85 126,140 1,95,85 172,185 3,0.001,91

35,49 3,0.001,95 81,94 2,0,93 127,128 3,0.001,91 172,186 1,0,97

35,50 1,0,85 81,95 4,0.001,100 127,141 1,0,76 172,187 1,0.001,100

36,37 3,0,88 81,96 2,0,93 127,142 2,0,85 173,174 2,0,92

36,49 1,0,99 82,83 2,0,99 128,129 3,0.001,91 173,186 3,0.001,99

36,50 4,0,96 82,95 2,0,93 128,141 4,0,96 173,187 2,0,89

36,51 4,0,88 82,96 2,0.001,97 128,142 2,0.001,96 173,188 1,0,98

37,38 2,0.001,100 82,97 1,0,86 128,143 3,0,98 174,175 2,0.001,99

37,50 4,0,90 83,84 4,0,99 129,130 3,0.001,89 174,187 2,0.001,99

37,51 1,0,90 83,96 1,0,85 129,142 4,0,99 174,188 4,0,90

37,52 2,0,92 83,97 3,0,91 129,143 3,0.001,98 174,189 4,0,97

38,39 2,0.001,89 83,98 3,0,97 129,144 4,0,85 175,176 4,0.001,97

28,51 2,0,97 84,97 1,0.001,88 130,131, 2,0.001,86 175,188 4,0,95

38,52 4,0,90 84,98 4,0,85 130,143 3,0,91 175,189 4,0,92

38,53 1,0,97 85,86 1,0,90 130,144 3,0.001,91 175,190 2,0.001,95

39,40 3,0,95 85,99 1,0,95 130,145 1,0,90 176,177 1,0.001,85
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39,52 1,0,94 85,100 2,0.001,91 131,132 4,0.001,95 176,189 1,0.001,87

39,53 4,0.001,90 86,87 2,0,92 131,144 1,0,88 176,190 1,0,86

39,54 1,0,87 86,99 2,0,93 131,145 4,0.001,94 176,191 2,0,85

40,41 3,0.001,100 86,100 3,0.001,98 131,146 2,0,100 177,178 4,0,90

40,53 2,0,98 86,101 4,0,98 132,133 3,0.001,99 177,190 1,0.001,100

40,54 1,0,89 87,88 2,0.001,94 132,145 2,0,86 177,191 3,0,93

40,55 4,0,87 87,100 1,0,93 132,146 2,0,96 177,192 1,0.001,94

41,42 4,0,91 87,101 4,0.001,93 132,147 1,0,84 178,179 3,0.001,94

41,54 4,0,92 87,102 1,0,87 133,134 3,0,98 178,191 1,0.001,85

41,55 4,0.001,89 88,89 1,0,97 133,146 4,0,88 178,192 4,0,100

41,56 1,0,98 88,101 4,0,92 133147 1,0,91 178,193 2,0,97

42,55 1,0,96 88,102 1,0.001,100 133,148 2,0,85 178,180 2,0,91

42,56 1,0,98 88,103 4,0,88 134,135 3,0,89 179,192 2,0.001,86

43,44 3,0,87 89,90 4,0,96 134,147 3,0,93 179,193 1,0,98

43,57 1,0,86 89,102 1,0,86 134,148 1,0.001,95 179,194 1,0.001,86

43,58 1,0,74 89,103 2,0,91 134,149 3,0,88 180,181 1,0.001,97

44,45 3,0.001,91 89,104 2,0,99 135,136 2,0,86 180,193 1,0.001,98

44,57 2,0,86 90,91 2,0,89 135,148 1,0,91 180,194 3,0,87

44,58 4,0,93 90,103 4,0,99 135,149 2,0,87 180,195 1,0.001,96

44,59 3,0,93 90,104 2,0,94 135,150 2,0,98 181,182 2,0,86

45,46 4,0.001,100 90,105 3,0,90 136,137 4,0.001,91 181,194 2,0.001,94

45,58 1,0,88 91,92 1,0,96 136,149 1,0,88 181,195 3,0,85

45,59 2,0,82 91,104 2,0,95 136,150 3,0.001,98 181,196 1,0,99

45,60 2,0,98 91,105 2,0,95 136,151 3,0,99 182,195 1,0.001,96

46,47 4,0,87 91,106 2,0,94 137,138 4,0,82 182,196 1,0,85

46,59 4,0,100 92,93 1,0.001,89 92,105 4,0,91 195,196 1,0,92
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