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Abstract: Shark populations worldwide have suffered a decline that has been primarily driven by
overexploitation to meet the demand for meat, fins, and other products for human consumption.
International agreements, such as CITES, are fundamental to regulating the international trade of
shark specimens and/or products to ensure their survival. The present study suggests algorithms
to identify the dry fins of 37 shark species participating in the shark fin trade from 14 countries,
demonstrating high sensitivity and specificity of image processing. The first methodology used a
non-linear composite filter using Fourier transform for each species, and we obtained 100% sensitivity
and specificity. The second methodology was a neural network that achieved an efficiency of 90%.
The neural network proved to be the most robust methodology because it supported lower-quality
images (e.g., noise in the background); it can recognize shark fin images independent of rotation and
scale, taking processing times in the order of a few seconds to identify an image from the dry shark
fins. Thus, the implementation of this approach can support governments in complying with CITES
regulations and in preventing illegal international trade.

Keywords: CITES; shark fins; image processing; Fourier transform; neural network; non-linear
composite filter

1. Introduction

The increased human exploitation and habitat deterioration over the last half-century
has decreased shark populations worldwide [1,2]. Consequently, more than one-third of
chondrichthyan species (sharks, rays, and chimeras, hereafter referred to as ‘sharks’) are
threatened with extinction due to a myriad of human-caused threats; however, observed
population declines are driven primarily by overexploitation in largely unregulated and un-
monitored target and bycatch fisheries worldwide [3]. A global catch assessment estimated
that approximately 100 million sharks are caught annually worldwide, including illegal, un-
reported, and unregulated catch [4]. The reassessment of 1199 species by the International
Union for Conservation of Nature (IUCN) Red List reveals that almost 400 chondrichthyan
species are jeopardized with extinction [5].

International efforts to improve the management and conservation of sharks have
focused on the use of multilateral environmental agreements, such as the Convention on
International Trade in Endangered Species of Wild Fauna and Flora (CITES), to ensure that
products derived from shark and ray species are traded legally and sustainably [6]. At
present, CITES has listed 46 shark and ray species in the Appendices, and the participating
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184 countries worldwide should monitor and control trading of shark products to ensure
sustainability, legality, and traceability from international trade operations [7].

Economic globalization and exploitation of sharks have strengthened the demand
and supply of domestic and international markets for sharks and ray products (mainly
meat and fins) [8]. Shark meat markets have remained stable over the last decade, with
Brazil, Spain, Uruguay, and Italy accounting for 57% of the average global shark meat
imports [9–11]. In contrast, Hong Kong and mainland China are major worldwide trade
and consumption centers for seafood, where shark fins are considered a prized cultural
treasure and luxury food items, such as sharkfin soup—which is served on formal and
special occasions [12].

Unfortunately, international trade data for sharks and their derivative products are
rarely collected at the species level, hampering the monitoring of shark species or their
derivative parts, such as fins and meat [8]. This represents a major challenge for the
implementation of effective monitoring, enforcement, and requirements of countries—
referred to as parties—in meeting their obligations under CITES [13].

To achieve compliance with domestic and international regulations for the shark fin
trade, there are several accessible identification tools to aid in the implementation of CITES
trade controls for listed species, both domestically and at various points along the supply
chain (i.e., software iSharkFin version number 1.4, fin guides, and genetic approaches).
First, the bioinformatics tool, iSharkFin, developed by FAO and the University of Vigo,
was designed to identify 39 species from wet shark fins [14,15]; however, some limitations
need to be considered when using this software, including the misidentification of CITES-
listed species, particularly when dry fins are analyzed because of the discordance between
iSharkFin results, visual diagnostic characteristics, and genetic identification. Currently,
this is the only software that is working.

Second, several visual shark fin identification (ID) guides can provide users with a
fast and cheap tool for the identification of unprocessed fins from CITES species based
on the morphological characteristics of certain fin types, such as the shape and coloration
patterns [16–20]; however, the effectiveness of fin ID guides is highly dependent on the
training and expertise of users in identifying fins from morphologically distinct species,
such as Sphyrna lewini and S. zygaena [20].

Lastly, advances in molecular approaches that are typically used for the identifica-
tion of shark and ray species, or their derivative products, in markets have made them
more accessible than ever before because these assays can be performed quickly in basic
laboratories and are relatively inexpensive. Two widely used genetic tools used to identify
body parts at the species level, such as meat and fins, are (a) DNA barcoding (using the
COI or ND2 mitochondrial genes [21–26]) and (b) multiplex PCR assays based on the
nuclear ribosomal DNA internal transcribed spacer (ITS2) [27–32]. Nevertheless, in Latin
American countries, due to financial and logistical restrictions for molecular analysis—such
as the salary for a technician—dedicated molecular labs, and validation of a genetic tool for
law enforcement systems and courts, DNA techniques are implemented as workflows for
domestic inspections from importation, exportation, and re-exportation. As a result, there
is an urgent need for a robust tool that can aid in the identification of shark fins in CITES
enforcement contexts.

Here, we provide computer techniques and digital correlation systems that offer an
accuracy-based solution for image processing, because we can determine the object position
to identify the problem image. This first model (non-linear composite filter) has been self-
developed and the second model (neural network using the Local Binary Pattern) is a
Matlab tool.

Most filters do not function efficiently when the problem image has small distortions,
different sizes, rotations, or illumination. Therefore, in recent years, numerous efforts have
been made to develop distortion-invariant systems using linear and non-linear filters [33].
Correlation filters were used to identify different species. For example, ceratium was
identified with 90% efficiency, independent of images with different rotation sizes [34].
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Subsequently, different shrimp tissues were identified to detect hypodermal necrosis and
hematopoietic infection virus (IHHN) [35].

In addition, three different approaches involving molecular, morphometric, and image
processing were implemented to identify wet and dry dorsal fins in two CITES-listed
species (Isurus oxyrinchus and Lamna nasus) and a blue shark (Prionace glauca) from
the Chilean shark fin market. The results showed that morphometric analysis lacked the
accuracy to discriminate among species, whereas DNA-based identification and image
processing were 100% successful [9].

In this study, we used two different image-processing approaches: a non-linear com-
posite filter using the Fourier transform and a neural network to identify the species of
origin of 37 dry dorsal fins sourced from 14 countries using photos of the global shark
fin trade.

2. Methodology
2.1. General Information about the Image Database

The database used in this project was shark fin photos from the international fin trade
established in the project “Enhancing the morphological tools to identify illegal shark
fins traded in central America” financed by the Shark Conservation Fund in 2008. Part
of this project includes 1029 photos of dry dorsal fins from 37 commercially important
shark species taken from 14 different countries: United States, Mexico, Belize, Guatemala,
Costa Rica, El Salvador, Panamá, Colombia, Ecuador, Perú, Chile, South Africa, Hong
Kong, and Fiji. The database includes two groups (CITES-listed and non-CITES-listed). The
CITES-listed species are very important because most of the shark populations are in critical
danger, however, there are shark species that are not CITES-listed but are as important as
the ones who are CITES-listed; that is why we decided to merge the two groups. The dry
shark fin database was identified. Figure 1 shows four different dry shark fin species. The
first one corresponds to Sphyrna lewini (A), the second to Sphyrna zygaena (B), the third to
Carcharodon carcharias (C), and the last to Trianodon obesus (D). The photos were classified by
species because we are interested in the population aspects of sharks and rays, including
the genetic diversity, connectivity, and morphological supporting tools that can prevent
the illegal trafficking of shark products in international trade in Latin America. To validate
the use of the algorithms, all the shark fin photos were previously visually identified by
shark fin identification experts [18–20], based on their knowledge and published fin field
guides, and in particular, the experience training international workshop for government
agencies who enforce international trade regulations of CITES-listed species. We compared
the photos using two approaches: (i) a non-linear composite filter using Fourier transform
and (ii) a neural network applied to test species identification from the dry shark fins. The
images can be rotated or scaled. The algorithms were realized in Matlab language.
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Figure 1. Dry shark fins from the first dry fin shark species up to the last dry fin shark species.
(A) is Sphyrna lewini, (B) is Sphyrna zygaena, (C) is Carcharodon carcharias and (D) is Trianodon obesus.
Database without noise in the background.
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We created two databases for the neural network. The first dataset includes 1029 dry
dorsal fins with a white background (without noise) and the second dataset contains
4438 dry dorsal fins with noise in the background (random variation of brightness or color
information in the background of an image) (Figure 2). We gathered the second dataset of
4438 by removing the background of the first dataset of 1029 photos.
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2.2. Non-Linear Compositive Filter

In this section, we present a detailed description of the non-linear composite filters.
Figure 3 shows the steps of the non-linear composite filter. In step (A), on the left, there is
an input training set (information of the species we want to recognize), In, defined by:

In = { f1(x, y), f2(x, y), . . . , fn(x, y)} (1)

where fi(x, y) for i = 1, 2, . . . , n is a two-dimensional function that represents a digitalized
dry shark fin image. In this step, we have n dry shark fin photos, where each one is
represented with fi(x, y).
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Then, the fast Fourier transform (FFT) was applied to each of the images of the dry
shark fins, and because the FFT is a linear integral, we took the total FFT:

F(u, v) =
n
∑

i=1
Fi(u, v), (2)

where Fi(u, v) represents the Fourier transform for each image in the training set; however,
n is the total of dry shark fins in this set, and u and v are the frequency components (Step B).

Furthermore, F(u, v) can be written like:

F(u, v) = |F|k exp(iϕ) (3)

where k is a non-linear operator (0 ≤ k < 1) and ϕ is the phase (Step C).
With the k value selected, we get a better signal in both images. In this case, we choose

k = 0; for this reason, the non-linear composite filter was realized with filters of phase
only. The same procedure is applied to the input images (Steps D, E, and F). The results
obtained from both the training and input images were multiplied to obtain a correlation
plane [36] (Step G). If we have a single peak in the correlation plane, it means that we get a
correct identification.

2.3. Neural Network

The second methodology consists of a neural network [37]. We used the local binary
pattern function to obtain a vector of 59 elements for each image [38]. This algorithm is
a simple and efficient descriptor that describes the textures (edges, corners, spots, and
flat regions), and it is invariant to rotation and scale [39]. Furthermore, the Levenberg–
Marquardt method is used [40]. The neural network consists of the following steps.

The neurons are simple information processors. The output layer comprises neurons
that receive signals from the environment (x1, x2, x3, . . . , x59). In this case, the input layer
was the texture vector of the image. The hidden layer has three elements (error, weight,
and sigmoid function). The errors and weights were random values. The sigmoid function
transforms negative values into 0 and positive values are represented by 1; it is one of
the most widely used non-linear activation functions. The mathematical expression is
as follows:

y =
1

1 + e−x (4)

where y, (0 ≤ y ≤ 1) is the output and x is the real input value in the sigmoid function
(logistic function).

The output layer consisted of 38 neurons, and each neuron was a dry shark dorsal fin.
Figure 4 shows the steps of a neural network with one hidden layer, which are

described below. A three-layer neural network was used in this study. The first layer is an
input layer containing 59 elements. The hidden layer was a single layer with 20 neurons,
and the third layer was the output layer with 38 output values. Each of these outputs
corresponds to a species of dry shark dorsal fin. Each of these features was assigned a
random weight and an error value. In the hidden layer, the weight values are summed
and the error is subtracted. The obtained value was affected by the sigmoid function. This
procedure was performed to obtain the value in the output layer.

Of the 38 outputs, 37 belonged to each shark species studied in this study and one
control group. This control group was created such that when a dry dorsal fin was identified
and did not belong to any of the 37 species, the network would place it in the control group
and thus avoid a possible error when identifying it with another species. These neural
network steps are repeated as a cycle. In each neural network, 80% of the images were
randomly selected for training, 10% were randomly selected for testing, and 10% were
randomly selected for validating data. The photos of fins with different backgrounds that
were used in the training of the neural network are not the same as those used to perform
the validation and testing of the network. This procedure is performed until the global
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minimum value of the error function is obtained. The purpose of testing is to compare the
outputs from the neural network against targets in an independent set, and the purpose
of the validation set is to fine-tune the hyperparameters of the model and is considered a
part of the training of the model [41]. Generally, 80% are used for training, 10% are used for
testing, and 10% are used for validation in neural networks.
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Finally, the percentages for sensitivity and specificity were applied to each result to
determine the effectiveness of each methodology.

Sensitivity was defined as the proportion of individuals correctly identified as belong-
ing to Species 1. The mathematical expression is as follows:

TP
TP + TN

(5)

where TP corresponds to true positives and TN corresponds to true negatives.
Specificity was defined as the proportion of correctly identified individuals that did

not belong to Species 1.
TN

TN + FP
(6)

where TN corresponds to true negatives and FP corresponds to false positives.

3. Results
3.1. Non-Linear Composite Filter

The numerical simulations performed for the non-linear composite filters provided
the most representative results for identifying dry shark fins from the CITES-listed and non-
listed species (n = 37). Table 1 shows that the species-specific composite filters developed
for the 37 shark species showed excellent identification of CITES-listed and non-listed
species (n = 37), with 100% sensitivity and specificity. In addition, the optimal value of the
non-linear operator (k) was found to be 0.
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Table 1. Sensitivity and specificity percentage of each of the dry dorsal fin species of sharks using the
non-linear composite filter.

Scientific Name Dry Dorsal Fins % Sensitivity % Specificity

Sphyrna lewini 262 100 100
Sphyrna zygaena 92 100 100

Sphyrna mokarran 16 100 100
Lamna nasus 9 100 100

Carcharodon carcharias 16 100 100
Carcharhinus longimanus 22 100 100
Carcharhinus falciformis 101 100 100

Alopias vulpinus 24 100 100
Alopias pelagicus 75 100 100

Alopias superciliosus 98 100 100
Isurus oxyrinchus 49 100 100

Isurus paucus 3 100 100
Rhincodon typus 4 100 100

Carcharhinus acronotus 4 100 100
Carcharhinus brachyurus 2 100 100
Carcharhinus brevipinna 22 100 100

Carcharhinus isodon 5 100 100
Carcharhinus leucas 19 100 100

Carcharhinus limbatus 51 100 100
Carcharhinus obscurus 27 100 100

Carcharhinus perezi 3 100 100
Carcharhinus plumbeus 1 100 100

Carcharhinus sealei 6 100 100
Carcharhinus signatus 2 100 100
Carcharhinus taurus 8 100 100

Galeocerdo cuvier 33 100 100
Ginglymostoma cirratum 2 100 100
Ginglymostoma unami 4 100 100

Mustelus lunulatus 3 100 100
Mustelus mustelus 5 100 100

Negaprion acutidens 2 100 100
Negaprion brevirostris 2 100 100

Prionace glauca 39 100 100
Rhizoprionodon acutus 1 100 100

Rhizoprionodon longurio 10 100 100
Sphyrna tiburo 5 100 100

Trianodon obesus 2 100 100

3.2. Neural Network

Four experiments were conducted using a neural network that varied the number
of neurons in the hidden layer, species, and noise in the images. The second experiment
was the best neural network because we obtained a 90% efficiency with 20 neurons in the
hidden layer. Efficiencies between 84% and 88% were obtained in the other runs. The
experiments were conducted as follows.

Table 2 shows the results from the first experiment with 37 shark species with a white
background and one control group using ten neurons in the hidden layer. We repeated the
neural network 15 times to determine the optimal neural network efficiency. The epochs
are the number of cycles that the neural network performed to reach the global minimum
value of the error function. Efficiency is a relative value that shows the ratio between the
achieved result and the used resource. In this experiment, the best neural network achieved
an efficiency of 88.9%.
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Table 2. First experiment. Fifteen runs of the neural network with 37 species, 1 control group
(38 “species”), and 10 neurons in the hidden layer.

Species Neural Network Layer Epochs Time % Efficiency Neurons

38 1 1 128 44 min 88.6 10

38 2 1 127 43 min 88.4 10

38 3 1 127 20 min 86.1 10

38 4 1 122 49 min 85.8 10

38 5 1 138 44 min 87.4 10

38 6 1 125 43 min 83.8 10

38 7 1 128 77 min 86.3 10

38 8 1 128 46 min 88.9 10

38 9 1 128 47 min 88.6 10

38 10 1 127 22 min 86.1 10

38 11 1 127 43 min 88.4 10

38 12 1 122 44 min 85.8 10

38 13 1 138 37 min 87.4 10

38 14 1 125 40 min 83.8 10

38 15 1 128 60 min 86.3 10

Table 3 shows the second experiment with 37 shark species with a white background
and one control group. We obtained an efficiency of 90% (shown in yellow) for the four
neural networks.

Table 3. Second experiment. Fifteen runs of the neural network with 37 species, 1 control group
(38 “species”), and 20 neurons in the hidden layer.

Species Neural Network Layer Epochs Time % Efficiency Neurons

38 1 1 179 90 min 87.8 20

38 2 1 259 120 min 87.6 20

38 3 1 166 82 min 87.8 20

38 4 1 128 76 min 86.3 20

38 5 1 151 89 min 88.8 20

38 6 1 150 78 min 90.6 20

38 7 1 201 99 min 90.3 20

38 8 1 161 83 min 84.9 20

38 9 1 179 94 min 87.8 20

38 10 1 259 134 min 87.6 20

38 11 1 166 92 min 87.8 20

38 12 1 151 78 min 88.8 20

38 13 1 150 66 min 90.6 20

38 14 1 201 89 min 90.3 20

38 15 1 161 72 min 84.9 20

Table 4 shows the sensitivity and specificity percentage of each dry dorsal fin shark
species using the neural network with 90% efficiency. In this table, we show the 100%
sensitivity for Carcharhinus plumbeus, Ginglymostoma cirratum and Negaprion acutidens. Car-
charhinus limbatus had a sensitivity of 56.43%; this was the lowest percentage of all species.
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The rest had between 65.34% and 99.04% sensitivity. The specificity was between 98.05%
and 100%.

Table 4. Sensitivity and specificity percentage of each dry dorsal fin shark species using the neural
network with 90% efficiency.

Scientific Name Dry Dorsal Fins
without Noise % Sensitivity % Specificity

Sphyrna lewini 262 92.4% 98.05%
Sphyrna zygaena 92 66.96% 99.72%

Sphyrna mokarran 16 78.21% 99.46%
Lamna nasus 9 91.34% 99.72%

Carcharodon carcharias 16 88.10% 99.4%
Carcharhinus longimanus 22 87.25% 99.86%
Carcharhinus falciformis 101 65.34% 99.24%

Alopias vulpinus 24 88.46% 99.72%
Alopias pelagicus 75 83% 99.37%

Alopias superciliosus 98 90.26% 99.70%
Isurus oxyrinchus 49 71.15% 99.16%

Isurus paucus 3 98.05% 99.89%
Rhincodon typus 4 98.07% 100%

Carcharhinus acronotus 4 96.15% 99.94%
Carcharhinus brachyurus 2 97.05% 99.91%
Carcharhinus brevipinna 22 92.85% 99.86%

Carcharhinus isodon 5 98% 100%
Carcharhinus leucas 19 85.57% 99.67%

Carcharhinus limbatus 51 56.43% 99.91%
Carcharhinus obscurus 27 89.74% 99.45%

Carcharhinus perezi 3 95.14% 99.59%
Carcharhinus plumbeus 1 100% 99.83%

Carcharhinus sealei 6 95.28% 99.91%
Carcharhinus signatus 2 97.05% 99.80%
Carcharhinus taurus 8 95.37% 99.61%

Galeocerdo cuvier 33 82.23% 99.89%
Ginglymostoma cirratum 2 100% 99.78%
Ginglymostoma unami 4 97.11% 100%

Mustelus lunulatus 3 98.05% 99.89%
Mustelus mustelus 5 99.04% 99.89%

Negaprion acutidens 2 100% 99.80%
Negaprion brevirostris 2 99.01% 99.91%

Prionace glauca 39 91.59% 99.64%
Rhizoprionodon acutus 1 97.02% 99.94%

Rhizoprionodon longurio 10 94.54% 99.91%
Sphyrna tiburo 5 97.14% 99.86%

Trianodon obesus 2 99.01% 99.89%
Random group 80 93.91% 99.91%

We performed a third experiment based on the first two experiments. Nine shark
species had only five images, which is why they were not considered in this experiment.
There were 27 dry shark fin species with a white background and one control group.

Table 5 shows the results of the third experiment, with 26 species and one control
group. Here, we have three neural networks with an 89% efficiency.
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Table 5. Third experiment. Fifteen runs of the neural network with 27 species and 20 neurons in the
hidden layer.

Species Neural Network Layer Epochs Time % Efficiency Neurons

27 1 2 168 21 min 87.7 20

27 2 2 207 27 min 89.7 20

27 3 2 169 21 min 89.6 20

27 4 2 209 26 min 87.5 20

27 5 2 181 23 min 90.1 20

27 6 2 176 22 min 89.1 20

27 7 2 216 29 min 87 20

27 8 2 191 25 min 88.4 20

27 9 2 181 38 min 87.2 20

27 10 2 246 52 min 89.4 20

27 11 2 164 35 min 88.4 20

27 12 2 198 41 min 87.6 20

27 13 2 287 51 min 88.2 20

27 14 2 168 26 min 88.5 20

27 15 2 227 30 min 87.3 20

Table 6 shows the fourth experiment with 37 species and one control group. Here, we
have two neural networks with an 89% efficiency. In this experiment, there was a good
percentage because the number of dry shark fins increased for each species.

Table 6. Fourth experiment. Fifteen runs of the neural network with 37 species, 1 control group
(38 “species”), and 20 neurons in the hidden layer.

Species Neural Network Layer Epochs Time % Efficiency Neurons

38 1 1 186 108 80.1 20

38 2 1 186 110 83.1 20

38 3 1 147 48 84.5 20

38 4 1 154 52 89 20

38 5 1 148 49 81.3 20

38 6 1 137 45 86.1 20

38 7 1 130 46 82.9 20

38 8 1 147 48 84.5 20

38 9 1 147 49 84.5 20

38 10 1 147 48 84.5 20

38 11 1 147 49 84.5 20

38 12 1 194 66 82.9 20

38 13 1 150 53 83.4 20

38 14 1 154 55 89 20

38 15 1 147 49 84.5 20

The final experiment (Table 6) was performed using a database of dry shark fin images
with and without background noise to increase the number of dry fins in each species.
From this database, 4438 images of the dry dorsal fins of sharks were obtained.

Table 7 shows the sensitivity and specificity of each dry dorsal fin shark species using
a neural network with 89% efficiency. In this table, we show the 100% sensitivity for
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Carcharhinus plumbeus. Sphyrna zygaena had a sensitivity of 66.37%; this was the lowest
percentage of all species. The rest had between 75% and 99% sensitivity. The specificity
was between 98% and 99%.

Table 7. Sensitivity and specificity percentage of each dry dorsal fin shark species using the neural
network with 89% efficiency. This table represents the database of dry shark fins with noise in the
background of the images.

Scientific Name Dry Dorsal Fins with Noise % Sensitivity % Specificity

Sphyrna lewini 459 91.28% 98.65%
Sphyrna zygaena 113 66.37% 99.35%

Sphyrna mokarran 104 82.69% 99.66%
Lamna nasus 101 90.09% 99.63%

Carcharodon carcharias 101 96.03% 99.68%
Carcharhinus longimanus 105 92.38% 99.66%
Carcharhinus falciformis 130 77.69% 99.25%

Alopias vulpinus 113 86.72% 99.63%
Alopias pelagicus 138 78.98% 99.40%

Alopias superciliosus 173 86.70% 99.45%
Isurus oxyrinchus 116 81.03% 99.22%

Isurus paucus 103 98.05% 99.81%
Rhincodon typus 105 98.05% 99.92%

Carcharhinus acronotus 100 95% 99.89%
Carcharhinus brachyurus 101 95.04% 99.94%
Carcharhinus brevipinna 105 74.28% 99.61%

Carcharhinus isodon 102 92.15% 99.89%
Carcharhinus leucas 109 79.81% 99.58%

Carcharhinus limbatus 102 75.49% 99.23%
Carcharhinus obscurus 104 88.46% 99.33%

Carcharhinus perezi 104 96.15% 99.58%
Carcharhinus plumbeus 102 100% 99.94%

Carcharhinus sealei 104 92.30% 99.79%
Carcharhinus signatus 103 97.08% 99.79%
Carcharhinus taurus 108 88.88% 99.79%

Galeocerdo cuvier 117 71.79% 99.92%
Ginglymostoma cirratum 101 96.03% 99.71%
Ginglymostoma unami 100 99% 99.79%

Mustelus lunulatus 100 94% 99.92%
Mustelus mustelus 100 94% 99.94%

Negaprion acutidens 100 97% 99.92%
Negaprion brevirostris 100 98% 99.89%

Prionace glauca 100 81% 99.30%
Rhizoprionodon acutus 100 99% 99.89%

Rhizoprionodon longurio 100 85% 99.87%
Sphyrna tiburo 100 92% 99.92%

Trianodon obesus 100 96% 99.89%
Random group 115 85.21% 99.63%

4. Discussion

The results obtained in this study show that the non-linear composite phase filter
can successfully correlate (100%) with 37 different species of dry shark dorsal fins. In this
context, the results obtained were similar to those obtained using species-specific composite
filters to identify the dry fins (dorsal fins, right-sided pectoral fins, and caudal fins) of three
shark species: Prionace glauca, Isurus oxyrinchus, and Lamna nasus. A 100% identification
was recorded among the fins of each species analyzed [36]; however, in the study of [36], an
inverse Gaussian filter was used to enhance the high frequencies, and the technique in [34]
was used to have rotation invariance and the confidence level was calculated (95.4%). Only
a phase filter was used in this study, and the percentages for the sensitivity and specificity
were calculated.
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A non-linear compound filter uses this value, k, as the non-linear operator. By changing
the value to 1, we obtain a classically matched filter that has the advantage of optimizing
the output when the input signal (image problem) is degraded by additive white noise [33].
When k = 0, we have a phase-only filter that maximizes the light efficiency in an optical
system; moreover, when k = −1, we have an inverse filter that minimizes the correlation
energy criteria. This last filter produces a narrower peak in the output correlation plane if
the reference image and problem image are the same [34]. When the non-linear operator
modifies the Fourier transform of the problem and reference images, we consider that we
have a non-linear processor. The intermediate values of (0.1, 0.2, 0.3, . . . , 0.9) allow us to
vary the characteristics of the processor, such as the discrimination capacity and its variance
to illumination [42]. It is essential to consider that in these results with the non-linear
composite filter, the non-linear filter law (when k is different from zero) was discarded
because when varying the value between 0 and 1, it was found that the best correlation
peak was at k = 0. This represents a correlation using a phase-only filter [33].

The disadvantages of using the non-linear composite phase filter are as follows. Sup-
pose we use n filters corresponding to n species. In this case, the algorithm takes a long
time to process hundreds of problem images that contain different species; however, this
disadvantage does not occur when using neural networks, since identifying a fin photo
takes between 0.18 s to 0.48 s and information from all species has already been integrated.

The percentage of efficiency in the tables corresponds to the confusion matrix. The
diagonal of this matrix indicates the number of fins correctly identified and the percentages
outside of this diagonal shows all the fins that were not correctly identified.

The first neural network with a white background obtained 90% efficiency. Sphyrna
lewini had 92% efficiency from 262 images, Sphyrna zygaena had 66% efficiency from 92
images, and Sphyrna mokarran had 78% efficiency from 16 images. In the second neural
network with the noise in the background, we obtained 89% efficiency. Sphyrna lewini had
91% efficiency from 459 images, Sphyrna zygaena had 66% efficiency from 113 images, and
Sphyrna mokarran had 82% efficiency from 104 images. This indicates that 66% of the images
were correctly identified as belonging to Sphyrna zygaena. The low percentage of sensitivity
is because there is less information from the images in both species; therefore, a more
significant number of images is needed to obtain a more robust model. However, there are
some species with 94–100% sensitivity, such as G. unami, N. brevirostris, and N. acutidens,
which have high percentages because they do not look like the rest of the other species.

Having more variability in the database for each species will benefit the algorithm
because it holds more information for each species and has a higher sensitivity percentage.

The local binary pattern function is essential because it is a texture classifier (that
focuses on edges, corners, spots, and flat regions). It is designed to tolerate noise and
handle grayscale, rotation, and scale-invariant images [38]. Therefore, our database is
composed of photos in which some of the images are rotated in different directions to create
a robust algorithm.

The advantage of using more than one layer and, in each layer, using more than
20 neurons is that we might obtain better efficiency, but, as a consequence, the neural
network will take longer for training. Therefore, it will be better if we increase the number
of images in each species to have better efficiency.

The neural network can be replicated to identify wet dorsal fins, as well as wet
and dry pectoral fins. This is the first step in creating a tool for CITES agents to use
to prevent international trade in the Asian market. Even so, building capacities for the
implementation of CITES species is highly recommended in Latin American and global
countries. Nevertheless, algorithmic tools must be provided to government agencies and
inspectors in order to prevent international trade. Updating the identification of CITES
species and non-CITES species with algorithms from machine learning systems could be
salvageable in the future in order to conserve the remaining shark populations, which have
been in decline since 1950 due to overfishing.
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5. Conclusions

All species were identified using a non-linear composite filter with 100% sensitivity
and specificity. Although a perfect percentage was obtained, this was not the best method-
ology for the following reasons: (1) It is not rotation- or scale-invariant; and (2) the filter
takes a long time to identify a problem image (fin photo) because the problem image must
be correlated with each image in the database. It can be made invariant if a non-linear
composite phase filter is fed with hundreds of rotated and scaled images of the species
to be identified. This filter can also be fed images with different illumination levels and
fragmented images.

The best methodology for identifying dry dorsal fins for this study is the neural
network, primarily because of the short time required to identify a species. The sensitivity
and specificity of the studied species can be increased when the network is fed hundreds
or thousands of images. Two high percentages were obtained in this study: 90% with
images without a background and 89% with images with noise in the background. This
methodology supports noisy images and is invariant to scale and rotation. In addition, it
takes between 0.18 s and 0.48 s to identify a problem image (fin photo).

If we do not understand the problem impacting the shark populations in the following
years, we would be responsible for driving all shark species to extinction because of a lack
of conscience.
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