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Abstract: Corners are an important kind of image feature and play a crucial role in solving various
tasks. Over the past few decades, a great number of corner detectors have been proposed. However,
there is no benchmark dataset with labeled ground-truth corners and unified metrics to evaluate
their corner detection performance. In this paper, we build three benchmark datasets for corner
detection. The first two consist of those binary and gray-value images that have been commonly
used in previous corner detection studies. The third one contains a set of urban images, called the
Urban-Corner dataset. For each test image in these three datasets, the ground-truth corners are
manually labeled as objectively as possible with the assistance of a line segment detector. Then, a set
of benchmark evaluation metrics is suggested, including five conventional ones: the precision, the
recall, the arithmetic mean of precision and recall (APR), the F score, the localization error (Le), and
a new one proposed in this work called the repeatability referenced to ground truth (RGT). Finally, a
comprehensive evaluation of current state-of-the-art corner detectors is conducted.

Keywords: corner detection; benchmark dataset; evaluation metric; objective evaluation; subjective
evaluation

1. Introduction

Detecting corners from images has been studied for many years. Existing popular
corner detectors can be roughly divided into two categories: intensity-based methods and
contour-based methods. The intensity-based corner detectors are derived from the obser-
vation that there are obvious intensity differences among image edges, corners, and flat
areas. Early developed corner detectors in this category include the Harris [1] and SUSAN
methods [2] and scale-invariant image feature detector proposed by Mikolajczyk et al. [3].
Later on, Xia et al. [4] developed the ACJ detector, which is based on the intensity variations
in the edge pixels. After that, Xue et al. [5] introduced the anisotropic-scale corner detector
(AS]). DeTone et al. [6] proposed an interest point detector based on self-supervised learn-
ing (SuperPoint). Recently, the SOGGDD [7] ware proposed, which uses a second-order
generalized Gaussian directional derivative to detect corners. Zhang and Sun [8] used a
multi-directional structure tensor to detect corners. A new keypoint method was proposed
by Kim et al. [9]. Wang et al. [10] introduced an efficient corner detector using a novel
type of filter. By combining the SIFT algorithm [11] and Harris algorithm [1] proposed by
Lowe et al. [11], Wang et al. [12] proposed an efficient matching and tracking algorithm
based on corner detection. Luo et al. [13] proposed a robust and efficient corner detector
(RECD) followed the Harris corner detector [1]. Bansal et al. [14] developed a combination
of corner detectors and descriptors for object recognition tasks. Eltanany et al. [15] con-
structed a corner detector called Synthetic Aperture Radar-Phase Congruency Harris, based
on phase congruency and the Harris corner detector. Jun et al. [16] developed a heatmap-
based corner detection method for rectification of vehicle plate images. Wang et al. [17]
proposed a self-adapting method for detecting corners from low-contrast images and
jumbo-sized videos.

When the input image has rich edges, the contour-based corner detectors can achieve
better performance than the intensity-based ones. Basically, edge contour curves are ex-
tracted from the image edge map first. After that, the curvature of each curve is measured.

Appl. Sci. 2022, 12, 11984. https:/ /doi.org/10.3390/app122311984

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app122311984
https://doi.org/10.3390/app122311984
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3339-0098
https://doi.org/10.3390/app122311984
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122311984?type=check_update&version=2

Appl. Sci. 2022,12,11984

20f15

The corners are then obtained through curvature thresholding. Inspired by the curvature
scale space corner detector proposed by Rattarangsi et al. [18], many multi-scale corner
detectors have been developed, such as the multi-scale curvature product (MSCP) pro-
posed by Zhang et al. [19]. Zhong et al. [20] proposed the direct curvature scale space
(DCSS) representation of planar curves and then developed a DCSS-based corner detec-
tor. He et al. [21] proposed a corner detector by using the characteristics of global and
local curvatures. Awrangjeb et al. [22] used the chord-to-point distance accumulation
(CPDA) to detect corners. Zhang et al. [23] proposed a novel corner detector which is
based on the gradient correlation matrix. Teng et al. [24] constructed a new corner detector
based on the triangular theory and distance calculation (CTAR). Shui et al. [25] proposed
a corner detector which uses anisotropic directional derivative representations (ANDDs).
Zhang et al. [26] proposed a corner detector based on the weighted eigenvector-based
angle estimator (WEAE). Zhang et al. [27] proposed new discrete curvature representations
of single and double corner models and then further developed a corner detector (New-
Curvature). Zhang et al. [28] used the multi-scale k-cosine angle to detect corners (MSR]).
Zhang et al. [29] used the relative distance and a multi-scale technique to detect corners.
Zhang et al. [30] introduced a corner detector (RPD) based on the ratio of parallelogram
diagonals. Song et al. [31] proposed a simple and fast corner detection method based on
a two-stage model for vision-based alignment tasks. Dan et al. [32] developed a novel
method based on the EDLines algorithm for the automatic detection of chessboard corners.
Zhang et al. [33] proposed an efficient contour-based corner detector based on a dynamic
measure of cornerity. Wang et al. [34] developed a corner detection algorithm in curvature
scale space.

To conduct an objective evaluation of the detection results of a corner detector, existing
methods can be grouped into the following two types. The first is evaluation with ground-
truth corner points [2-8,19,21,23,25-28,33,35]. In this case, the used metrics include the
precision, recall, F score and localization error. The rates of undetected and falsely detected
corner points are also often used. The second type is evaluation without the ground-truth
corner points, in which case the repeatability or consistency [36] as well as the localization
accuracy measured under various transformations are used [4,5,7,8,22,25-27,30,37].

In this paper, problems existing in previous studies for the evaluation of corner detec-
tion performance are revealed and summarized, including the lack of benchmark datasets
and the inconsistency in the use of evaluation metrics. To solve these problems, we con-
struct three benchmark image datasets with the ground-truth corners labeled and suggest
a set of benchmark metrics, including a newly proposed metric called the repeatability
referenced to ground truth (RGT), for being exploited in the objective evaluation of corner
detection performance. A comprehensive evaluation of state-of-the-art corner detectors is
finally conducted based on the benchmark datasets and evaluation metrics.

2. Benchmark Construction
2.1. Existing Problems

The datasets and evaluation metrics used in previous corner detection studies, as well
as their evaluation methods, are not unified. In particular, some of them have obvious
problems, which are described as follows:

Problem 1. The repeatability metric is frequently used. However, there is no ground
truth for reference. Repeating a false positive under different image transformations is not
helpful for image understanding but is taken as a valid detection when the repeatability
metric is used.

Problem 2. When the precision, recall and F score are used, it is required that the
test images be labeled with ground-truth corners. For this, in previous studies, only a
couple of images with ground-truth corners labeled by the algorithm’s authors were used,
and there are no ground truths of actual corners from these test images provided online for
public access.
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Problem 3. Various non-standard evaluation metrics have also been used often, such as
undetected and falsely detected corner numbers. In fact, these non-standard evaluation
metrics have already been embedded in standard metrics. For example, the numbers of
undetected and wrongly detected corners are the numbers of false negatives and false
positives, which have already been taken into account in the precision and recall metrics.

2.2. Benchmark Datasets

In this work, three benchmark datasets for corner detection are constructed, as shown
in Figure 1. The first two consist of those binary and gray-value images that have been
commonly used in previous corner detection studies [4,38—40]. The third one, which is
new, was developed by us and is called Urban-Corner. These datasets will be used to
perform an extensive evaluation of 18 state-of-the-art corner detectors. In what follows, it
is described in detail how the third dataset (i.e., Urban-Corner) is established. The Urban-
Corner dataset contains 21 images, (These datasets with ground-truth corners have been
made available online at https://github.com/yangzhangcv (accessed on 3 January 2022),
and more images will be added gradually.) and the size of each image is 256 x 256 pixels.
These images were selected from the Urban100 dataset [41], which was chosen as the
source of our Urban-Corner dataset due to the following two reasons. First, the Urban100
dataset has been widely used in various image processing tasks. Due to the fact that the
images in this dataset all have a high resolution, the ground-truth corners can be labeled
with high precision. Secondly, each image contains urban street views with clear corners.
Because our human visual system is sensitive to the sharp corners of objects, we selected
images which had uncontested corners for human visual perception, excluding those with
vague corners that were hard to identify. The Urban-Corner dataset can be roughly divided
into two categories according to the presented content: the surface structures of buildings
and images that only contain outlines of buildings.

When selecting images and labeling the ground truths, the details for the protocol and
conditions are as follows:

(1) Our rule was to select the test images from Urban100. In the literature, test images
for evaluating corner detection performance frequently contained a lot of ‘ambiguous’
corners, such as ‘corners’ on clothes, hair, and other non-rigid objects. Even for our human
visual system, such ‘corners’ are hard to recognize, and different people would have
different judgments on whether they are true (i.e., meaningful) corners or not. Therefore,
in our work, only an image containing more well-defined corners and less ‘ambiguous’
ones could be selected and included in our Urban-Corner dataset. This is in line with
real-world applications, where only those well-defined corners can be exploited to solve
the follow-up image processing tasks, such as scene analysis and 3D reconstruction. This
‘rule of thumb’ greatly helped us to reduce the difficulty and risk of errors in the corner
labeling process.

(2) For our method of labeling the ground-truth corners in a test image, it is found that
confusing detection could be yielded for geometric attributes at the pixel scale (invisible
to the eye and of no interest at the human observation scale), as well as the perceptual
detection of such a stimulus (corner). To overcome this difficulty, our corner labeling
process was performed with the help of the edge information of the input image by using
an edge detector or the detected line segment information by using a line segment detector.
First, the line segments were detected by using a line segment detector (LSD) [42]. Then,
insignificant or redundant line segments were removed by us. After that, the initial corners
were produced from the intersections of those significant line segments. As a result,
the accuracy of the corner labeling was greatly improved.
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(3) In our method to confirm the corner labeling results, in order to finally confirm
them, all the other members (14 persons in total) in our research group were recruited as
volunteers to vote on whether a labeled corner could represent a ground-truth corner or
not. If more than 70% (i.e., 10) persons agreed with a corner labeling result, then the labeled
corner was taken as the ground truth; otherwise, it was discarded.

Figure 1. Benchmark datasets constructed and used to conduct our evaluation, where the ground-
truth corners were manually labeled by us and marked with dots. (a) Dataset 1; (b) Dataset 2;
(c) Dataset 3.

For easy understanding, we give an example (Figure 2) to show the protocol of labeling
the ground truth.
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Figure 2. An example for labeling ground truth. (a) The original image. (b) The result of line
segment detection. (c) Manually approved line segments. (d) The intersections of of line segments.
(e) Corner annotations.

2.3. Benchmark Evaluation Metrics

In previous studies, corner detectors were evaluated by using the precision [21,43],
recall [43], localization error (Le) [22,25,28,37], and repeatability metrics [22,25-28,37].
Among these metrics, the repeatability metric could be the most popular one used in the
evaluation of corner detectors, which is based on the number of repeated corners between
the original images and transformed images. Unfortunately, its evaluation mechanism has
an obvious flaw: if a repeated corner is a false positive, then it will not make sense in the
evaluation of corner detection performance.

We denote the corner sets detected from the original and transformed images as C, and
C;, respectively. Let Cy.; = C, N C;, which is the set of corners that have been repeatedly
detected on the two images. Let N, Nt, and Nyep be the numbers of corners in the sets C,,
Ct, and Cy,p, respectively. The existing repeatability metric REP is given by

Nrep 1 1

REP = 5 (No ﬁt)

)

In this paper, we denote the set of ground-truth corners as Cq¢ and let Crgr = Crep N Cgt,
which is the set of ground-truth corners that have been repeatedly detected. Let Nrgt be the
number of corners in the set C,¢t. Our proposed repeatability metric, (i.e., the repeatability
referenced to ground truth (RGT)), is then defined as

Nrgt 1 1

()

For ease of understanding, Figure 3 demonstrates an example of comparing the
flawed repeatability metric (REP) and our proposed repeatability metric (RGT). The corners
detected in the original image (N, = 3) are shown in Figure 3a. The corners detected in
a noise-corrupted version of the image (N; = 5) are presented in Figure 3b. According
to Figure 3a,b, three corners were repeatedly detected in the two images (marked with
black circles) in Figure 3c (i.e., Nyep = 3, and thus REP = 0.8). Only one ground-truth
corner was repeatedly detected in the two images (marked with a black circle) in Figure 3d
(i.e., Nrgt = 3). As a consequence, we found that RGT = 0.2667.
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(b)

() (d)

Figure 3. A comparison of the existing repeatability metric (REP) and our proposed repeatability
metric (RGT). (a) Detection result on the original image. (b) Detection result on noise-corrupted
version of the image. (c) The repeatedly detected corners between (a,b) (marked with black circles).
(d) The repeatedly detected corner between (b) and ground-truth (marked with black circles).

Due to the lack of corner annotations, the precision, recall and F score are rarely used
to evaluate corner detection performance. Most previous studies only use the repeatability
and localization error, which are unfortunately not authoritative or unified. In this paper,
a set of benchmark evaluation metrics is suggested, including the precision, recall, APR
(the arithmetic mean of precision and recall), F score, Le and our newly developed RGT.
Note that all our suggested evaluation metrics are referenced to ground truths, where a
fundamental consideration is that only the repeated detection of true positives can be taken
as a merit of the used algorithm. Our benchmark evaluation metrics are as follows:

(1) Precision is expressed as
Ny

P=——,
Nr+Nf

3)
where N, denotes the number of corners in the set C, = C, N Cq and N 1 is the number of
falsely detected corners (i.e., false positives).

(2) The recall is expressed as

N,
R=———, 4
Ny + N, @)
where Ny, is the number of undetected corners (i.e., false negatives).
(3) The APR is expressed as
APR = # )
(4) The F score is expressed as
(14 B2)PR
F-S =t 6
core B(P 1 R) (6)

where B is assigned to be 1.
(5) The localization error is expressed as

1 N, . .
Le=\/Ng Y ito (= x)? + (v — vp)?), )
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where (xi,yi) are the coordinates of a detected corner point (p;) in the corner set C;
and (xg, yfg) are the coordinates of the nearest ground-truth corner (p;) in the corner set Cgt.
(6) The RGT is expressed as

Nrgt 1 1

®)

3. Benchmark Evaluation Analysis

In this section, our three developed benchmark datasets are used to evaluate the
current state-of-the-art corner detectors (18 in total), including 6 intensity-based methods—
SUASAN [2], Harris-Laplace [3], SuperPoint [6], AS] [5], Zhang & Sun [8], and SOG-
GDD [7]—and 12 contour-based methods: MSCP [19] , CPDA [22], Fast-CPDA [37], He
& Yung [21], DOG [35], GCM [23], ANDD [25], WEAE [26], New-Curvature [27], MSR] [28],
RPD [30], and DMC [33]. For a fair comparison, the original codes (if publicly available
online) with default parameters released by their respective authors are used. For those
corner detectors that had no publicly available resources, they were coded by us, including
MSCP [19], MSR] [28], RPD [30], and DMC [33].

3.1. Objective Evaluation

The results of objective evaluation of different corner detectors obtained for the three
benchmark datasets are documented in Table 1, where the precision, recall, APR and F
score are used. Note that the evaluation results were averaged over all the test images in
each dataset. It can be seen that the DMC detector [33] delivered the highest APR and F
score as well as competitive precision and recall. The SODDGG [7], He & Yung [21], and
SUSAN [2] methods produced the best performance for recall on Dataset 1, Dataset 2, and
Dataset 3, respectively. MSR] achieved the best performance for precision on Dataset 2.

To evaluate the performance of corner detection under different situations, in total,
16,497 transformed images were obtained by applying 5 different types of attacks on each
originally chosen image, which are detailed as follows:

Noise. Zero-mean Gaussian white noise was added to each image. The variance was
chosen to be [0.005,0.05] at 0.005 apart.

Rotation. Each image was rotated to different angles in [—90°,90°] at 10° apart (excluding
0°, as it corresponds to the original image).

Scaling. Each image was scaled (uniformly and non-uniformly) with the scaling factors sy
and s,, chosen in [0.5,2] at 0.1 apart, independently and respectively (excluding the
case sy = sy = 1).

Combined transformation. Combined transformations (by rotation and scaling) were ap-
plied to each image with rotation angles sampled in [—30°,30°] at 10° apart, excluding
0°, and scaling factors {sy, s, } sampled in [0.8,1.2] at 0.1 apart, excluding s, = sy,
independently and respectively.

Lossy compression. Each image was compressed by using JPEG lossy compression with
the quality factor sampled in [5,100] at 5 points apart.
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Table 1. Evaluation results in terms of precision/recall (first entry) and APR/F score (second entry).
The best performance with respect to each used metric achieved on each image dataset is highlighted
in boldface.

Detector Dataset 1 Dataset 2 Dataset 3
erecto [4,38] [38-40] (Urban-Corner)
0.1683/0.0650 0.2363/0.7387 0.0501/0.8943
SUSAN[2] 0.1167/0.0540 0.4875/0.2493 0.4720/0.0910
Harris-Laplacep [3] 0.1530/0.4389 0.3912/0.5229 0.9594/0.3333
placep 0.2959/0.2203 0.4570/0.4303 0.3553/0.2814
MSCP [19] 0.8224/0.9517 0.8271/0.7450 0.7256/0.5918
0.8870/0.8661 0.7860/0.7692 0.6587/0.6098
CPDA [2] 0.9368,/0.8198 0.9355/0.6028 0.8154/0.6143
0.8783/0.8595 0.7691,/0.7203 0.7186,/0.7008
0.9132/0.9170 0.8165/0.8302 0.4408,/0.7392
He & Yung [21] 0.9151,/0.9104 0.8234/0.8132 0.5900/0.5173
0.9350/0.8006 0.9403/0.6095 0.8198/0.6183
Fast-CPDA [37] 0.8678,/0.8440 0.7749/0.7292 0.7187/0.7042
DOG [35] 0.8493/0.8687 0.8665/0.6462 0.7356/0.5809
0.8590/0.8557 0.7563/0.7279 0.6583/0.6033
GCM [23] 0.8744/0.9472 0.8405/0.7246 0.7115/0.6091
0.9108/0.8974 0.7825/0.7633 0.6603/0.6189
0.8181,/0.9436 0.6568/0.7304 0.3963/0.5927
ANDD [25] 0.8809/0.8667 0.6936/0.6753 0.4945/0.4020
0.8703/0.9694 0.8566,/0.7910 0.7234/0.6921
WEAE [26] 0.9199/0.9049 0.8238/0.8114 0.7078/0.6516
AS] [5] 0.5849,/0.7289 0.4207/0.8132 0.6646/0.6411
0.6569/0.6206 0.6169/0.5392 0.6528/0.6123
SuperPoint [6] 0.4622/0.7142 0.6526/0.5191 0.4808,/0.4086
p 0.5882/0.5282 0.5858,/0.5704 0.4447/0.3945
New-Curvature [27] 0.8409/0.9694 0.8806,0.7451 0.8218/0.6614
ew--urvature 0.9052/0.8872 0.8128/0.7987 0.7416,/0.6784
0.4267/0.9895 0.8403/0.7416 0.5260/0.6305
SOGGDD [7] 0.7081/0.5625 0.7910/0.7776 0.5782/0.5159
MSR] [28] 0.9426,/0.9006 0.9372/0.7045 0.7428,/0.6051
0.9216/0.9146 0.8208/0.7922 0.6740/0.6300
Zhang & Sun [5] 0.3196,/0.9725 0.8221/0.7161 0.6941/0.5817
& 0.6461/0.4385 0.7691/0.7562 0.6379/0.5833
RPD [30] 0.6762/0.9778 0.7726/0.7866 0.6978,/0.6970
0.8270/0.7760 0.7796/0.7703 0.6974/0.6442
DMC [33] 0.9587/0.9381 0.8723/0.7904 0.8195/0.7102
0.9484/0.9447 0.8313/0.8176 0.7649,/0.7119

The performance of the 18 SOTA corner detectors implemented on the degraded
images is summarized in Table 2. From this table, it can be seen that the DMC method deliv-
ered superior performance in most cases, indicating that this method has strong robustness.
The CPDA [22], New-Curvature [27], and MSR] [28] methods also performed more stably
than the others. SUSAN [2] had extremely high recall in some cases but produced a low
APR and F score because of its extremely poor precision.
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Table 2. Evaluation results in terms of precision/recall (first entry) and APR/F score (second entry)
on transformed images. The highest performance with respect to each used metric achieved on each
image dataset is highlighted in boldface.

Detector Dataset 1 Dataset 2 Dataset 3
etecto [4,38] [38-40] (Urban-Corner)
0.0737/0.7164 0.0021,/0.3807 0.0046,/0.9999
SUSAN[2] 0.3950/0.0758 0.1914,/0.0042 0.5022,/0.0091
Harris-Laplacep [3] 0.0642/0.2143 0.1978/0.3578 0.2136/0.4409
armis-Laplacep 0.1393 /0.0951 0.2778/0.2298 0.3273/0.2318
MSCP [19] 0.8259,/0.8921 0.8182/0.6695 0.5751/0.5853
0.8590/0.8421 0.7439/0.7221 0.5802,/0.5229
CPDA [22] 0.9107/0.7741 0.9156,/0.5621 0.7206,/0.5405
0.8424,/0.8200 0.7389,/0.6856 0.6305/0.5785
0.8330/0.8831 0.7414/0.7701 0.4040,/0.7007
He & Yung [21] 0.8580,/0.8483 0.7558,/0.7413 0.5524/0.4728
0.9058/0.7757 0.9221/0.5692 0.7132/0.5509
Fast-CPDA [37] 0.8407/0.8193 0.7457,/0.6938 0.6321/0.5834
DOG [35] 0.8631/0.7869 0.8159/0.6187 0.5877/0.5445
0.8250/0.8114 0.7173/0.6888 0.5661,/0.5097
GOM [23] 0.8375/0.9187 0.8094,/0.7030 0.5943/0.5983
0.8781/0.8614 0.7562,/0.7399 0.5963/0.5423
0.7014/0.9104 0.6072,/0.6952 0.3295/0.5260
ANDD [25] 0.8059,/0.7732 0.6512/0.6338 0.4278/0.3469
0.8028,/0.9487 0.6093/0.5634 0.5677/0.6487
WEAE [26] 0.8758/0.8522 0.5864,/0.5734 0.6082,/0.5478
A5 [5] 0.5199,/0.6865 0.3812/0.3989 0.6272,/0.5684
0.6032/0.5590 0.3901/0.3774 0.5978/0.5302
SuperPoint [6] 0.4748/0.7561 0.6235/0.4959 0.4644/0.4176
p 0.6154/0.5465 0.5597/0.5436 0.4410/0.3893
New-Curvature [27] 0.7774/0.9487 0.8473/0.6823 0.6992,/0.5992
ew--urvature 0.8631,/0.8361 0.7650/0.7460 0.6492/0.6002
0.2533/0.9602 0.6202,/0.7384 0.3465/0.6491
SOGGDD [7] 0.6068/0.3743 0.6793,/0.6290 0.4978/0.3774
MSR] [28] 0.9085/0.8699 0.8496/0.6677 0.5877,/0.5809
0.8892,/0.8805 0.7586/0.7331 0.5843/0.5324
Zhang & Sun [5] 0.2825/0.9611 0.7315/0.7169 0.4844/0.6001
8 0.6218/0.3997 0.7242/0.7135 0.5422/0.4774
RPD [30] 0.6403/0.9500 0.7364,/0.7293 0.3833/0.4516
0.7952/0.7385 0.7429/0.7327 0.4175/0.3774
DMC [33] 0.9213/0.8771 0.7882/0.7437 0.7006,/0.6365
0.8992/0.8894 0.7659,/0.7467 0.6685/0.6225

In more detail, the performance of the evaluated corner detectors for the attacked
images is depicted in Figure 4. It can be seen from the first row that these 18 detectors
were all influenced by the rotated images. Most detectors performed well at rotation angles
of —mt/2 and 71/2 and received a certain degree of volatility at other angles. The second
row of Figure 4 shows that the evaluated corner detectors had different fluctuations in the
case of uniform scaling. New-Curvature [27] performed better than the other detectors in
this case. From the last two sub-figures in the third row, it can be seen that each detector
performed stably on Dataset 2 and Dataset 3 when the JPEG quality factor was greater than
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20. In the last line, most corner detectors performed rather stably for different levels of
Gaussian noise.

Table 3 shows the performance of different methods when measuring the RGT and
localization error. From this table, one can see that Fast-CPDA [37] achieved the best
performance in terms of the RGT on Dataset 1 and Dataset 2, while DMC [33] obtained
the best RGT on Dataset 3. As for the localization error, ANDD [25], Harris-Laplace [3],
and RPD [30] achieved superior performance on Dataset 1, Dataset 2, and Dataset 3,
respectively. This indicates that the use of a multi-scale curvature measurement [37] or a
dynamic measurement [33] can help to achieve satisfactory corner detection performance,
since strong corners can become more dominant than weak corners.

Table 3. Performance comparison of different corner detectors on three benchmark datasets.

RGT Le (pixels)
Detector Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3
[4,38] [38-40] (Urban-Corner) [4,38] [38-40] (Urban-Corner)
SUSAN [2] 0.0358 0.1073 0.0363 1.0143 1.0068 1.5159
Harris-Laplace [3] 0.1199 0.2514 0.1895 0.9407 0.9557 0.8489
MSCP [19] 0.7594 0.7320 0.5175 1.0988 1.2074 1.0168
CPDA [22] 0.8099 0.7739 0.6101 1.0162 1.2186 1.0368
He & Yung [21] 0.7842 0.6831 0.3469 1.0674 1.3225 1.2750
Fast-CPDA [37] 0.8201 0.7881 0.6056 1.0097 1.1953 1.0506
DOG [35] 0.7770 0.7258 0.5239 1.0558 1.1897 1.0274
GCM [23] 0.7825 0.6762 0.4923 1.0754 1.2373 1.0942
ANDD [25] 0.6726 0.4990 0.2478 0.9105 1.2834 1.2466
WEAE [26] 0.7882 0.7333 0.5305 1.0227 1.2235 1.0500
ASJ [5] 0.2553 0.4874 0.4439 0.9509 1.2500 1.5081
Superpoint [6] 0.3215 0.2085 0.4439 1.4401 1.7831 1.5081
New-Curvature [27] 0.7494 0.7558 0.6062 1.1526 1.3047 1.1493
SOGGDD [7] 0.2859 0.6526 0.3866 1.3778 1.0890 1.1202
MSR] [28] 0.8539 0.7686 0.5315 1.0314 1.1853 1.0148
Zhang & Sun [8] 0.2783 0.2860 0.4877 1.2642 1.3675 1.0825
RPD [30] 0.6606 0.6141 0.5244 1.2496 1.0800 0.8257
DMC [33] 0.7726 0.7853 0.6309 0.9105 1.4291 1.2468

A comparison of all the evaluated corner detectors with respect to the running time
is presented in Figure 5. Except for Superpoint, which was coded and tested with an
NVIDIA Titan Xp GPU, and AS]J, which was coded and tested in C, our experiments
were implemented in MATLAB on a machine equipped with an Intel Core i7 16 GB RAM
@ 2.3 GHz. In Figure 5, the CPU time of each method is plotted against its F score,
with both averaged over the Urban-Corner dataset. Note that a desirable corner detector
should achieve a high F score with a short running time. In comparison, Superpoint [6]
consumed the least running time, while DMC achieved the best F score. As a result, it is
suggested that Superpoint [6] can be used in real-time applications, such as target tracking
and positioning [12,17]. On the other hand, DMC [33] and New-Curvature [27] can be
applied in those tasks requiring high detection accuracy, such as image matching and
recognition [12,16,31].
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Figure 4. Evaluation results with degraded images.
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Figure 5. Comprehensive performance in terms of average running times and F scores of different
algorithms on Urban_corner dataset.
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3.2. Subjective Evaluation

Subjective evaluation plays a considerable role in the assessment of corner detection
algorithms. In fact, a corner detector with better subjective performance according to
human vision can solve visual tasks better. Figure 6 shows the detected results of the 18
corner detectors when using two test images. Figure 6a indicates that most of the intensity-
based corner detectors (e.g., SUSAN [2], Harris-Laplace [3], SOGGDD [7], and Zhang
& Sun [8]) performed worse than the contour-based corner detectors (e.g., CPDA [22],
Fast-CPDA [37], New-Curvature [27], and ANDD [25]), because the intensity-based corner
detectors were sensitive to small changes in the images’ gray values. In Figure 6b, it can
be seen that many corner detectors produced false positives due to the interference cloud,
while such a nonrigid object is not supposed to be taken into account in corner detection.

New-Curvature  SOGGDD Zhang&Sun
(b)

Figure 6. Subjective evaluation results for test images. (a) Test image 1. (b) Test image 2.
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According to the objective and subjective experimental results, there are still some
challenging problems in corner detection. Intensity-based methods usually use first-order
or second-order derivatives to detect corners and can thus identify non-corner edge points
as corners incorrectly. Contour-based corner detectors are based on edge extraction and can
thus yield large localization errors. Another fundamental problem is that both kinds of
methods exploit a small amount of image smoothing to suppress noise at the beginning of
corner detection, which is generally performed with the linear Gaussian kernel. However,
non-linear kernels, such as those in [44,45], have the merit of edge preservation and can
thus be used instead.

4. Conclusions

In this paper, several serious problems existing in the objective evaluation of corner
detection performance were pointed out. To solve these problems, benchmark datasets were
constructed, followed by suggesting a set of benchmark evaluation metrics. In particular, a
new evaluation metric (i.e., the repeatability referenced to ground-truth (RGT)), is proposed
for use in corner detection evaluation. A number of state-of-the-art corner detectors are
finally selected to perform evaluation analysis.
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