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Abstract: Software is used in various industries, and its reliability has become an extremely important
issue. For example, in the medical industry, software is used to provide medical services to underprivi-
leged individuals. If a problem occurs with the software reliability, incorrect medical information may
be provided. The software reliability is estimated using a software reliability growth model. However,
most software reliability growth models assume that the failures are independent. In addition, it is
assumed that the test and operating environments are the same. In this study, we propose a new
software reliability growth model that assumes that software failures are dependent and uncertain
operating environments. A comparison of the proposed model against existing NHPP SRMEs using
actual datasets shows that the proposed model achieves the best fit.

Keywords: software reliability; non-homogeneous Poisson process; dependent failure; uncertain
operating environment

1. Introduction

Since software is used in various industries, software reliability is an extremely im-
portant issue. For example, in the medical industry, software is used to provide medical
services to underprivileged individuals. If a problem with software reliability occurs, in-
correct medical information may be provided. Thus, the importance of software reliability
cannot be overemphasized.

The software used in various industries has many different functions and its structure
is complex. In addition, the reliability (stability) of both software and hardware is extremely
important. Software reliability issues can cause financial and human losses. Thus, many
researchers have been studying software reliability for decades. To conduct software
reliability studies, software reliability growth models (SRGM) should be understood. A
SRGM is a tool used to estimate the quality and reliability of software products and provide
information to developers and consumers. Consumers can refer to such information to
select products for purchase, and developers can judge the reliability of a product and
efficiently manage the development process.

In most existing SRGMs, the mean value function is considered to follow a non-
homogeneous Poisson process (NHPP). Each model has a unique mean value function that
considers the failure intensity, detection rate, number of remaining failures, and various
environments (e.g., development, testing, and operation). In particular, the form and
parameters of the mean value function (m(t)) are significantly affected by the environments
and assumptions made.

Previous studies have considered various SRGMs when discussing software reliability.
The model proposed by Goel and Okumoto [1] is the most fundamental approach used in
research on SRGMs and has become the focal point of various studies. Yamada et al. [2]
proposed a model using an S-shaped curve. There have also been studies on models that

Appl. Sci. 2022, 12, 12383. https://doi.org/10.3390/app122312383 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312383
https://doi.org/10.3390/app122312383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122312383
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312383?type=check_update&version=2


Appl. Sci. 2022, 12, 12383 2 of 14

reflect not only the shape of the function, but also various environments. Pham et al. [3,4]
introduced models that consider an error introduction rate that follows an exponential
function and a generalized SRGM that reflects the testing coverage. Song et al. [5] proposed
a model for considering the test coverage. Pham [6] discussed a model that considers a
logistic time-dependent fault-detection rate function. In addition, Pham [7] introduced
a V-tub-shaped rate function. Pradhan et al. [8] presented an improved model for a
generalized inflection S-shaped testing effort function. Erto et al. [9] also developed a
generalized inflection S-shaped SRGM. Saxena et al. [10] proposed a SRGM that assumes
imperfect debugging by a two-step process that considers fault observation and fault
removal. Haque [11] presented a new Software Reliability Growth Model (SRGM) with
the structure of a Logistic Growth Model in which the fault detection rate increases as the
test department’s skill improves as the test progresses. Nafreen et al. [12] developed a
SRGM with a bathtub-shaped fault detection rate function and proposed the conditional
maximization algorithms to fit the models.

There are also SRGM studies that introduce different assumptions from previous
studies. For example, the controlled test environment and actual operating environment
of the consumers can vary significantly. Song et al. [13,14] discussed models that consider
the uncertainty of the operating environments using new parameters as random variables.
Zaitseva et al. [15] discussed a method to evaluate reliability analysis considering various
types of uncertainty. Most SRGMs assume that failures are independent. However, a
failure is occasionally dependent. Lee et al. [16] proposed a method for efficiently judging
the software reliability using the model development, assuming a dependent failure and
applying a sequential probability ratio test. Kim et al. [17] developed a new model that
assumes the presence of dependent defects.

Recently, research on software reliability has been conducted with various approaches.
Saxena et al. [18], Kumar et al. [19], and Garg et al. [20] developed criteria for judging good-
ness of fit for SRGMs. The criteria are calculated based on the combination of the entropy
principle and various existing criteria. Most studies discussed the individual reliability of
software and hardware. Yaghoobi [21] also developed two multi-criteria decision-making
methods for comparison of SRGMs. Zhu [22] introduced complex reliability that considers
both hardware and software, and proposed maintenance policies applicable to these sys-
tems. Recently, as the use of open-source software and cloud services increases, research
on their reliability is being actively conducted [23–25]. Finally, several software reliability
studies have recently been conducted using machine and deep learning [26–29].

In this study, we propose a new SRGM with two assumptions that software failures are
dependent and the operating environments of the software are uncertain. The superiority
of the proposed model is explained by the criteria for goodness of fit. The goodness of
fit is used to determine which model fits the failure dataset for a given software product.
A model with a good fit can predict the number of failures well and provide meaningful
information for evaluating product reliability and establishing release policies. In Section 2,
the concept of system reliability is provided. Section 3 describes the existing NHPP SRGM
and the proposed model. Section 4 introduces the criteria and data used in the experiments,
then discusses the results. Finally, Section 5 provides some concluding remarks.

2. Software Reliability Growth Model
2.1. Poisson Processes

The counting process is represented by N(t), i.e., the total number of events up to time
t. The counting process satisfies the following conditions [30]:

(1) N(t) ≥ 0.
(2) N(t) is an integer.
(3) If s ≤ t, N(s) ≤ N(t).
(4) When s ≤ t, N(t)−N(s) represents the number of events within time interval (s, t].
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The homogeneous Poisson process (HPP) is given by

Pr{N(t) = n} = λtn

n!
e−λt, n = 0, 1, 2, . . . (1)

where N(t) is the number of failures up to time t, and λ is a constant. Thus, the failure rate
λ does not change over time t. The number of failures N(t) has a Poisson distribution with
the mean λt.

Most software reliability models assume that N(t) follows a non-homogeneous Poisson
process (NHPP). When N(t) follows a/n NHPP, it is given by

Pr{N(t) = n} = [m(t)]n

n!
e−m(t), n = 0, 1, 2, . . . (2)

where m(t) is used instead of the constant λ, unlike with a HPP. This means that the failure
rate m(t) depends on time t. Here, m(t) can be written as follows:

m(t) = E[N(t)] =
∫ t

0
λ(s)ds. (3)

2.2. Reliability Function

Using m(t), the reliability function based on a NHPP can be expressed as follows [30]:
The reliability function R(t) is defined as the probability that there will be no failures within
the time interval (0, t), and is given by

R(t) = P{N(t) = 0} = e−m(t) (4)

Equation (4) indicates the probability that a software error will not occur within the
interval [0,t]. If t + x is given, the software reliability can be expressed as a conditional
probability R(x|t), as in Equation (5).

R(x|t) = P{N(t + x)−N(t) = 0} = e−[m(t+x)−m(t)] (5)

Here, R(x|t) is the probability that a software error will not occur within the interval
[t, t + x], where t ≥ 0 and x > 0. The density function of x is given by

f(x) = λ(t + x)e−[m(t+x)−m(t)] (6)

where λ(x) = ∂
∂x [m(x)].

3. NHPP Software Reliability Growth Model (SRGM)
3.1. Model Formulation

(1) In general, m(t) is obtained from a differential equation as follows [2,31]:

m(t)
dt

= b(t)[a(t)−m(t)] (7)

where a(t) is defined as the expected total number of initial failures plus the number of
newly introduced errors that remain until testing, and b(t) is defined as the rate of detected
failures per fault.

(2) The mean value function of the model when considering uncertainty of the operat-
ing environment can be obtained from the following differential equation [32]:

m(t)
dt

= ηb(t)[N−m(t)] (8)
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where b(t) is the fault detection rate function. Let η represent the uncertainty of the
operating environment. Here, η is a random variable that follows gamma distribution g(x)
with parameters α and β, which is given by

g(x) =
βαxα−1e−βx

Γ(α)
. (9)

(3) The mean value function of the model when considering dependent failures can be
obtained from the following differential equation [16,17]:

m(t)
dt

= b(t)[a(t)−m(t)]m(t) (10)

where a(t) is defined as the expected total number of failures that remain prior to testing,
and b(t) is the defined detection rate of failures per fault.

3.2. Proposed Model

Most models assume independent failures (see Section 3.3); however, this paper
assumes dependent failures. For example, if an error occurs in a class in a certain program
code, it may occur in chains in other classes that refer to this class. In this case, the failures
are dependent, and the model proposed in this study also assumes the same type of failure.

We propose a model that considers an uncertain operating environment and dependent
failures. We consider the second type owing to the fact that we need to assume an uncertain
operating environment. When a(t) = N and b(t) = b2t

1+bt are given, m(t) can be obtained
from Equation (8) as follows:

m(t) = N
(

1− β

α+
∫

b(s)ds

)α

= N

1− β

α+
∫ t

0
b2s

1+bs ds

α

(11)

= N
(

1− β

α+ bt− log(bt + 1)

)α

(12)

where b, α, β, and N are parameters of the proposed model. The parameters α and β in
Equation (12) are the same as those in Equation (9). Therefore, parameters α and β of m(t)
are dependent on the probability distribution of η, which indicates uncertain operating
environments. This relationship leads to an assumption of dependent flaws in the model.

3.3. Existing NHPP Models

Table 1 summarizes the mean value functions for the existing NHPP models that
are well known for their good performance and the proposed model. Dependent failure
model 1 (DPF1) and dependent failure model 2 (DPF2) are models that assume dependent
failures, whereas the other models assume independent failures. VTUB assumes the
uncertain operating environments. In addition, the proposed model assumes two factors,
the dependent failures and the uncertain operating environments. The parameters of
each model can be estimated in various ways, including a Bayesian estimation, maximum
likelihood estimation (MLE), and least square estimation (LSE). However, a Bayesian
estimation is difficult to achieve owing to a lack of prior information, and a MLE estimation
is occasionally difficult to apply because of the complexity of the mean value function of
the model. Therefore, in this study, the parameters are estimated using the LSE method,
which is discussed in Section 4.3.
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Table 1. Mean value functions for existing NHPP models and the proposed approach.

No. Model m(t)

1 DPF1 [16] a

1+

 a
h

(
b+c

c+(b exp(bt))

) a
b


2 DPF2 [17] a

1+
(

a
h

(
1+c

c+exp(bt)

)a)
3 DS [33] a(1− (1 + bt) exp(−bt))

4 GO [1] a(1− exp(−bt))

5 IS [2] a(1−exp(−bt))
1+β exp(−bt)

6 YID [33] a(1− exp(−bt))
(
1− α

b

)
+αat

7 PNZ [31] a(1−exp(−bt))(1−α
b )+αat

1+(β exp(−bt))

8 PZ [3] ((c+a)(1−exp(−bt)))−
(

ab
b−α (exp(−at)−exp(−bt))

)
1+(β exp(−bt))

9 TC [34] N
(

1−
(

β

β+(at)b

)α)
10 VTUB [32]

N

1−

 β

β+

(
atb

)
−1

α
11 NEW N

(
1− β

α+bt−log(bt+1)

)α

4. Numerical Example
4.1. Datasets

We used two datasets to compare the goodness of fit of the model. Dataset 1, shown
in Table 2, was collected from an IBM software package and has 40,000 lines of code [35].
The software was used to enter the data, and the time unit is in days. There is a total of 46
failures collected within the 21-day period.

Table 2. Dataset 1.

Time Cumulative
Failures Time Cumulative

Failures Time Cumulative
Failures

1 2 8 12 15 31

2 3 9 19 16 37

3 4 10 21 17 38

4 5 11 22 18 41

5 7 12 24 19 42

6 9 13 26 20 45

7 11 14 30 21 46

Dataset 2 in Table 3 was collected from the ABC online communication system in
2000 [30]. The dataset was observed over a 12-week period, and the time unit is in weeks.
A total of 55 failures were observed within the 12-week period.

Table 3. Dataset 2.

Time Failures Cumulative
Failures Time Failures Cumulative

Failures

1 10 10 7 4 40

2 2 12 8 3 43

3 4 16 9 1 44

4 6 22 10 6 50

5 6 28 11 1 51

6 8 36 12 4 55
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4.2. Criteria

Various criteria have been proposed to discuss the goodness of fit of a model. Table 4
shows the criteria used to compare the goodness of fit for the SRGMs, which are listed in
Table 1.

In Table 4, n is defined as the number of data, and m is defined as the number of
parameters in the model (mean value function). The predicted value which means number
of failures based on m(t) is presented as m̂(ti), and the actual data are presented as yi.

Most of the criteria mentioned measure the distance (or error) between predicted value
and actual values. Therefore, it can be said that the shorter the distance, the better the mean
value function of the model predicts the number of failures in the dataset.

The MSE measures the distance of predicted value by a model from the actual data
with the consideration of the number parameters in the model and the number of data. The
PRR measures the distance of predicted value from the actual data with the consideration
the predicted value by a model. The PP measures the distance of predicted value from the
actual data with the consideration the actual data. The SAE measures the sum of absolute
error, which means the distance between the predicted value and the actual data.

Table 4. Criteria.

No Criteria

1
Mean square error (MSE) [30]

∑n
i=1(m̂(ti)−yi)

2

n−m

2
Predictive ratio risk (PRR) [30]

∑n
i=1(m̂(ti)−yi)

2

m̂(ti)

3
Predictive power (PP) [30]

∑n
i=1(m̂(ti)−yi)

2

yi

4
Sum of absolute error (SAE) [36]

n
∑

i=1
|m̂(ti)− yi|

5
R-square (R2) [37]

1− ∑n
i=1(m̂(ti)−yi)

2

∑n
i=1(yi−yi)

2

6
Akaike’s information criterion (AIC) [38]

−2 log L + 2m

7
Bayesian information criterion (BIC) [39,40]

−2 log L + m log n

8
Bias [41]

∑n
i=1(m̂(ti)−yi)

n

9
Predicted relative variation (PRV) [42]√

∑n
i=1(m̂(ti)−yi−Bias)2

n−1

10
Root mean square prediction error (RMSPE) [42]√

Bias2 + PRV2

11
Mean absolute error (MAE) [43]

∑n
i=1|m̂(ti)−yi|

n−m

12
Mean error of prediction (MEOP) [43]

∑n
i=1|m̂(ti)−yi|

n−m+1

13
Theil statistic (TS) [43]

100

√
∑n

i=1(m̂(ti)−yi)
2

∑n
i=1 yi

2 %
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The R2 (coefficient of determination) is a measure of the fit of the regression equation.
It represents the proportion of the regression sum of squares (SSR) to the total sum of
squares (SST) of the model. The closer the value is to 0, the better the fit of the model.

The AIC measures a model’s ability to maximize a likelihood function (L). In general,
the greater the number of parameters, the better the fit of the model. AIC mitigates the
phenomenon by penalizing the number of parameters. In addition, log L of the AIC is
given by

L =
n

∏
i=1

(m̂(ti)− m̂(ti−1))
yi−yi−1(

yi − yi−1
)
!

(13)

log L =
n

∑
i=1

{(
yi − yi−1

)
log(m̂(ti)− m̂(ti−1))− (m̂(ti)− m̂(ti−1))− log

((
yi − yi−1

)
!
)}

(14)

The BIC estimates the approximate value of the posterior probability of the model. In
the second term of BIC, the number of parameters is penalized like AIC. Also, the term
depends on the number of data.

The Bias measures the average distance between the predicted value and the actual
data. The closer the value is to 0, the better the fit of the model. The Bias is also used to
calculate PRV and RMSPE. The PRV calculates the standard deviation of the prediction bias,
so the smaller the value, the better the fit of the model. The PRV is also called Variation or
Variance. The RMSPE calculates the root mean square prediction error, which means the
closeness of the predicted value with actual data using Bias and PRV. The MAE calculates
the mean absolute error between the predicted value and the actual data. The MEOP
calculates the sum of absolute error (SAE) with the consideration the predicted value by
a model. The TS calculates the average deviation percentage over all data observation
periods with regard to the actual data. The closer the value is to 0, the better the fit of
the model.

To summarize the 13 criteria, the closer the value of R2 is to 1, the closer the predicted
value of the model is to the actual value. The closer the values of Bias and TS are to 0, the
closer the predicted value of the model is to the actual value. For the other criteria—MSE,
PRR, PP, SAE, AIC, BIC, PRV, RMSPE, MAE, and MEOP—the smaller the value, the closer
the predicted value of the model is to the actual value, relative to other models on the
same dataset.

4.3. Results

The estimated parameters of the models are listed in Tables 5 and 6 using a least
squares estimation (LSE).

Tables 7 and 8 show the criteria obtained using the estimated parameters in Tables 5 and 6,
the best value for each criteria is shown in bold.

In Table 7, the proposed model shows the smallest MSE, the smallest PRR, the smallest
PP, the smallest SAE, the largest R2, the closest-to-zero Bias, the smallest PRV, the smallest
RMSPE, the smallest MAE, the smallest MEOP and the closest-to-zero TS at 1.3805, 0.0772,
0.0763, 15.9817, 0.9948, −0.0021, 1.0832, 1.0832, 0.9401, 0.8879 and 3.9233. Though the AIC
and BIC are not the smallest values among all models, the proposed model displays the
third= smallest AIC at 78.0915. In particular, the PRR value of DPF2 is the second-smallest
value at 0.3333, but the values of other criteria are not good. The overall criteria values of
VTUB are not good. When looking at the values of the overall criteria, it can be seen that
the goodness of fit of the proposed model is excellent.
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Table 5. Estimated parameters of models for dataset 1.

Model ^
a

^
b

^
α

^
β

^
N

^
c

^
h

DPF1 51.350 0.001 - - - 0.216 2.659

DPF2 51.350 0.005 - - - 0.076 2.629

DS 77.253 0.0966 - - - - -

GO 14,264.000 0.0002 - - - - -

IS 58.943 0.170 - 8.386 - - -

YID 1.491 0.3068 1.7457 - - - -

PNZ 29.875 0.192 0.045 4.900 - - -

PZ 59.316 0.1682 128.1029 8.2581 - 0.0005 -

TC 0.0191 1.567 839.1540 221.1735 78.7859 - -

VTUB 1.9701 0.6892 0.2928 19.8529 87.2519 - -

NEW - 0.2470 2.355 1.968 126.140 - -

Table 6. Estimated parameters of models for dataset 2.

Model ^
a

^
b

^
α

^
β

^
N

^
c

^
h

DPF1 55.893 0.004 - - - 0.548 7.274

DPF2 56.058 0.008 - - - 0.093 7.195

DS 57.478 0.344 - - - - -

GO 94.344 0.0733 - - - - -

IS 65.781 0.206 - 1.293 - - -

YID 5.749 52.415 0.756 - - - -

PNZ 64.922 0.208 0.001 1.286 - - -

PZ 7.617 0.210 0.005 1.321 - 64.992 -

TC 0.005 1.075 2001.000 84.681 80.373 - -

VTUB 5.0693 1.793 0.0181 0.0004 57.6685 - -

NEW - 0.316 1.326 1.142 91.500 - -

Table 7. Criteria values for model comparison of dataset 1.

Model MSE PRR PP SAE R2 AIC BIC Bias PRV RMSPE MAE MEOP TS
(%)

DPF1 2.0159 0.3434 0.6026 20.5585 0.9924 78.8231 83.0012 0.1065 1.3044 1.3088 1.2093 1.1421 4.7409

DPF2 2.0055 0.3333 0.5753 20.4606 0.9924 78.7999 82.9780 0.1006 1.3016 1.3054 1.2036 1.1367 4.7287

DS 1.6365 26.3229 1.2081 21.0349 0.9931 78.1184 80.2075 −0.2326 1.2239 1.2458 1.1071 1.0517 4.5159

GO 6.6010 0.8080 1.8602 42.5436 0.9721 77.3351 79.4242 0.8913 2.3317 2.4962 2.2391 2.1272 9.0696

IS 1.3952 0.6991 0.3003 17.4495 0.9944 76.6925 79.8261 −0.0325 1.1201 1.1205 0.9694 0.9184 4.0584

YID 1.7008 3.0656 0.6081 21.0606 0.9932 78.6624 81.7960 −0.0548 1.2360 1.2372 1.1700 1.1085 4.4810

PNZ 1.4844 0.9578 0.3521 17.9074 0.9944 78.9419 83.1200 −0.0504 1.1221 1.1232 1.0534 0.9949 4.0683

PZ 1.5697 0.6947 0.3003 17.5203 0.9944 80.7116 85.9342 −0.0272 1.1203 1.1206 1.0950 1.0306 4.0586

TC 1.7268 5.9590 0.7580 19.4342 0.9939 82.5660 87.7886 −0.0548 1.1740 1.1753 1.2146 1.1432 4.2568

VTUB 1.5438 0.5610 0.2699 17.5100 0.9945 80.6019 85.8245 −0.0425 1.1105 1.1113 1.0944 1.0300 4.0250

NEW 1.3805 0.0772 0.0763 15.9817 0.9948 78.0915 82.2696 −0.0021 1.0832 1.0832 0.9401 0.8879 3.9233
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In Table 8, the proposed model shows the smallest MSE and the smallest AIC at
2.7776 and 57.2427, respectively. Though other criteria are not the best values among
all models, the proposed model shows the second-largest R2, the second-smallest BIC,
the second-closest-to-zero Bias, the second-smallest PRV, the second-smallest RMSPE, the
second-closest-to-zero TS at 0.9920, 59.1823, −0.0070, 1.4213, 1.4213 and 3.6615, respectively.
In particular, DPF1 shows the smallest PRR, the smallest PP, the smallest MAE and the
smallest MEOP at 0.0276, 0.0270, 1.5924 and 1.4154, respectively. The VTUB shows the
largest R2, the smallest SAE, the smallest PRV, the smallest RMSPE and the closest-to-zero
TS at 0.9925, 12.6030, 1.3688, 1.3704 and 3.5306, respectively. When looking at the values of
the overall criteria, it can be seen that the goodness of fit of the proposed model is excellent.

What is especially important about this result is that the fit of the proposed model
is much better than DPF1, DPF2, and VTUB. In other words, DPF1 and DPF2 assume
dependent failures, and VTUB assumes uncertain operating environments. It can be seen
that the proposed model takes both assumptions into account and fits the dataset much
better. Therefore, it is reasonable to predict the number of failures and conduct software
reliability studies (reliability evaluation, release policy, etc.) based on the proposed model
rather than DPF1, DPF2, or VTUB.

Table 8. Criteria values for model comparison of dataset 2.

Model MSE PRR PP SAE R2 AIC BIC Bias PRV RMSPE MAE MEOP TS
(%)

DPF1 2.8201 0.0276 0.0270 12.7389 0.9919 58.6958 60.6354 0.0103 1.4321 1.4321 1.5924 1.4154 3.6893

DPF2 2.7946 0.0283 0.0275 12.7515 0.9919 58.6274 60.5670 0.0078 1.4256 1.4256 1.5939 1.4168 3.6726

DS 8.2096 7.3679 0.6177 20.9540 0.9704 69.6251 70.5950 −0.7059 2.6305 2.7236 2.0954 1.9049 7.0377

GO 4.0245 0.2932 0.1627 19.4170 0.9855 57.7076 58.6775 −0.0522 1.9120 1.9127 1.9417 1.7652 4.9275

IS 4.0555 0.4815 0.1905 17.0520 0.9868 60.1451 61.5998 −0.1725 1.8126 1.8208 1.8947 1.7052 4.6926

YID 7.7536 0.0893 0.1027 24.4096 0.9748 58.2593 59.7140 0.0000 2.5187 2.5187 2.7122 2.4410 6.4885

PNZ 4.5632 0.4818 0.1906 17.0566 0.9868 62.1389 64.0786 −0.1722 1.8128 1.8210 2.1321 1.8952 4.693

PZ 5.2153 0.4890 0.1917 17.0459 0.9868 64.1689 66.5934 −0.1758 1.8125 1.8210 2.4351 2.1307 4.6931

TC 5.6420 0.4307 0.1888 18.3723 0.9857 64.2519 66.6765 −0.1203 1.8906 1.8945 2.6246 2.2965 4.8813

VTUB 2.9516 0.0320 0.0296 12.6030 0.9925 59.5514 61.9760 −0.0664 1.3688 1.3704 1.8004 1.5754 3.5306

NEW 2.7776 0.0606 0.0514 14.4914 0.9920 57.2427 59.1823 −0.0070 1.4213 1.4213 1.8114 1.6102 3.6615

Among the 13 criteria in this paper, the most classic and well used are the MSE, PRR,
and PP. Figures 1 and 2 display the three criteria values of the top three models for each
dataset. For the criteria—MSE, PRR, PP, AIC, and RMSPE—the smaller the value, the closer
the predicted value of the model is to the actual value, relative to other models on the
same dataset.

For dataset 1 (See Figure 1), the proposed model displays the smallest MSE, the
smallest PRR and the smallest PP at 1.3805, 0.0772, and 0.0763, respectively. For dataset
2 (see Figure 2), the proposed model displays the smallest MSE and the smallest AIC at
2.7776 and 57.2427, respectively. The VTUB displays the smallest RMSPE at 1.3704.
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Figure 1. Three criteria values of top three models for dataset 1. (a) MSE; (b) PRR; (c) PP.

Figure 2. Three criteria values of top three models for dataset 2. (a) MSE; (b) AIC; (c) RMSPE.

Figures 3 and 4 present the 95% confidence intervals of the datasets, the formula of
which is given by

m̂(t)± zα
√

m̂(t) (15)

where zα is defined as the 100(1− α)/2 percentile of the standard normal distribution [30].

Figure 3. Confidence intervals (95%) of dataset 1.
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Figure 4. Confidence intervals (95%) of dataset 2.

Figures 5 and 6 show the mean value functions of the existing NHPP models and the
proposed model for datasets.

Figure 5. Mean value function of the models for dataset 1.

Figure 6. Mean value functions of the models for dataset 2.
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5. Conclusions

Most NHPP SRGMs have been developed with stand-alone failure considerations
or are environment-based (controlled). Failures can occasionally occur, and the test and
operating environments used by real consumers differ. As the main idea of this study, the
proposed model considers both dependent failures and uncertain operating environments.
When looking at the values of the overall criteria in Tables 7 and 8, it can be seen that the
goodness of fit of the proposed model is excellent. Among the 13 criteria, 11 criteria values
show the best values for dataset 1. For dataset 2, 2 criteria values show the best values and
6 criteria values show the second-best values. In other words, the proposed model more
closely predicts the number of failures than other models. Therefore, we conclude that it
is reasonable to predict the number of failures based on the proposed model and conduct
software reliability studies (reliability assessment, release policy, etc.).

6. Future Research

In the future, it is believed that various SRGMs can be developed if a(t) and b(t) are
based on various assumptions, a dependent failure, and uncertain operating environments
are taken into consideration. We will develop a model that expresses more robust dependent
failures by extending the model proposed in this study. Also, we plan to convert software
reliability evaluation and cost function into a single-objective function [44,45]. In addition, it
can be extended to various studies [46–49]. This study can be extended into a release policy
study. As the frequency of use of cloud services and open-source software is increasing, it
is necessary to study the reliability of collecting datasets on them.
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