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Abstract: When reconstructing seismic data, the traditional singular value decomposition (SVD)
denoising method has the challenge of difficult rank selection. Therefore, we propose a seismic data
denoising method that combines SVD and deep learning. In this method, seismic data with different
signal-to-noise ratios (SNRs) are processed by SVD. Data sets are created from the decomposed right
singular vectors and data sets divided into two categories: effective signal and noise. The lightweight
MobileNetV2 network was chosen for training because of its quick response speed and great accuracy.
We forecasted and categorized the right singular vectors by SVD using the trained MobileNetV2
network. The right singular vector (RSV) corresponding to the noise in the seismic data was removed
during reconstruction, but the effective signal was kept. The effective signal was projected to smooth
the RSV. Finally, the goal of low SNR denoising of two-dimensional seismic data was accomplished.
This approach addresses issues with deep learning in seismic data processing, including the challenge
of gathering sample data and the weak generalizability of the training model. Compared with the
traditional denoising method, the improved denoising method performs well at removing Gaussian
and irregular noise with strong amplitudes.

Keywords: MobileNetV2; seismic data; denoising; deep learning; SVD

1. Introduction

Suppressing noise to improve the quality of seismic signals has always been an es-
sential task in seismic data processing. The denoising method for seismic data with a
low signal-to-noise ratio (SNR) is a focus of attention at present [1,2]. The traditional
methods for denoising seismic data include f-x deconvolution filtering [3,4], t-x prediction
filtering [5,6], s-transformation filtering [7], wavelet transform filtering [8], median filter-
ing [9,10], empirical mode decomposition [11], and singular value decomposition. The
principle of the singular value decomposition (SVD) method assumes that the effective
seismic information is mainly concentrated in the feature maps corresponding to large
singular values. The effect of noise attenuation can be achieved by setting K = 1 or K = 2
when reconstructing. The traditional seismic data denoising methods are very effective
when the SNR is high, but they are unsuitable for low SNR seismic signals. For example,
SVD is used to remove seismic data noise. When the noise energy is too large, the large
singular value may not represent the effective signal. At this time, it is difficult to choose
the rank. When the rank is too large, too much noise will be retained, and the seismic
signal becomes damaged when the rank is too small. So choosing the appropriate rank is a
crucial step for the SVD method [12,13]. Therefore, exploring a method that can effectively
attenuate the noise of seismic data with a low SNR is necessary.

Currently, the research on the denoising of seismic data using the SVD method is
continuing, and there are some advances in the suppression of strong amplitude, ran-
dom, coherent, and abnormal optical noise. For example, Ke Chen et al. [14] proposed a
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singular spectrum analysis method using low-rank approximation instead of truncated
SVD to suppress intense interference noise. To compress and denoise seismic data, Milan
Brankovic et al. [15] proposed a shift matrix decomposition (SMD) method that compresses
seismic data by applying SVD and storing the seismic data into singular vector pairs cou-
pled with shift vectors. These methods can suppress the noise but only partially remove it
in areas without a seismic signal. However, the improved SVD method proposed by us can
remove the noise in an area without a seismic signal. Qian Kun Feng et al. [16] proposed
a multi-channel SVD denoising convolution neural network, which remarkably removes
random, correlated, and optical abnormal noise. However, compared with the right sin-
gular vector, noise subspaces’ records are morphologically complex, which makes it more
difficult to make data sets and identify seismic signals. Meanwhile, the training time of the
network is longer, and the computer performance requirements are high. However, in our
proposed method, the right singular vector is simple in form, easy to collect, fast in training
time, and low in computer performance. Chao Qiang Xi et al. [17] used a Wiener filter
based on SVD to attenuate coherent noise. In this paper, the SVD technique is improved
for Gaussian noise and irregular intense amplitude noise in seismic data so that the new
method effectively suppresses the noise.

Considering the vast and successful application of deep learning methods in various
fields, many applications in seismic exploration include seismic data denoising, seismic
fault detection, seismic signal reconstruction, and seismic signal classification. For exam-
ple, Yu Shu Zhang et al. [18] improved the deep convolution neural network based on
a patch and used it to denoise seismic images. This method dramatically affects seismic
data with a low SNR and noise that changes randomly with time and space. Xin Ming
Wu et al. [19] used a supervised full convolution neural network for 3D seismic image
recognition, thus enabling accuracy and efficiency in predicting the location of faults. Jin
Sheng Jiang et al. [20] developed a convolutional self-coding method that can remove
random noise while reconstructing seismic signals and quickly process a large amount
of seismic data. Bing Jun Li et al. [11] classified effective signals using ensemble empir-
ical mode decomposition and deep convolution neural networks. Firstly, the empirical
ensemble mode decomposed the seismic signals, and the modal function components
obtained the three-dimensional Hilbert spectrum using the Hilbert transform. Then, the
three-dimensional Hilbert spectrum was used as a training set for the deep convolutional
neural network. The Hilbert spectra of natural earthquake and explosion signals were
predicted after training, obtaining excellent results. Yun Zhi Shi et al. [21] classified seismic
images into saline and non-saline datasets on a patch-by-patch method. They used the
trained deep convolution neural network to automatically capture subtle salt features from
3D seismic images. Xinxin Yin et al. [22] proposed a lightweight unsupervised network
that combines a convolutional neural network and an unsupervised classification method.
The method improves computational efficiency and achieves excellent classification results
by extracting signal features to classify seismic signals.

Seismic data denoising methods based on deep learning have achieved significant
advancements and found widespread use compared with traditional seismic data denoising
methods. However, it is difficult to gather sample seismic data because the deep learning
denoising method requires a large amount of labeled seismic data to train the network. The
trained model has weak generalization ability, which significantly limits the use of deep
learning networks in denoising seismic data [19].

In this paper, two-dimensional seismic data were denoised using SVD combined
with supervised deep learning techniques. The singular vectors after SVD also exhibited
characteristics that discriminate between noise and effective signals, as demonstrated by
Wang Chao et al. [12]. We used their study as a foundation, to develop a supervised deep
learning technique that automatically determines the right singular vector (RSV) relating
to noise and effective signal. Only the RSV corresponding to effective signals were used to
reconstruct the seismic data.
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2. Method
2.1. Singular Value Decomposition (SVD)

The SVD can perform principal component decomposition and is widely used in
seismic data noise reduction. The complete singular value decomposition formula is:

Dm×n = USVT = ∑R
K = 1 ukσkvT

k (1)

The D matrix has m sampling points for each channel and n channels. R denotes the
rank of the matrix D, U the orthogonal matrix of m×m, V the orthogonal matrix of n× n,
S the diagonal matrix of m× n; σk is singular value and is arranged in order from highest
to lowest in the S-matrix. The left singular vector (LSV) is designated by uk and, the RSV
by vk. See Appendix A for details.

Dm×n = USVT = ∑R
K = 1 ukσkvT

k = u1σ1vT
1 + u2σ2vT

2 + . . . + uRσRvT
R (2)

The matrix D decomposes into R submatrices. Since the seismic signal is continuous
in space, the noise is randomly distributed. The higher singular value often reflects the
effective signal. The lower singular value generally represents the noise. As a result, the
singular value can be used to distinguish between the noise and the effective signal.

Dm×n = USVT = ∑r
K = 1 ukσkvT

k (1 ≤ r ≤ R) (3)

K is frequently adjusted to 1 or 2 when reconstructing seismic data. The reconstruction
error of seismic data is the sum of the matrix corresponding to the remaining singular
values. By using SVD, it is discovered that the LSV and RSV of 2D seismic data indicate
various physical meanings. The RSV indicates the lateral variation trend of the amplitude of
the seismic lineups, whereas the LSV represents the seismic wavelet. The first left singular
vector typically represents the normalized wavelet of the seismic signal to the seismic data
after SVD. At the same time, the noise is represented by the following columns of LSV.
Similarly, the first right singular vector indicates the amplitude variation of the effective
signal, whereas the variations of the remaining RSV are more random and represent
noise [12,16].

However, the seismic signal becomes significantly disturbed by intense noise. Figure 1a
shows intense amplitude noise in the 2nd and 6th seismic data. The seismic data are de-
composed by SVD, as shown in Figure 1b. The first LSV represents noise, and the second
represents the effective signal. The traditional singular value method cannot denoise seis-
mic data in this case. In Figure 1c, the first RSV correspondingly represents the amplitude
change of seismic data, in which sizeable abrupt change represents intense amplitude noise.
By contrast, the absolute value of the second RSV generally shows an increasing trend,
which confirms that seismic signal amplitude gradually increases.

The RSV characteristics corresponding to noise and effective signal are very different.
Therefore, we could distinguish the effective signal and noise based on the RSV characteris-
tics in addition to the singular value. As a result, flexible control over the rank selection
of seismic data reconstruction was possible. The goal of intelligent noise suppression was
finally accomplished.
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Figure 1. (a) Synthetic data; (b) the left singular vector diagram corresponding to the effective signal 
after SVD; (c) the right singular vector diagram corresponding to the effective signal. 

2.2. Denoising Method Based on SVD and Deep Learning 
Since the decomposed LSV and RSV have clear physical significance related to seis-

mic data, the effective seismic signal and noise can be well distinguished using the de-
composed RSV characteristics [12]. It is easy to manually distinguish a seismic signal or 
noise according to the RSV characteristics. However, the conventional mathematical or 
signal processing methods proposed by Wang Chao et al. [12] cannot reach the high-ac-
curacy judgment requirement. By contrast, deep learning has significant advantages in 
dealing with such problems. Deep learning has developed mature classification abilities. 
Therefore, this paper uses the MobileNetV2 classification network [23] to predict and clas-
sify the right singular vector after SVD. The basic idea is that two-dimensional seismic 
data with different SNR sizes are subjected to SVD, and the obtained RSVs are trans-
formed into graphs. The images are classified to make a dataset training network model. 
The trained deep learning model distinguishes the effective signal and noise correspond-
ing to the RSV of seismic data after SVD. Then, the singular value corresponding to the 
noise is rejected, and the effective signal is retained and smoothed. Finally, denoised two-
dimensional seismic data are obtained by SVD reconstruction, and the purpose of de-
noising is finally achieved (Figure 2). 

  

Figure 1. (a) Synthetic data; (b) the left singular vector diagram corresponding to the effective signal
after SVD; (c) the right singular vector diagram corresponding to the effective signal.

2.2. Denoising Method Based on SVD and Deep Learning

Since the decomposed LSV and RSV have clear physical significance related to seismic
data, the effective seismic signal and noise can be well distinguished using the decom-
posed RSV characteristics [12]. It is easy to manually distinguish a seismic signal or noise
according to the RSV characteristics. However, the conventional mathematical or signal
processing methods proposed by Wang Chao et al. [12] cannot reach the high-accuracy
judgment requirement. By contrast, deep learning has significant advantages in dealing
with such problems. Deep learning has developed mature classification abilities. Therefore,
this paper uses the MobileNetV2 classification network [23] to predict and classify the right
singular vector after SVD. The basic idea is that two-dimensional seismic data with differ-
ent SNR sizes are subjected to SVD, and the obtained RSVs are transformed into graphs.
The images are classified to make a dataset training network model. The trained deep
learning model distinguishes the effective signal and noise corresponding to the RSV of
seismic data after SVD. Then, the singular value corresponding to the noise is rejected, and
the effective signal is retained and smoothed. Finally, denoised two-dimensional seismic
data are obtained by SVD reconstruction, and the purpose of denoising is finally achieved
(Figure 2).
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2.2.1. Selection of Deep Learning Networks

Deep learning has become increasingly sophisticated in image classification, and
convolutional neural networks (CNNs) are widely used in image classification with good
results. Many convolutional neural networks exist, including Alex Net [24], VGG Net [25],
Res Net [26], Dense Net [27], and MobileNet [28]. Each type of neural network has unique
advantages and is suitable for different environments. A suitable neural network can be
selected according to the application environment and the neural network’s characteristics.

There are many types of deep learning networks, and two of the better-known clas-
sification networks, MobileNetV2 and restnet50 were selected for comparison here. The
network was run on an NVIDIA GeForce GTX 750 Ti computer with a GPU of 2 GB. The
restnet50 network had a maximum batch size of 8. The MobileNetV2 network had a maxi-
mum batch size of 16. The rest of the training parameters were the same as those used to
train the MobileNetV2 network below (see Section 2.2.3).

Our results are shown in Table 1. The restnet50 network requires twice the time to train
and has slightly lower accuracy than the MobilenetV2 network. Compared to standard con-
volutional operations, the MobileNetV2 network can reduce the amount of computation by
a factor of several with the same weight parameters, thus achieving a speed-up of network
operations. Therefore, the MobilenetV2 network was finally selected for its fast training
speed, high accuracy, few training parameters, and low-performance requirements.

Table 1. MobileNet comparison to popular models.

Model Batch Size Run Time (h) ImageNet Accuracy (%)

restnet50 8 8.77 99.91
MobileNetV2 16 3.25 99.94

2.2.2. Deeply Separable Convolution in MobileNetV2 Networks

Deeply separable convolution is a crucial part of the MobileNet network and its ability
to operate efficiently. Deeply separable convolution is divided into two parts, the depthwise
and pointwise convolutions. Depthwise convolution is the process of extracting features
from an image using a single convolution channel to produce an output feature map that
maintains the same channel as the input feature map. Pointwise convolution refers to the
up-and down-dimensioning of the feature map by 1 × 1 convolution. The network can
achieve the same results as standard convolution with fewer parameters and operations by
replacing standard convolution with these two components [23].

The number of parameters and operations in the deeply separable convolution is
1
N + 1

H2
i

times the number of parameters of the standard convolution, where the number

of convolution kernels is N, and the size of the convolution kernel is Hi. The Hi in the
MobileNetV2 network is 3, so the network has eight to nine times less computation than
the standard convolution, reducing the number of operations to a large extent [23].

The MobileNetV2 network structure is shown in Table 2 and Figure 3, with 17 bottle-
neck layers, 1 standard convolutional layer (Conv), and 2 pointwise convolution layers (Pw
Conv), for a total of 54 trainable parameter layers. Figure 4 shows a bottleneck layer contain-
ing two pointwise convolutional layers and one depthwise convolutional layer (Dw Conv).
When the bottleneck layer step size is 1, the training images are first up-dimensioned by
1× 1 convolution, and then depthwise convolution is performed to extract features. Finally,
the input and output are summed up by linear pointwise convolution, forming the residual
structure. When the bottleneck layer step size is 2, the shortcut structure is not added
because the input size does not match the output, and the rest is consistency. The linear
bottleneck and inverted residuals used in the MobileNetV2 structure optimize the network,
resulting in deeper layers, smaller models, and faster runs [23].
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Table 2. MobileNetV2 network architecture.

Input Network Layer Expansion Multiplier Output Channels Number Repetitions Stride

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 6 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1 × 1 - 1280 1 1
72 × 1280 avgpool 7 × 7 - - 1 -

1 × 1 × 1280 conv2d 1 × 1 - k -

Note: Table 2 is referenced from [23].
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2.2.3. MobileNetV2 Network Training

The data for the production dataset comprised three synthetic seismic data with
267 channels of 2048 sampling points per channel and 31 channels of 4200 sampling points
per channel of field seismic data. SVD processed the seismic data, and then the right
singular vector was transformed into a graph with a picture size of 224× 224 pixels. Finally,
the generated images were divided into two categories, effective signal and noise. It was
built into a dataset of 10,468 training photos and 3416 validation images, representing
approximately 75 and 25% of the training and validation sets, respectively.

The network model was trained on the computer using the PyTorch deep learning
framework and by setting the batch size to 16. The training network was divided into two
phases: the freezing phase and the thawing phase, and the backbone part extracted the
generic network features. Freeze training can speed up the training speed and prevent the
weights from being destroyed early in training. We set the learning rate to 0.01, and the
epoch to 50 in the freeze phase. The learning rate and epoch of the thawing phase were set
to 0.0001 and 50, respectively. The accuracy of the training set did not significantly increase
after epoch 70 over the 100-epoch training process, and the final accuracy of the validation
set was 99.94%.

The rate of convergence of the MobileNetV2 network for image categorization is
shown in Figure 5. The training set had large initial fluctuations and gradually decreased
after 20 epochs. The loss of the training set curve after smoothing decreased and gradually
smoothened out close to 0 at 70 epochs. According to the validation set’s loss curve, the
training of the validation set was initially unstable, and the loss value increased for a while.
The loss value gradually and steadily decreased after running for about 5 epochs. Finally,
at 70 epochs, the loss value approached 0 gradually and smoothly.
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Figure 5. Convergence speed of MobileNetV2 during the training process.

After training the MobileNetV2 network, the network model was used to predict the
input images. The input images’ prediction results are shown in Figure 6a–c, which are
effective signals represented by the right singular vector. The test results are consistent with
the manual prediction results. Figure 6d–f are the noise represented by the right singular
vector, which presents a cluttered and random fold. The test results are consistent with the
manual prediction results, and the network can accurately determine the effective signal
and noise.
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2.2.4. Algorithm Program Steps

The process of improving the SVD seismic denoising method is shown in detail in
Algorithm 1. This pseudo-algorithm is performed in python.
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Algorithm 1 Pseudocode of Seismic Denoising Algorithm

Input: Dm,n: seismic data have m traces, n samples, window parameters were set to a traces, b
samples, (a is an odd number and b is an even number), rank of matrix K = 4;
Output: Wm,n : denoised seismic data;

1: Wm,n = Dm,n;
2: for (a/2) + 1 < i ≤ m − a/2 + 1, i + a do
3: for (b-1)/2 + 1 < j ≤ n − (b − 1)/2, j + 1 do
4: Set window = a * b (a < m, b < n), obtain da,b = D

[
i− a

2 : i + a
2 − 1, j− b−1

2 : j + b−1
2

]
;

5: Compute SVD function USV = svd(d), obtain Ua,a: left singular matrix,Sa,b: singular value
matrix,Vb,b: right singular matrix;

6: for 0 < k ≤ K do
7: Transform the kth RSV into 224*224 pictures;
8: Using a trained MobileNetV2 network to predict the kth RSV;
9: if V[:,k] = “effective” then
10: S[k,k] = S[k,k];

11: A five-point smoothing is applied to the kth RSV;
12: else V[:,k] = noise”
13: S[k,k] = 0;
14: end if
15: end for

16: wa,b=
K
∑

k = 1
UkSkVT

K ;

17: Extract the reconstruction matrix w[:, b−1
2 + 1] and insert it into the M[i− a

2 : i + a
2 − 1, j]

matrix data;
18: end for
19: end for
20: Return Wm,n.

3. Results
3.1. Synthetic Data

The synthetic 2D seismic data containing 50 traces and 400 sampling points are pre-
sented in Figure 7a. Gaussian noise with SNR =−4 was added to the synthetic seismic data,
and intense amplitude noise was added to the seismic data of the 15th and 30th channels.
The noise negatively impacted the seismic signal, where part of the seismic signal was
completely drowned in the noise (see Figure 7b). To denoise the synthetic seismic signal,
the seismic data were first reconstructed using the conventional SVD filtering (K = 1 and
K = 2). When singular value decomposition filtering was performed to denoise seismic data,
K = 1 and K = 2 were the most common because the seismic signal was mainly concentrated
on the maximum singular value. Conventional singular value decomposition filtering uses
window parameters of n = 15 channels and m = 100 sampling points.

Only the first singular value (K = 1) was used to reconstruct the seismic data. The
results are shown in Figure 8a, where the random noise is removed to a large extent.
However, the seismic signal is lost on a large scale due to the interference of intense
amplitude noise, which is not removed. The conventional SVD filtering results are shown
in Figure 8b; the seismic signals are all preserved when K = 2, but it cannot effectively
remove the intense amplitude noise. Since the SVD filter does not have low-pass filtering
capabilities, the effective frequency band of the synthetic seismic data was between 0 and
100 Hz, and the synthetic seismic data were processed using low-pass filtering (0–100 Hz).
The results in the later sections were also after adding low-pass filtering.

When processing seismic data with the modified SVD filter, the window chosen was
the same as the conventional SVD filter. The rank range was expanded to select K = 4
for processing. After the improved SVD processed the seismic data, the seismic signals
were kept intact, and the intense amplitude noise was removed successfully. In the region
without a seismic signal, Gaussian noise was suppressed completely. This result was also
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discernible in the region with a seismic signal. The continuity of the lineups’ seismic signal
was maintained (see Figure 8c).
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The comparison of the SNR of different methods is shown in Table 3. The seismic
data’s SNR was −10.2592 dB before processing the synthetic seismic data with filling noise.
After noise attenuation, the SNR for K = 1 and K = 2 in a conventional SVD filter was
−6.8822 dB and−6.5176 dB, respectively. However, the SNR was 8.1007 dB after the seismic
data was processed using improved SVD filtering. As a result, we discovered that the
improved SVD filter’s ability to suppress noise had improved.
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Table 3. SNR comparison of denoised results from different methods.

Method Seismic Data with Noise Conventional SVD,K = 1 Conventional SVD,K = 2 Improved SVD

SNR (dB) −10.2592 −6.8822 −6.5176 8.1007

3.2. Field Data

The first field seismic data were obtained by microseismic monitoring in a well with
35 magnitude geophone. The distance between the two geophones is 15 m, and the geo-
phone depth was 1800–2310 m. The sampling rate was 0.5 ms. The downhole microseismic
data has 35 traces and time length is 0.5 s. The field seismic data has robust random noise
and apparent intense amplitude noise, as shown in Figure 9a. When denoising the field
data, the parameters of the used window were set to n = 15 traces and m = 50 time samples,
and the other parameters chosen for the improved SVD filtering were the same as those
used for processing synthetic seismic data. As seen in Figure 9b, a large amount of random
noise is removed when traditional SVD filtering (k = 1) is used. However, a significant
amount of noise still exists near the non-effective signal. When performing SVD filtering
denoising with K = 2, the retained noise is more relative to K = 1, as illustrated in Figure 9c.
The conventional SVD filtering (K = 1 and K = 2) minimally suppresses intense amplitude
noise. However, the noise was eliminated in the region without seismic signals when the
data were denoised by the improved SVD filtering. When the noise was attenuated, the
seismic events were well preserved in the vicinity of the seismic signal, and the intense
amplitude noise was eliminated (see Figure 9d). In general, the improved SVD filtering
significantly improves the denoising of seismic data compared with conventional SVD
filtering. Here, the results of SVD filtering were processed using low-pass filtering from
0 to 240 Hz.
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Since SNR cannot be calculated directly from field seismic data, the SNR of field
seismic data and denoised seismic data were calculated by taking 0.2–0.225 s as seismic
signal and 0.35–0.375 s as noise. The SNR of field seismic data is 11.3336 dB. After denoising
the seismic data with the traditional SVD filter (K = 1, K = 2), the SNR of the seismic data is
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18.5297 dB and 16.8173 dB, respectively. After the improved SVD filter was used to denoise
the seismic data, the noise part was basically removed, so there was a numerical calculation
error, and the SNR of the seismic data was 65.7588 dB. The comparison of SNR shows that
the improved SVD filter has an obvious denoising effect (Table 4).

Table 4. SNR comparison of denoised results from different methods.

Method Original Data Conventional SVD, K = 1 Conventional SVD, K = 2 Improved SVD

SNR (dB) 11.3336 18.5297 16.8173 65.7588

The second field seismic data were obtained by 31 magnitude geophones with a level
spacing of 15 m and the depth of the geophone sinking was 1800–2250 m; the explosive
source was placed in the adjacent well. The sampling rate was 1 ms. This downhole
microseismic data comprised 31 traces and time length was 3.5 s. In Figure 10a, it can be
seen that the 0.5 to 2 s contains a large amount of random noise, and there is erratic intense
amplitude noise from 2.5 to 3.5 s. The parameters chosen for the improved SVD filtering
were the same as those used to process the synthetic seismic data. The filtered results were
compared to the conventional SVD filtering results. Figure 10b shows the denoised data
obtained using conventional SVD filtering (K = 1). Most random noises were suppressed,
but the erratic intense amplitude noise from 2.5 to 3.5 s could not be attenuated. At the
same time, the seismic events near 2.5 s were also discontinuous and partially missing due
to the interference of intense amplitude noise. After denoising the data with conventional
SVD filtering (K = 2), the seismic signal was preserved, but the noise was also present. The
conventional method did not achieve the effect of noise suppression (see Figure 10c). The
noise was mainly removed from the seismic data by the improved SVD filtering rather than
the original method. The irregular intense amplitude noise from 2.5 to 3.5 s was attenuated.
The seismic events with complex characteristics were better preserved (Figure 10d).
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4. Discussion

In this paper, we propose a two-dimensional seismic data denoising method combining
SVD and deep learning. This method attenuates strong interference noise, which cannot be
completely removed with traditional SVD filters, and resolves discontinuous weak seismic
signals when the effective signal and noise are distinguished only according to the singular
value. The improved SVD filtering technology can improve the low efficiency of artificial
rank selection and the accuracy and effectiveness of noise suppression.

When SVD is applied to 2D seismic data, only the effective signal and noise are
distinguished based on the RSV. The effective signal and noise patterns corresponding to
the RSV are rather straightforward compared with field seismic data, reducing the challenge
of obtaining sample data. The morphological complexity and number of RSV categories
after SVD are significantly reduced compared with the complex and varied seismic data.
The morphological characteristics of the RSV corresponding to different seismic data do not
vary significantly. Improved SVD filtering effectively overcomes the weak generalization
ability of the deep learning training model. Compared with traditional SVD filtering, the
improved SVD filtering successfully eliminates Gaussian noise and strong amplitude noise
in the synthetic seismic data. It maintains the integrity of seismic events in the field of
seismic data. However, the disadvantage is that the seismic data targeted are single, mainly
for horizontal lineups. Our future work will denoise seismic data containing cross and
inclined lineups.
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Appendix A

The formula for SVD is as follows:

D = USVT

D is a matrix of m × n, and U is a matrix of m ×m. S is a matrix of m × n, S is 0 except
for the elements on the main diagonal, and each element on the main diagonal is called a
singular value σk. V is a matrix of n × n and UTU = I, VTV = I.(

DTD )vk = λkvk

From the above formula, we can get n eigenvalues and n eigenvectors of DTD.
All eigenvectors of DTD form matrix V and each eigenvector of V is called the right
singular vector. (

DDT )µk = λkuk

From the above formula, m eigenvalues and m eigenvectors of DDT can be obtained.
All eigenvectors of DDT form a matrix U, and each eigenvector of U is called the left
singular vector.

DT = VSUT → DTD= VSUTUSVT = VS2VT → σk =
√

λk

Here’s an example of the definition matrix D is:

D =

1 2
2 1
1 1



DTD=

(
1 2 1
2 1 1

)1 2
2 1
1 1

=

(
6 5
5 6

)

DDT=

1 2
2 1
1 1

(1 2 1
2 1 1

)
=

5 4 3
4 5 3
3 3 2


The eigenvalues and eigenvectors of DTD can be found:

λ1= 11; v1=

 1√
2

1√
2

; λ2= 1; v1=

− 1√
2

1√
2

;
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The eigenvalues and eigenvectors of DDT can be found:

λ1= 11u1=


3
2
3
2

1

; λ2= 1, u2=

−1
1
0

; λ3= 0, u3=

−
1
3

− 1
3

1

;

From σk=
√
λk, we know that the singular values are

√
11 and 1, so we get a singular

value decomposition of D:

D = USVT =


3
2 −1 − 1

3
3
2 1 − 1

3

1 0 1



√

11 0
0 1
0 0

 1√
2

1√
2

− 1√
2

1√
2


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