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Abstract: Being an efficient image reconstruction and recognition algorithm, two-dimensional PCA
(2DPCA) has an obvious disadvantage in that it treats the rows and columns of images unequally.
To exploit the other lateral information of images, alternative 2DPCA (A2DPCA) and a series of
bilateral 2DPCA algorithms have been proposed. This paper proposes a new algorithm named
direct bilateral 2DPCA (DB2DPCA) by fusing bilateral information from images directly—that is,
we concatenate the projection results of 2DPCA and A2DPCA together as the projection result
of DB2DPCA and we average between the reconstruction results of 2DPCA and A2DPCA as the
reconstruction result of DB2DPCA. The relationships between DB2DPCA and related algorithms
are discussed under some extreme conditions when images are reshaped. To test the proposed
algorithm, we conduct experiments of image reconstruction and recognition on two face databases, a
handwritten character database and a palmprint database. The performances of different algorithms
are evaluated by reconstruction errors and classification accuracies. Experimental results show that
DB2DPCA generally outperforms competing algorithms both in image reconstruction and recognition.
Additional experiments on reordered and reshaped databases further demonstrate the superiority of
the proposed algorithm. In conclusion, DB2DPCA is a rather simple but highly effective algorithm
for image reconstruction and recognition.

Keywords: DB2DPCA; bilateral 2DPCA; image reconstruction; image recognition; face recognition

1. Introduction

In the field of machine learning and pattern recognition, feature extraction from
massive high-dimensional data is a very demanding job [1]. Various applications of feature
extraction methods include face recognition [2], EEG-based emotion recognition [3], rice
disease recognition [4], facial emotion recognition [5], speaker recognition [6] and diagnosis
of COVID-19 related diseases [7,8].

One of the most prevalent feature extraction methods is Principal Component Analysis
(PCA) [9,10], which seeks a projection matrix that maximizes projected variance. PCA is a
simple, non-parametric technique for extracting relevant information from large datasets,
minimizing information loss, reducing the dimensionality of such datasets and increasing
interpretability. It is abundantly applied in different disciplines including atmospheric
science [10], computer science [11] and neuroscience [12].

When applying PCA to extract features from images, 2D image matrices should be
reshaped into 1D image vectors prior [11]. This operation abandons the 2D image spatial
structure information and leads to a large size of covariance matrix that is difficult to handle.
Two-dimensional PCA (2DPCA) [13] alleviates this problem by dealing with image matrices
directly rather than reshaping them into vectors. Compared with PCA, 2DPCA extracts
more structural information from images and its covariance matrix becomes much easier
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to handle. Moreover, 2DPCA generally outperforms PCA in image reconstruction and
recognition [13]. Due to its simple formulation and superior performance, 2DPCA has been
successfully applied in various fields such as image retrieval [14,15], fault detection [16], iris
recognition [17], target recognition based on synthetic aperture radar images [18], bearing
fault diagnosis [19], brain tumor diagnosis [20], etc.

Despite having many advantages, 2DPCA treats the rows and columns of images
unequally, thus lacking symmetry in its theory. Specifically, to extract features from an
image by 2DPCA, rows rather than columns of the image are projected onto the principal
components. In order to project the other direction, i.e., columns of the image, the alterna-
tive 2DPCA (A2DPCA) [21] was proposed. Then, it is natural to combine the two kinds of
unilateral 2DPCA. Following this idea, (ZD)ZPCA [21], generalized 2DPCA (G2DPCA) [22]
and sequential row—column 2DPCA (RC2DPCA) [23] were proposed in order to fuse the
bilateral information of images. (2D)?PCA calculates bilateral eigenvectors by directly
taking the projection matrices from 2DPCA and A2DPCA. Generalized 2DPCA calculates
bilateral eigenvectors by iteratively solving a minimization problem. RC2DPCA calculates
bilateral eigenvectors in two stages, i.e., first performing 2DPCA in the row direction on the
original data and then performing A2DPCA in the column direction on the projected results
of the first stage. All of these algorithms project an image onto the two lateral eigenvectors
simultaneously in order to compute the final projection results.

In this paper, we propose a novel bilateral 2DPCA by fusing 2DPCA and A2DPCA in a
direct fashion, called Direct Bilateral 2DPCA (DB2DPCA). Unlike the previously proposed
bilateral 2DPCA algorithms, we concatenate the projection results of 2DPCA and A2DPCA
together for projection, and we take the average reconstruction results of 2DPCA and
A2DPCA for reconstruction. The proposed method has three advantages. First, it has a
symmetric property in the sense that it treats the rows and columns of images equally.
Second, for projection, it concatenates the bilateral information rather than mixing them
together. Therefore, it extracts more features than lateral algorithms or other previously
proposed bilateral algorithms. For reconstruction, it simply averages two lateral results,
thus being more interpretable than other bilateral algorithms. Third, it is rooted in 2DPCA
and A2DPCA; so, the computational time to extract features by DB2DPCA will be no longer
than those of other bilateral algorithms.

The contributions of our work are summarized in the following points:

1. A novel, bilateral 2DPCA—i.e., DB2DPCA—is proposed by fusing two unilateral
2DPCA algorithms. We concatenate the projection results of 2DPCA and A2DPCA
together for projection and take the average reconstruction results of 2DPCA and
A2DPCA for reconstruction. By this way, we can extract more features from images
and obtain a more interpretable reconstruction model.

2. We evaluate DB2DPCA in the tasks of image recognition and reconstruction on four
widely used benchmark databases. The experimental results demonstrate that the
proposed algorithm outperforms competing algorithms.

3.  Additional experiments on reordered and reshaped images further demonstrate the
superiority of DB2DPCA in image recognition.

The remainder of this paper is organized as follows. Section 2 reviews the recent
advances of 2DPCA. Section 3 describes the competing algorithms and the proposed
DB2DPCA algorithm. Section 4 conducts experiments of image reconstruction and classifi-
cation to evaluate the performance of DB2DPCA. Section 5 shows the experimental results.
Section 6 provides discussions on this study and related works. Finally, Section 7 presents
the conclusions.

2. Related Works

Besides the unilateral and bilateral 2DPCA-based algorithms mentioned above, there
are many other advances of 2DPCA, as discussed below.

To extract more structure information from images, Titijaroonroj et al. [24] and Sa-
hoo et al. [25,26] made improvements on the traditional 2DPCA by utilizing it on subimages
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of the original image. The subimages are generated by sliding a window on the original
image or by partitioning the original image into blocks. By this way, they can extract
more structure information from images. However, the procedures of these algorithms are
complex and their performances are largely determined by how the image is partitioned.

Traditional 2DPCA utilizes ¢»-norm as the distance metric, which aggravates the effect
of outliers on the objective function. On the other hand, the features extracted by 2DPCA
are dense, which means that 2DPCA cannot automatically eliminate irrelevant features.
To introduce robustness and sparsity into traditional 2DPCA, several algorithms have been
proposed. Li et al. [27] and Wang et al. [28] replaced ¢;-norm with £;-norm on the objective
function of 2DPCA to improve its robustness, and proposed the greedy 2DPCA-L1 and
the non-greedy 2DPCA-L1. Yang et al. [29] further replaced /;-norm with transformed
f1-norm, which is expected to be more robust, and proposed the 2DPCA-T/;. Wang and
Wang [30] imposed ¢1-norm both on the objective function and the constraint of 2DPCA for
simultaneously robust and sparse modeling, and proposed the 2DPCAL1-S. Considering
that replacing #>-norm with ¢;-norm brings many benefits to the related algorithms, it
is worthwhile to replace the two norms by an arbitrary norm, i.e., £,-norm, to exploit
more possibilities. Based on this idea, Wang [31] imposed /,-norm both on the objective
function and the constraint of 2DPCA, and proposed the generalized 2DPCA with £,-norm
(G2DPCA-Lp), further enhancing its robustness and sparseness.

Rotational invariance is another desired property of 2DPCA-based algorithm which
can be introduced by ¢; ;-norm or F-norm. /;1-norm is a rotational invariant ¢;-norm,
hence the name R;-norm [32,33]. Gao et al. [34] introduced R;-norm into 2DPCA and
proposed the R1-2DPCA. Li et al. [35] replaced square F-norm with F-norm in 2DPCA
and proposed the F-2DPCA. Gao et al. [36] minimized the ratio of reconstruction error to
the projected variances that are measured with F-norm, and proposed the Angle-2DPCA.
Wang and Li [37] minimized the product of reconstruction error and projected variance
that are measured with F-norm and proposed the Area-2DPCA. Wang et al. [38] max-
imized the ratio of projected variance to original data that are measured with F-norm
and proposed the Cos-2DPCA. Bi et al. [39] maximized the ratio of projected variance to
original data that are measured with Rj-norm and considered the optimal mean in data
centralization, proposing the robust optimal mean cosine angle 2DPCA (ROMCA-2DPCA).
Razzak et al. [40] introduced 2D outliers-robust PCA (ORPCA) by relaxing the orthogonal
constraints and penalizing the regression coefficient. Inspired by extending ¢,-norm and
¢1-norm to £,-norm, the /5 ;-norm and F-norm were extended to arbitrary powers corre-
spondingly. By extending ¢, ;-norm to ¢, ,-norm, Mi et al. [41] proposed the ¢, ,-2DPCA,
Zhou et al. [42] proposed the generalized centered 2DPCA (GC-2DPCA). By extending
F-norm to Fy-norm, Kuang et al. [43] proposed the F,-2DPCA. Following the two-stage
idea of RC2DPCA [23], Zhou et al. [44] proposed the bilateral Angle-2DPCA (BA2DPCA),
Bi et al. [45] proposed the {5 ,-norm sequential bilateral 2DPCA (/3 ,-SB-2DPCA).

To directly address the three color channels of an image, color 2DPCA-based algo-
rithms were proposed. Xiang et al. [46] used a row vector to represent the color channel and
proposed the color-2DPCA (C-2DPCA). Jia et al. [47] used a quaternion with zero real part
to represent the color channel and proposed the 2D quaternion PCA (2D-QPCA). Xiao and
Zhou [48] proposed a novel quaternion ridge regression model for 2D-QPCA and proposed
the QRR-2D-QPCA. Wang et al. [49] replaced square F-norm with F-norm in 2D-QPCA and
proposed the F-2D-QPCA. Jia et al. [50] replaced ¢>-norm with £,-norm in 2D-QPCA and
proposed the generalized 2D-QPCA (G-2D-QPCA). Zhao et al. [51] introduced /,-norm to
2D-QPCA and proposed the relaxed 2DPCA (R-2DPCA).

Besides those mentioned above, Zhang et al. [52] replaced the F-norm with nuclear-
norm in traditional 2DPCA and generalized 2DPCA [22], proposing the nuclear-norm-
based 2DPCA (N-2DPCA) and the nuclear-norm-based bilateral 2DPCA (NB-2DPCA).
Zhang et al. [53] proposed a computationally efficient Riemannian proximal stochastic gradi-
ent descent algorithm (RPSGD) to solve sparse 2DPCA on the Stiefel manifold. Li et al. [54]
introduced the human learning mechanism to 2DPCA and proposed the self-paced 2DPCA
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(SP2DPCA). Wang et al. [55] applied the Lanczos algorithm to speed up traditional 2DPCA.
Further, 2DPCA was employed to design novel neural networks such as 2DPCA-Net [56]
and L1-2DPCA-Net [57].

In summary, recent advances of 2DPCA mainly focus on partitioning images into
subregions to extract more structural information, introducing robustness and sparsity by
£1-norm or /,-norm, introducing rotational invariance by ¢, 1-norm or F-norm, processing
color images directly under the quaternion framework, designing deep learning models,
etc., as shown in Table 1. Note that some algorithms in this table incorporate multiple ideas
but we still classify each of them into a single category for simplicity. For example, ¢, ,-SB-
2DPCA [45] incorporates the arbitrary power of ¢ ;-norm and the sequential bilateral idea
from RC2DPCA [23].

Table 1. Recent advances of 2DPCA.

Category Bibliography Algorithm
Bilateral algorithms Zhang et al. [21] (2D)?PCA
Kong et al. [22] Generalized 2DPCA

Yang et al. [23] RC2DPCA

Subimages Titijaroonroj et al. [24] RCM-2DPCA
Sahoo et al. [25] ESIMPCA, EFLPCA

Sahoo et al. [26] Bi-ESIMPCA, Bi-EFLPCA

Robust and sparse modelling Lietal. [27] 2DPCA-L1
Wang et al. [28] non-greedy 2DPCA-L1

Yang et al. [29] 2DPCA-T#;

Wang and Wang [30] 2DPCAL1-S

Wang [31] G2DPCA

Rotational invariance Gao et al. [34] R1-2DPCA
Li et al. [35] F-2DPCA

Gao et al. [36] Angle-2DPCA

Wang and Li [37] Area-2DPCA

Wang et al. [38] Cos-2DPCA

Bi et al. [39] ROMCA-2DPCA

Razzak et al. [40] ORPCA

Mi et al. [41] £5,,-2DPCA

Zhou et al. [42] GC-2DPCA

Kuang et al. [43] F,-2DPCA

Zhou et al. [44] BA2DPCA

Bi et al. [45] £,,-SB-2DPCA

Color image processing Xiang et al. [46] C-2DPCA
Jia et al. [47] 2D-QPCA

Xiao and Zhou [48] QRR-2D-QPCA

Wang et al. [49] F-2D-QPCA

Jia et al. [50] G-2D-QPCA

Zhao et al. [51] R-2DPCA

Nuclear norm
Stiefel manifold

Zhang et al. [52]
Zhang et al. [53]

N-2DPCA, NB-2DPCA
RPSGD-52DPCA

Human learning mechanism Li et al. [54] SP2DPCA
Lanczos algorithm Wang et al. [55] Lanczos-2DPCA
Deep learning model Yu and Wu [56] 2DPCA-Net

Lietal. [57]

L1-2DPCA-Net

3. Methodology

Few of the algorithms in Table 1 pay attention to fusing bilateral information of images,
which is the focus of this paper. In the following paper, lowercase letters denote scalars,
boldface lowercase letters denote vectors and boldface uppercase letters denote matrices.
We first review related algorithms, i.e., PCA, 2DPCA, A2DPCA and (2D)2PCA, in order.
Then, the proposed DB2DPCA algorithm is described and its relationships with the four
related algorithms are discussed.
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3.1. PCA

Suppose there are n training image samples Xy, Xy, ..., X;, where X; € RI<w,
i = 1,2,..,n;, and h and w are the image height and image width, respectively. Let
d = h x w. When applying PCA for image analysis, 2D image matrices should be re-
shaped into corresponding 1D image vectors prior [11], generating y1, y2, ..., y», where
yi € RAx1 j = 1,2,..,n. PCA [9,10] aims at finding a projection matrix W € Rdxm by
maximizing the total scatter of projected image samples as follows:

trwT —¥)(yi— )W 1
whax tr n_llg(yz Y (yi—y)'W, )

where m is the feature number, I,, € R™*™ denotes an identity matrix, tr(-) denotes
the trace of a matrix and y = % Y., yi denotes the mean image vector. By eigenvalue
decomposition of the covariance matrix [9,10]

(N
S=-— ) yi-Vyi—-y) R, @
i=1

1

we can obtain m eigenvalues A1, Ay, ..., Ay and corresponding eigenvectors wy, wa, ..., Wy;.
Without loss of generality, we assume that the eigenvalues are sorted in descending order.
The eigenvectors are the principal components and they make up the projection matrix W.
The percentage of total variance [10] explained by these principal components is

Lol ©
i=1""1
For a test image sample y € R?*1, its feature matrix is
(¥ -9) W eRP™ )
The reconstruction result of sample y is
WW(y —y) +y € ™. (5)

It can be further reshaped from a vector into a & X w image matrix in order to generate
the reconstruction image. Eigenvalue decomposition of the covariance matrix S is difficult
since the size of S is huge.

3.2. 2DPCA

In contrast to traditional PCA, 2DPCA [13] depends on 2D image matrices rather than
1D image vectors. Therefore, the image matrices do not need to be reshaped into vectors
prior. Instead, an image covariance matrix can be constructed based on the image matrices
in a direct manner. To be specific, 2DPCA [13] aims at finding a projection matrix U € R®**

n
max U7 X — X)T(x; = X)U, 6
T n_lg(z ) (X —X) (6)

where k is the feature number and X = % Y. 1 X denotes the mean image. The projection
matrix U is calculated by eigen-decomposition of the image covariance matrix

7 L 06X %) e B @)
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and then selecting the eigenvectors corresponding to the k largest eigenvalues [13]. The per-
centage of total variance explained by these eigenvectors can be calculated similar to
Equation (3). For a test image sample X € R"*%, its feature matrix is

(X —X)U e R"K, 8)
The reconstruction image of sample X is
(X -X)uuT + X € R™®, )

The original 2DPCA only projects the rows of images onto the projection matrix,
as shown in Equations (6) and (8). Therefore, 2DPCA lacks symmetry in the sense that it
treats the rows and columns of images unequally.

3.3. Alternative 2DPCA

Since 2DPCA only deals with one direction of images, it is necessary to propose an algo-
rithm to deal with the other direction of images. This idea leads to A2DPCA [21]. A2DPCA
aims to find a projection matrix V € R"! by solving the following
optimization problem:

1
max V7T

vIv=l, n—1 /

’Y&f@mriﬂv (10)
=1

where [ is the feature number. Similarly, V could be calculated by eigen-decomposition of
the image covariance matrix

1

n—1:¢
1

7Ym—ixm—iﬂeR“h (11)
=1

and then selecting the eigenvectors corresponding to the / largest eigenvalues [21]. The per-
centage of total variance explained by these eigenvectors can be calculated likewise. For a
test image sample X, its feature matrix is

vI(X —X) e R*®, (12)
The reconstruction image of sample X is
VVT(X = X) +X € R"*®, (13)

A2DPCA only projects the columns of images onto the projection matrix. It also lacks
symmetry, the same as 2DPCA.

3.4. (2D)?*PCA

(2D)?PCA [21], G2DPCA [22] and RC2DPCA [23] are three representatives of existing
bilateral 2DPCA algorithms. All of them project an image onto the two lateral eigenvectors
simultaneously in order to calculate the feature matrix. Their only difference lies in the way
to calculate bilateral eigenvectors. Since (2D)?PCA shares the same eigenvectors with the
two unilateral 2D algorithms but the eigenvectors of G2ZDPCA and RC2DPCA are quite
different, we focus on (2D)?PCA in our paper. By this way, we can make a fair comparison
between this bilateral 2D algorithm and the two unilateral 2D algorithms.

To make the most of bilateral information, (2D)?PCA [21] directly takes the projection
matrices U and V from 2DPCA and A2DPCA, respectively. For a test image sample X, its
feature matrix projected by (2D)?PCA is

V(X - X)U € R, (14)
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The reconstruction image of sample X reconstructed by (2D)?PCA is
vvI(X - X)UUT +X e R, (15)

(2D)?PCA overcomes the limitations of the two unilateral 2D algorithms by projecting
the rows and columns of images onto two lateral eigenvectors simultaneously. Zhang and
Zhou [21] demonstrated that compared with the two unilateral 2D algorithms, (2D)*PCA
achieves the same classification accuracies on the Olivetti Research Laboratory (ORL)
face database and achieves higher classification accuracies on a partial Face Recognition
Technology (FERET) database. However, its formulation mixes bilateral information from
images together and may lead to information loss. The other two unilateral algorithms,
i.e., G2DPCA [22] and RC2DPCA [23], have the same problem.

3.5. Direct Bilateral 2DPCA

In this paper, we propose a novel, bilateral 2DPCA called DB2DPCA by fusing
the two unilateral algorithms, i.e., 2DPCA and A2DPCA, in a direct fashion—that is,
DB2DPCA takes the projection matrices U and V from the two unilateral algorithms, re-
spectively, the same as (2D)?PCA. The difference between the two bilateral algorithms
is that (2D)?PCA projects an image onto two lateral projection matrices simultaneously
while DB2DPCA projects an image onto a single lateral projection matrix each time and
then combines the results from two laterals together.

For a test image sample X, its feature matrix by DB2DPCA is calculated by concatenat-
ing the feature matrices of 2DPCA and A2DPCA as

[vec((f( - Y)U);vec (VT()~( - Y))} € RUxktixw)x1) (16)
where vec(-) means to transform a matrix into a column vector by taking elements from

the matrix in a column-wise manner. Figure 1 shows an illustration of this operation that
transforms a matrix A into a column vector b, i.e., b = vec(A).

a,
- . a,
a, dap
A= > b= ds
= dy Ay =
4 4 a,
| d3y 32
d,,
K

Figure 1. An illustration of transforming a matrix into a column vector by taking elements from the
matrix in a column-wise manner.

The reconstruction image of sample X by DB2DPCA is

(X -Xuu” +X] + [V X - X) +X] e RP (17)
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Here, we use arithmetic mean to combine the reconstruction results of the two lateral
2DPCAs. However, geometric mean or other kinds of means can also be tried. In general,
for two positive scalars a and b, the generalized mean [58] is defined as

oy}
(#42).

when r is a real number. Two special cases of generalized means are the arithmetic mean when
r = 1 and the geometric mean when r = 0. In this paper, we focus onr = 1, i.e., the arithmetic
mean, in consideration of computational complexity and reconstruction performance.

The algorithm procedure of DB2DPCA is shown in Algorithm 1. First, we calculate
projection matrices U and V by solving the optimization problems of 2DPCA and A2DPCA,
i.e., Equations (6) and (10), respectively. Then, we calculate the feature matrix of a test image
sample by Equation (16) which concatenates the feature matrices of the two unilateral 2D
algorithms. The extracted features can be used to evaluate the performance of DB2DPCA in
image classification. And we calculate the reconstruction image of a test image sample by
Equation (17), which averages the reconstruction results of the two unilateral 2D algorithms.
The obtained reconstruction image can be used to evaluate the performance of DB2DPCA
in image reconstruction.

Algorithm 1: Algorithm procedure of DB2DPCA

Input: training image samples X;, i = 1,2, ..., n; feature numbers k and .
Output: the feature matrix and the reconstruction image.

1. Calculate projection matrix U by solving Equation (6).

2. Calculate projection matrix V by solving Equation (10).

3. Calculate the feature matrix by Equation (16).

4. Calculate the reconstruction image by Equation (17).

By concatenating the feature matrices of 2DPCA and A2DPCA, DB2DPCA extracts
more features that are useful for image recognition. By averaging the reconstruction results
of 2DPCA and A2DPCA, DB2DPCA strengthens their common parts and weakens their
differences; thus, it is expected to obtain better performance in image reconstruction.

3.6. Relationships between DB2DPCA and Other Algorithms

An image is essentially a sample containing d(=h x w) features after neglecting its 2D
structure. To investigate the relationships between DB2DPCA and related algorithms, we
reshape images into p x q(>d) matrices by the same rule. Three extreme conditions are
stated below.

(1) When p = 1 and g = d, we can obtain that U equals the projection matrix of
conventional PCA and V = 1. In this case, the feature matrix for a test sample Y is
calculated by concatenating two parts, wherein one part is the feature matrix calculated by
PCA and the other part is the result of subtracting the mean image from the sample image.
The reconstruction image of Y is calculated by averaging the reconstruction image of PCA
and the sample image.

(2) When p = h, g = w and the pixels in images are not reordered, the projection and
reconstruction results of DB2DPCA are just integrating the results of 2DPCA and A2DPCA,
as shown in Equations (16) and (17), respectively.

(3) When p = d and q = 1, we can obtain that U = 1, and V equals the projection
matrix of conventional PCA. In this case, the projection and reconstruction results of
DB2DPCA are the same as the results in case of p = 1 and g = d. This shows the symmetry
property of DB2DPCA.

In general, p could be an arbitrary integer satisfying 1 < p < d. Thus, g = [d/p]—
namely, g—is the smallest integer no less than d/p. The symmetry of DB2DPCA indicates
that DB2DPCA on images of size p x q approximates DB2DPCA on images of size q X p.
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By taking this symmetric property into consideration, we only need to change p in the
range of [1,/d] in order to investigate its effect on the performance of DB2DPCA.

Since p x q > d, there may exist blank pixels that should be filled in a reshaped image.
Some potential choices are randomly picking some pixels from the original image to fill the
blanks, calculating the mean value of all pixels in the original image to fill the blanks and
filling the blanks with the nearest non-blank pixels. If only the cases when d is divisible by
p are considered, we can avoid the noises introduced by these operations.

4. Experiments

In order to evaluate DB2DPCA, we compare its performances in image reconstruction
and recognition with four related algorithms, i.e., PCA, 2DPCA, A2DPCA and (2D)2PCA,
on four image databases. To further exploit the properties of DB2DPCA, we additionally
conduct image recognition experiments when the pixels in images are reordered by certain
rules and when images are reshaped to different sizes.

4.1. Databases

Here, we briefly introduce the four databases used in the experiments. These are the
Extended Yale B face database [59], AR face database [60], Binary Alphadigits database
and PolyU 3D palmprint database [61]. These databases are used to address different
kinds of recognition problems, i.e., face recognition in various lighting conditions, face
recognition with occlusions, handwritten digits and letters classification, and palmprint
recognition. In this way, we could make a thorough comparison between the proposed
DB2DPCA and related algorithms.

The Extended Yale B face database includes 2414 cropped face images from 38 individ-
uals, with about 64 images per individual. There exist 18 broken images in this database.
The images were captured under various lighting conditions. The image size is 192 by
168. For computational convenience, the images are resized into 48 by 42. This database
can be downloaded from http:/ /vision.ucsd.edu/ ~leekc/ExtYaleDatabase /ExtYaleB.html
(accessed on 18 October 2016).

The AR face database contains 3120 images of 120 subjects, with 26 images per sub-
ject. The images were taken with different facial expressions and illuminations, and some
images were occluded with black sunglasses or scarves. Here, we use a cropped ver-
sion of this database where the image size is 50 by 40. This database can be down-
loaded from http://www?2.ece.ohio-state.edu/~aleix/ ARdatabase.html (accessed on 18
October 2016).

The Binary Alphadigits database consists of 1404 binary images from 36 classes,
with 39 images per class. The images are handwritten digits and letters. Specifically, this
database contains digits “0” through “9” and capital letters “A” through “Z”. The image
size is 20 by 16. This database can be downloaded from http://www.cs.nyu.edu/~roweis/
data.html (accessed on 30 September 2018).

The PolyU 3D palmprint database contains 8000 images collected from 400 different
palms, with 20 images per palm. Each image contains a 3D region of interest (ROI) and
the corresponding 2D ROL In our experiments, only the 2D ROIs are used. The image
size is 128 by 128. For computational convenience, the images are resized into 32 by 32.
This database can be downloaded from http://www4.comp.polyu.edu.hk/~biometrics/
(accessed on 9 September 2018).

Table 2 shows the statistics of the four databases. Figure 2 shows some sample images.


http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
http://www4.comp.polyu.edu.hk/~biometrics/
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Table 2. The statistics of the four databases used in the experiments.

No. of Images

Database Image Size No. of Images No. of Classes
per Class

Extended Yale B face 48 x 42 2414 64 38

AR face 50 x 40 3120 26 120

Binary Alphadigits 20 x 16 1404 39 36

PolyU 3D palmprint 32 %32 8000 20 400

W 4
ks

(9 (d)

Figure 2. (a) Twelve images of the first subject in the Extended Yale B face database. (b) The first
twelve images of the first subject in the AR face database. (c) The first image from twelve different
classes in the Binary Alphadigits database. (d) The first image from twelve different classes in the
PolyU 3D palmprint database.

4.2. Image Reconstruction

To quantify the comparison of the five algorithms in image reconstruction, we calculate
reconstruction errors of these algorithms. Suppose Z; € R"*% is the reconstruction image
of X; by one of the five algorithms, i = 1,2, ..., n. Then, the average reconstruction error is

1 n
=Y IXi = Zil|F, (19)
nio

where ||-||r denotes the Frobenius norm. The reconstruction result of PCA is shown in
Equation (5). It should be further reshaped into a & X w matrix in order to obtain the
corresponding reconstruction image Z;. For the four 2D algorithms, i.e., 2DPCA, A2DPCA,
(2D)?PCA and DB2DPCA, their definitions of Z; are shown in Equations (9), (13), (15) and
(17), respectively. Note that for the two bilateral algorithms, the same number of features
are extracted from both laterals.

4.3. Image Recognition

To compare the recognition performance of DB2DPCA with the aforementioned four
algorithms, we employ these algorithms to extract features and then apply a specific clas-
sifier on the extracted features to perform classification. Since recognition performance
is largely determined by the classifier, we try three different classifiers in order to high-
light the effects of the feature extraction methods. The classifiers chosen are the Nearest
Neighbor (NN) classifier, linear Support Vector Machine (SVM) [62,63] and Collaborative
Representation Classifier (CRC) [64,65]. These classifiers are widely employed to evaluate
the recognition performance of unsupervised learning algorithms.

Ten-fold cross validation is adopted for performance evaluation—that is, all images
are randomly separated into ten folds, wherein nine folds are for training and the remaining
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one fold is for testing. This procedure is repeated ten times and the average classification
accuracy is calculated.

For PolyU 3D palmprint database, we perform classification on images from the first
100 subjects to reduce the computational time. For the other three databases, all images
are used.

For the two bilateral algorithms, we extract the same number of features from both
laterals. To implement linear SVM, we use LibSVM [62,63] with default parameters. As rec-
ommended in [62], prior to classification by linear SVM, the training and testing data are
linearly scaled. Specifically, each attribute in training data is scaled to [0,1]; then, the same
parameters are applied to the testing data. For CRC, the regularization parameter A is set
to be 0.001 x 1/700 as in [64], where 1 is the number of training samples.

4.4. The Effect of Reordering Pixels in Images

All faces, handwritten characters and palmprint images carry semantic information
for humans but not for machines. When analyzed by statistical algorithms, an image is
essentially a stack of data. Since 2D algorithms treat an image as a whole without trans-
forming it into a long vector, it is natural to ask whether the image structure information
affects the classification performances of the above algorithms. To this end, we reorder
the pixels in all images of a database by the same rule and then perform classification as
described above.

Figure 3 shows sample images from the Extended Yale B face database and six variants
generated by reordering the pixels in the original images. For clarity, the original image and
its six variants are called variants 0 to 6, respectively. The variants 1 to 4 are generated by
rotating the original images by 180 degrees clockwise, flipping the original images upside
down, flipping the original images in the left/right direction and exchanging the upper
half and lower half of the original images. The remaining two variants are generated by
randomly reordering pixels of the original images. These reordering rules are representative.
Note that when a reordering rule is chosen, it is applied to the whole database to keep the
image structure consistent across all images. Then, we conduct image classification tasks
on the reordered databases in order to examine the effect of reordering pixels in images.

Figure 3. Sample images from the Extended Yale B face database and their variants. The first column

shows the sample images and the remaining columns show their variants.

4.5. The Effect of Reshaping Images

As discussed in Section 3.6, DB2DPCA is closely related to other PCA algorithms
under some extreme conditions when images are reshaped. Therefore, we proceed to test
the effect of reshaping images on classification performances. When an image is reshaped,
its structure information is partially lost. In order to preserve the original image structure
as much as possible, pixels in the image matrices are stacked column-wise as in Figure 1.
By changing the image height p, a series of new databases can be generated. We only
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consider the cases when the image height p satisfies 1 < p < /d and d is divisible by p.
In this way, we can avoid introducing noises in the reshaping procedure.

Since a p X g image can be reshaped into a i x w image in many different ways,
it is necessary to consider the mixed effects of reordering and reshaping. To this end,
we first generate two randomly reordered databases as in Figure 3 and then reshape the
reordered databases by stacking pixels column-wise as in Figure 1 to generate two series of
new databases. The original database and its reordered and reshaped variants are called
variants 0-2 in order. Note that the same reordering and reshaping rule should be applied to
all images in the original database in order to keep the image structure consistent. Figure 4
shows the reordered and reshaped images of a sample image from the Extended Yale B face
database. The image heights in the eight columns of the figure are 28, 32, 36, 42, 48, 56, 63
and 72 in order.

“

Figure 4. The reordered and reshaped images of a sample image from the Extended Yale B face
database. The original image is shown in the fifth column of the first row. The other two images
in the fifth column are two randomly reordered variants of this image. In each row, the remaining
images are generated by reshaping the fifth image of that row.

For illustration, we focus on the Extended Yale B face database with CRC as the
classifier again. Since there are three series of reordered and reshaped databases, we
fix the feature number k in the each algorithm as in [21]. Specifically, we choose the
smallest k satisfying that the percentage of total variance explained by the first k principal
components is larger than a preset threshold 0. The threshold 0 is set to 0.5, 0.6, 0.7 and
0.8 in the experiments. For the two bilateral algorithms, i.e., (ZD)ZPCA and DB2DPCA,
we choose k in the same manner for two laterals separately. Then, we conduct image
classification tasks on the reordered and reshaped databases in order to examine the effect
of reshaping images.

5. Results
5.1. The Percentage of Total Variance Explained

Before proceeding to the experimental results of image recognition and reconstruction,
it is meaningful to examine the percentages of total variance explained by features of
different algorithms. This can provides valuable insights on the differences between the
three basic types of PCA transformations, i.e., PCA, 2DPCA and A2DPCA. The principal
components of two bilateral 2D algorithms, i.e., (2D)?PCA and DB2DPCA, are directly
inherited from the two unilateral 2D algorithms. Thus, it is not necessary to analyze
them separately.

Table 3 shows the maximal number of principal components that can be extracted
by different algorithms. Since there are plenty of samples in the four databases, as shown
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in Table 2, the maximal number of principal components that can be extracted by PCA,
2DPCA and A2DPCA equals the image size, image width and image height, respectively.

Table 3. The maximal number of principal components extracted by different algorithms.

Database PCA 2DPCA A2DPCA
Extended Yale B face 2016 42 48
AR face 2000 40 50
Binary Alphadigits 320 16 20
PolyU 3D palmprint 1024 32 32

Figure 5 shows the percentages of total variance explained by the first thirty principal
components of the three algorithms. For the Binary Alphadigits database, the results
corresponding to the maximal number of principal components are calculated. Detailed
results when the number of principal components is smaller than seven are listed in Table 4.
The results of the two unilateral 2D algorithms are exactly the same, and both are much
larger than the corresponding results of PCA. For the two unilateral 2D algorithms, the first
thirty principal components can explain most of the total variance. For PCA, the first
thirty principal components can explain 70% to 97% of the total variance, depending on the
database. The percentages of total variance explained indicate how much information is
extracted from a specific database, thus greatly affecting the performances of the feature
extraction algorithms in image reconstruction and recognition.
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Figure 5. The percentages of total variance explained by the first thirty principal components.
(a) Extended Yale B face database. (b) AR face database. (c) Binary Alphadigits database. (d) PolyU
3D palmprint databse.
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Table 4. The percentages of total variance explained by the first six principal components.
. Number of Principal Components
Database Algorithm 1 2 3 4 5 6
PCA 0.3674 0.7206 0.7705 0.7993 0.8144 0.8288
Extended Yale B face 2DPCA 0.7734 0.8813 0.9367 0.9560 0.9708 0.9840

A2DPCA 07734 08813 09367 09560 09708  0.9840
PCA 02545 03727 04688 05393 05885  0.6242

AR face 2DPCA 05638 07618 08535  0.8964 09175  0.9320
A2DPCA 05638 07618  0.8535  0.8964 09175  0.9320

PCA 00699 01378 01917 02426 02909  0.3298

Binary Alphadigits 2DPCA 03327 05488 06705 07645 08451 09119
A2DPCA 03327 05488 06705 07645 08451 09119

PCA 08622 08864 09052 09175 09247  0.9298

PolyU 3D palmprint 2DPCA 09563 09788 09849 09905 09932  0.9950
A2DPCA 09563 09788 09849 09905 09932  0.9950

5.2. Image Reconstruction

Figure 6 shows the reconstructed images of the five algorithms, wherein the first ten
feature vectors are used for image reconstruction. Note that for the two bilateral algorithms,
the first ten projection vectors from both laterals are used. The reconstructed images of PCA
and (2D)?PCA are very obscure. The reconstructed images of 2DPCA and A2DPCA have
vertical stripes and horizontal stripes, respectively. The reconstructed images of DB2DPCA
highly approximate the original images. Obviously, the proposed algorithm outperforms
the other four algorithms in image reconstruction.

Figure 6. The reconstructed images of the five algorithms. In each subfigure, the first column shows
the original images while the remaining columns show the reconstructed images of PCA, 2DPCA,
A2DPCA, (2D)?*PCA and DB2DPCA, respectively. (a) Extended Yale B face database. (b) AR face
database. (c¢) Binary Alphadigits database. (d) PolyU 3D palmprint databse.

Figure 7 shows the average reconstruction errors of the five algorithms with different
numbers of extracted features. For the two bilateral algorithms, we select the same number
of features for both laterals. By averaging the results in Figure 7 across different feature
numbers, we obtain Table 5. With the exception of Figure 7a, the average reconstruction
errors of PCA are the largest among the five algorithms, the average reconstruction errors
of DB2DPCA are the smallest and the results of the other three algorithms lie between those
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of PCA and DB2DPCA. These results again demonstrate that DB2DPCA outperforms the
other four algorithms in image reconstruction.

It is not surprising that the reconstructed images of PCA are very obscure and the aver-
age reconstruction errors of PCA are large. The maximal number of principal components
that can be extracted by PCA is much larger than those of the two unilateral algorithms,
as shown in Table 3, but only the first few feature vectors are used to generate the recon-
structed image or calculate the reconstruction errors. The percentages of total variance
explained by these feature vectors are relatively small, as shown in Figure 5 and Table 4,
and cannot be guaranteed to reconstruct the original image accurately. By comparison,
the total number of features that can be extracted by 2DPCA-based algorithms is small and
the percentage of total variance explained by the same number of feature vectors of these
algorithms is large. Therefore, 2DPCA-based algorithms perform much better than PCA
with the same number of feature vectors in image reconstruction.
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Figure 7. Average reconstruction errors of the five algorithms. (a) Extended Yale B face database.
(b) AR face database. (c) Binary Alphadigits database. (d) PolyU 3D palmprint databse.

Table 5. Average reconstruction errors of the five algorithms on four databases.

Database PCA  2DPCA  A2DPCA  (2D)2PCA  BD2DPCA
Extended Yale B face 952.2 894.4 676.2 594.5 385.8
AR face 1557.9 1056.9 1142.0 1021.2 708.1
Binary Alphadigits 6.9 4.2 4.7 4.6 3.1
PolyU 3D palmprint 199.7 111.0 112.9 97.9 66.2

The reconstructed images of 2DPCA and A2DPCA have vertical stripes and horizontal
stripes, respectively. The average reconstruction errors of the two unilateral algorithms
are much larger than those of DB2DPCA,; this is because 2DPCA only projects the rows of
images onto its projection matrix and A2DPCA only projects the columns of images onto
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its projection matrix. Since the noises in the reconstructed images of 2DPCA and A2DPCA
exist in different directions, these noises counteract with each other when they are averaged
by DB2DPCA. Therefore, DB2DPCA has better reconstruction performance than the two
unilateral 2D algorithms.

The reconstructed images of (2D)?>PCA are also obscure. The average reconstruction
errors of (2D)?PCA are much larger than those of DB2DPCA,; this is because (2D)*PCA
projects the rows and columns of images onto the corresponding projection matrices
simultaneously, thus mixing bilateral information together and leading to information loss.
DB2DPCA avoids this problem by averaging between the reconstruction results of the two
unilateral algorithms, thus strengthening their similarities and weakening their differences.
Therefore, DB2DPCA achieves better image reconstruction performance than (2D)?PCA.

The reconstructed images of DB2DPCA highly approximate the original images,
and the average reconstruction errors of DB2DPCA are the smallest among the five algo-
rithms. Therefore, we conclude that DB2DPCA outperforms the other four algorithms in
image reconstruction.

In recent years, /1-norm and £,-norm were introduced to improve 2DPCA algorithms,
proposing new algorithms such as 2DPCA-L1 [27], 2DPCAL1-S [30] and G2DPCA [31].
These algorithms are expected to be more robust to noise and obtain sparse results. How-
ever, they only slightly outperform 2DPCA in image reconstruction even with optimal
tuning parameters, especially when the feature number is small. Compared with these
algorithms, DB2DPCA is rather efficacious in image reconstruction.

5.3. Image Recognition

Figure 8 shows the average classification accuracies of the five algorithms followed
by three different classifiers on four databases. By averaging the results in Figure 8 across
different feature numbers, we obtain Table 6. PCA underperforms compared with 2DPCA-
based algorithms in most cases. The reason is similar to that discussed in Section 5.2.
With the exceptions of Figure 8a,d,i, DB2DPCA obtains the highest classification accuracies
among the five algorithms.

Two exceptions where 2DPCA outperforms DB2DPCA exist in Figure 8a,d, in which
cases the classifier is chosen to be NN. The accuracies of NN in both cases are much lower
than corresponding results of SVM and CRC in Figure 8b,c,e,f where DB2DPCA outper-
forms 2DPCA. Therefore, we conclude that NN cannot make the most of the information
extracted by DB2DPCA in the two cases.

Comparing between the two bilateral 2D algorithms, DB2DPCA outperforms (2D)?PCA
in most cases. The only exception occurs on the Binary Alphadigits database in Figure 8i,
when CRC is applied as the classifier and the feature number is larger than four. The reason
might be that the image size of the Binary Alphadigits database is much smaller than the
other three databases. With the exception of Figure 8i, DB2DPCA greatly outperforms
(2D)?PCA in image recognition. It is also due to the fact that (2D)?PCA projects the rows
and columns of images onto the corresponding projection matrices simultaneously, thus
mixing bilateral information together and leading to information loss. On the other side,
DB2DPCA concatenates bilateral information directly and extracts more features that can
improve the image recognition performance.

The curves of the four 2D algorithms on the Binary Alphadigits database in Figure 8g—i
are different from the corresponding curves in other figures in that they do not monotoni-
cally increase with feature number; this is because the image size of the Binary Alphadigits
database (20 x 16) is much smaller than those of the other three databases. Since we
extract at most 16 features for this database, there exist redundant features when the feature
number is large. The redundant features deteriorate the classification performances. For the
other three databases, the maximal feature number is much smaller than the image size
of the databases; so, their classification accuracies tend to increase with feature number.
If we focus on the results when the feature number is small and no redundant features are
extracted, DB2DPCA has obvious advantages over competing algorithms.



Appl. Sci. 2022,12,12913

17 of 25

Since DB2DPCA can make the most of bilateral information from images, it is natural
that DB2DPCA generally outperforms the other four algorithms in image classification.

Based on the results in Table 6, it is straightforward to compare classification perfor-
mances among the three classifiers. CRC greatly outperforms the other two classifiers on
the Extended Yale B face database; SVM greatly outperforms the other two classifiers on
the AR face database; SVM slightly outperforms NN on the Binary Alphadigits database;
NN greatly outperforms the other two classifiers on the PolyU 3D palmprint database.

Therefore, no classifier has an absolute advantage over the others.
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Figure 8. The average classification accuracies on four databases by three different classifiers. The sub-
figures in the four rows are results of the Extended Yale B face database, AR face database, Binary
Alphadigits database and PolyU 3D palmprint database, respectively. The subfigures (a-1) in three
columns are results of NN, linear SVM and CRC, respectively. In each subfigure, there are five
accuracy curves corresponding to the five feature extraction algorithms, i.e., PCA, 2DPCA, A2DPCA,
(2D)?PCA and DB2DPCA.
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Table 6. The average classification accuracies on four databases by three different classifiers.
Database Classifier PCA 2DPCA A2DPCA (2D)?PCA DB2DPCA
NN 0.2716 0.6835 0.6111 0.5621 0.6515
Extended Yale B face SVM 0.4922 0.9306 0.8930 0.8171 0.9426
CRC 0.3316 0.9669 0.9524 0.8302 0.9669
NN 0.5459 0.8517 0.8236 0.7806 0.8378
AR face SVM 0.5892 0.9745 0.9588 0.8877 0.9870
CRC 0.4196 0.9531 0.9555 0.8655 0.9738
NN 0.5050 0.6724 0.6643 0.6318 0.6954
Binary Alphadigits SVM 0.4873 0.6947 0.6805 0.5931 0.7179
CRC 0.3226 0.5235 0.5089 0.5317 0.5422
NN 0.8411 0.9693 0.9677 0.9256 0.9739
PolyU 3D palmprint SVM 0.6123 0.9650 0.9567 0.8888 0.9707
CRC 0.3723 0.6949 0.7014 0.6316 0.7034

5.4. The Effect of Reordering Pixels in Images

For illustration of the effect of reordering pixels in images, we focus on the Extended
Yale B face database with CRC as the classifier. Similar experiments have been conducted
on the original database and the results are shown in Figure 8c. Therefore, in the cur-
rent experiment, we emphasize the effect of reordering pixels in images rather than the
comparison between different feature extraction algorithms.

Figure 9 shows the average classification accuracies on the Extended Yale B face
database and its six reordered variants. For illustration, only the results when the feature
number is smaller than 11 are displayed. As an example of the detailed results, Table 7
shows the accuracies when only the first two features are used to perform classification.
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Figure 9. The average classification accuracies on Extended Yale B face database and its six reordered
databases with CRC as the classifier. (a) PCA. (b) 2DPCA. (¢) A2DPCA. (d) (2D)?PCA. (e) DB2DPCA.

The accuracies of PCA are very close among the variants; this is due to the fact that
PCA does not incorporate 2D image structure during the feature extraction procedure.
For the other four algorithms, the results on variants 0—4 are very close to each other while
the results on variants 5-6 tend to be quite different; this is because variants 0—4 preserve
the original image structure but variants 5-6 only have random image structures. Therefore,
reordering pixels in images can affect the classification performances of the 2D algorithms.
In other words, the image structure information is incorporated in the feature extraction
procedure of the 2D algorithms.
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Table 7. The average classification accuracies on the Extended Yale B face database and its six
reordered databases with CRC as the classifier when only the first two features are used to per-
form classification.

Variant PCA 2DPCA A2DPCA (2D)2PCA DB2DPCA
0 0.0267 0.9013 0.8415 0.0336 0.9379
1 0.0264 0.9013 0.8431 0.0335 0.9394
2 0.0265 0.9018 0.8405 0.0338 0.9372
3 0.0264 0.9018 0.8405 0.0338 0.9372
4 0.0265 0.9018 0.8405 0.0338 0.9372
5 0.0265 0.9189 0.9051 0.0419 0.9607
6 0.0265 0.9260 0.9040 0.0562 0.9588

5.5. The Effect of Reshaping Images

Figure 10 shows the average classification accuracies with different image heights
and different thresholds 6 on the Extended Yale B face database and its reordered and
reshaped variants. Specifically, the three columns show the results corresponding to the
three series of modified databases, i.e., variants 0-2 in order, and the four rows show the
results corresponding to the four thresholds in order. The classifier is chosen to be CRC
for illustration. By averaging the results in Figure 10 across different image heights, we
obtain Table 8.

The experiments corresponding to the three columns in Figure 10 differ in the way of
reordering pixels in images. It again demonstrates that reordering pixels in images will
affect the classification performances of the four 2D algorithms. The results on variants 1-2
(column 2-3) are much better than the results on variant 0 (column 1). The reason might be
that the features extracted from the original images contain more redundant information
than the features extracted from the randomly reordered and reshaped images. In other
words, by randomly reordering the pixels in images and reshaping the image size, we can
extract more valuable information that can improve the classification performance.

In the first column of Figure 10, the accuracy of 2DPCA generally increases with image
height and the accuracy of A2DPCA generally decreases with image height. The reason
is that 2DPCA projects the rows of images onto its projection matrix while A2DPCA
projects the columns of images onto its projection matrix. As a result, the number of
features extracted by 2DPCA increases with image height and the number of features
extracted by A2DPCA decreases with image height. More features generally indicate
higher classification accuracies, especially when the percentage of total variance explained
by these features is small. Therefore, the accuracy of 2DPCA generally increases with image
height and the accuracy of A2DPCA generally decreases with image height in the first
column of Figure 10. This is not the case in the last two columns since the reordering and
reshaping effect dominates these results.

The accuracies of DB2DPCA are rather stable with different image heights in all cases
in Figure 10; this is because that DB2DPCA can extract features from both laterals of images.
In this way;, it inherits the advantages of 2DPCA and A2DPCA, and can achieve high
classification accuracies with different image heights. From Table 8, DB2DPCA greatly
outperforms competing algorithms except A2DPCA on all of the three variants. To be
specific, DB2DPCA is significantly better than A2DPCA on variant 0 and slightly worse
than A2DPCA on variants 1-2. The reason why DB2DPCA is slightly worse than A2DPCA
on variants 1-2 might be that the features extracted from the randomly reordered and
reshaped images by A2DPCA are sufficient for image classification, and extracting more
features by DB2DPCA introduces redundant information that deteriorates the classification
performances. Generally speaking, DB2DPCA achieves the best classification performances
among the five competing algorithms on the reordered and reshaped images.
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Figure 10. The average classification accuracies corresponding to four thresholds on the Extended
Yale B face database and its reordered and reshaped variants with CRC as the classifier. Four rows
correspond to results when the threshold 6 equals 0.5, 0.6, 0.7 and 0.8 in order. Three columns corre-
spond to results of variants 0-2 in order. In each subfigure (a-1), the five accuracy curves correspond
to the five feature extraction algorithms, i.e., PCA, 2DPCA, A2DPCA, (ZD)ZPCA and DB2DPCA.

The experiments corresponding to the four rows in Figure 10 differ in the preset 0
value. Generally speaking, the classification accuracies increase with increasing 6 value;
this is due to the fact that the number of extracted features increases when the percentage
of total variance explained by these features—i.e., the 8 value—increases. Having more
features leads to better classification performance, especially when the percentage of total
variance explained by these features is not large enough, e.g., smaller than 0.95. Therefore,
the classification accuracies increase with increasing 6 value.
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Table 8. The average classification accuracies corresponding to four thresholds on the Extended Yale
B face database and its reordered and reshaped variants with CRC as the classifier.

0 Variant PCA 2DPCA A2DPCA (2D)2PCA DB2DPCA
0 0.0268 0.5134 0.9003 0.0261 0.9436
0.5 1 0.0272 0.7254 0.9726 0.4727 0.9722
2 0.0272 0.7199 0.9736 0.4478 0.9732
0 0.0272 0.5133 0.9003 0.0260 0.9434
0.6 1 0.0272 0.7755 0.9724 0.6662 0.9709
2 0.0272 0.7694 0.9737 0.6510 0.9717
0 0.0266 0.5562 0.9008 0.0328 0.9498
0.7 1 0.0265 0.8090 0.9668 0.7635 0.9620
2 0.0263 0.8071 0.9666 0.7598 0.9625
0 0.0438 0.7561 0.9456 0.2027 0.9654
0.8 1 0.0438 0.8708 0.9576 0.8637 0.9510
2 0.0438 0.8698 0.9579 0.8608 0.9509

Figure 10 exhibits the classification performances of the four 2D algorithms only when
p < V/d. Based on symmetries of these algorithms, their classification performances when
p > V/d can be directly inferred. Let c be an arbitrary divisor of d; then, 2DPCA with p = ¢
approximates to A2DPCA with p = d/c, (2D)*PCA with p = c approximates to (2D)?PCA
with p = d/c, and DB2DPCA with p = ¢ approximates to DB2DPCA with p = d/c.
Consequently, we can further conclude that DB2PCA can achieve the best classification
performances among the five competing algorithms when the image height p is in the full
range of [1,4].

6. Discussion
6.1. Other Comparisons

Five algorithms, as listed in Table 9, are fully compared in the experiments. Consid-
ering that the mechanisms of PCA- and 2DPCA-based algorithms are quite different, as
discussed in Section 5.1, and that the unilateral algorithms only extract features from a
single lateral of images while the bilateral algorithms extract features from both laterals of
images, it is not very fair to compare the five feature extraction algorithms directly using
the same number of feature vectors. Strictly speaking, fair comparisons can be made only
between the two unilateral algorithms, or between the two bilateral algorithms.

Table 9. Five algorithms compared in the experiments.

Category Bibliography Algorithm

1D Turk and Pentland [11] PCA

Unilateral 2D Yang et al. [13] 2DPCA
Unilateral 2D Zhang and Zhou [21] A2DPCA
Bilateral 2D Zhang and Zhou [21] (2D)2PCA
Bilateral 2D Proposed DB2DPCA

By comparing between the two unilateral algorithms, 2DPCA generally outperforms
A2DPCA both in image reconstruction and recognition, as shown in Figures 7-9 and
Tables 5-7. However, A2DPCA greatly outperforms 2DPCA on the reshaped databases,
as shown in Figure 10 and Table 8. As we know, 2DPCA with p = ¢ approximates to
A2DPCA with p = d/c. The comparison of 2DPCA and A2DPCA is directly influenced
by the ratio of image height to image width. Since the image height is commonly larger
than the image width on the four databases, 2DPCA can extract more information than
A2DPCA with the same feature number. Therefore, 2DPCA generally performs better than
A2DPCA. However, in the reshaped databases, the image height might be much smaller
than the image width. In these cases, A2DPCA generally performs better than 2DPCA.
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When the image height equals the image width, the performances of 2DPCA and A2DPCA
are very close.

By comparing between the two bilateral algorithms, DB2DPCA significantly outper-
forms (2D)?PCA in all experiments. The main reason is that (2D)?PCA projects the rows
and columns of images onto two lateral eigenvectors simultaneously, thus mixing bilateral
information together and leading to information loss. In contrast, DB2DPCA projects the
rows and columns of images onto two lateral eigenvectors separately, thus extracting more
features from images and obtaining a more interpretable reconstruction model. Therefore,
DB2DPCA performs better than (2D)?PCA both in image reconstruction and recognition.

6.2. Limitations of DB2DPCA

Despite the above advantages, DB2DPCA has some limitations. First, since DB2DPCA
is rooted in 2DPCA and A2DPCA, to calculate the feature matrices or the reconstruction
images for DB2DPCA, we need to calculate the corresponding results for 2DPCA and
A2DPCA first, which is time consuming. However, other bilateral algorithms such as
(2D)2PCA also suffer from a similar problem. Second, since the original image height i
and image width w are usually much larger than the feature numbers k and I, the sizes of
the feature matrices of DB2DPCA tend to be much larger than those of the other three 2D
algorithms. This is a major disadvantage of DB2DPCA. There are three folds of meanings
to this disadvantage: (1) DB2DPCA needs a larger coefficient set for image representa-
tion than other 2D algorithms. (2) It will take longer to perform image classification by
DB2DPCA than by the other three 2D algorithms; therefore, the good classification perfor-
mances of DB2DPCA are obtained at the sacrifice of computational efforts. (3) There exist
redundancies by pooling bilateral information together. This may explain why DB2DPCA
underperforms compared with 2DPCA in face recognition in Figure 8a,d.

6.3. Future Directions

From a certain perspective, 2DPCA-based algorithms outperform PCA because they
preserve the image spatial structure by treating the images as 2D matrices rather than
reshaping them into 1D vectors. To further exploit the image spatial structure, we can
introduce a spatial structure regularization [66] into the 2DPCA-based algorithms. This is
expected to improve their performances in image analysis.

Most of the algorithms in Table 1 are built on traditional unilateral 2DPCA, and can be
improved by implementing the direct bilateral idea. Intuitively, this idea can make full use
of bilateral information of images for unilateral 2D feature extraction methods, unilateral 2D
manifold learning methods and their variants [67,68], thus improving their performances.

7. Conclusions

This paper proposes a novel bilateral 2DPCA algorithm named DB2DPCA for image
reconstruction and recognition, which fuses bilateral information of images in a direct
manner. For image recognition, the projection result of DB2DPCA is calculated by concate-
nating the projection results of two unilateral 2D algorithms, i.e., 2DPCA and A2DPCA.
Therefore, it can extract more features, which are useful for image recognition. For image
reconstruction, the reconstruction result of DB2DPCA is calculated by averaging the recon-
struction results of the two unilateral algorithms. In this way, it strengthens their common
parts and weakens their differences, thus reconstructing the original image accurately.
To evaluate the proposed algorithm, we compare it with four related feature extraction
algorithms in the tasks of image reconstruction and recognition. Four benchmark databases
are used and three different classifiers are tested in the experiments. As a result, DB2DPCA
generally outperforms competing algorithms both in image reconstruction and recognition.
Additional experiments on reordered and reshaped databases further demonstrate the
superiority of the proposed algorithm. In conclusion, DB2DPCA is an effective algorithm
for image reconstruction and recognition. The direct bilateral idea can be applied to other
unilateral 2D algorithms to improve their performances in image analysis.
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