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Abstract: Currently, the performance analysis of positioning algorithms and optimization of ground
station deployment schemes are predominantly based on pure TOA or TDOA measurement infor-
mation, and the relevant theoretical analysis is primarily the geometric analysis of optimal station
deployment for fixed point targets, with few placement ranges and amount of station constraints. In
practice, however, there are typically several measurements from TOA and TDOA stations, with a
focus on positioning precision within a certain region or line trajectory, as well as the necessity for
constraints on the ground station placement range. This paper proposes an efficient method for hy-
brid source localization using TOA and TDOA measurement information, establishes a mathematical
model for hybrid source localization based on TOA and TDOA measurement information, derives
and simulates the Gauss–Newton iterative localization algorithm with the least squares criterion,
and performs a theoretical analysis of the least squares error and CRLB boundary to improve the
accuracy of target localization in the aforementioned scenarios. Taking the average CRLB value of
target line trajectory positioning error as the objective function, the ground station placement scheme
of TOA- and TDOA-receiving sensors is optimized by utilizing a Genetic Algorithm with strong
global optimization capability under the constraints of station placement range and station quantities,
and a station placement geometry with better performance than typical station placement is obtained.
Meanwhile, we summarize the general placement principles for TOA and TDOA hybrid source
localization of target line trajectories.

Keywords: TOA; TDOA; hybrid source localization; least-square algorithm; Cramer Rao Low Bound
(CRLB); Genetic Algorithm (GA)

1. Introduction

The explosive growth of fifth-generation (5G) wireless communications will introduce
a large number of new technological scenarios with higher requirements for location-based
services [1], precise target localization techniques are becoming increasingly important in
the application of radar [2], sonar [3], and wireless sensor networks [4] in 5G. At the same
time, in order to improve the utility of mobile navigation scenarios, there is a need not
only to provide continuous and comprehensive area coverage for users and seamless and
stable indoor and outdoor LBS, but also to provide new ideas by organically synchronizing
multiple technologies through public mobile communication systems using convergent
positioning [4].

Methods of localization based on communication infrastructure are classified into
two types: direct and indirect localization. The essential premise of the direct localization
technique is to establish the maximum likelihood (ML) function of the user’s location with
relevant information and to provide an iterative location estimation of the user [5,6]. The
direct method is more accurate, but it relies on the processing of a large amount of data,
leading to a higher computational complexity [7–9]. The majority of indirect localization
techniques are based on distance measuring. The server at the ground station determines
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the position of the mobile user by calculating the distance measurement results [10]. In this
procedure, direct LOS paths in space are typically employed to measure relevant physical
parameters, such as TOA (time of arrival), TDOA (time difference of arrival), AOA (angle
of arrival), FDOA (frequency difference of arrival), RSS (received signal strength), etc. Due
to their greater accuracy, TOA and TDOA approaches have garnered the most attention,
and the corresponding location calculation and performance analysis methods have been
intensively investigated [11–16]. For instance, to simplify the TDOA equations, [11] uti-
lized elliptical coordinates and asymptotes to determine the target’s position in far-field
situations. By linearizing the approximate ML estimation, [12] suggested a closed-form
solution form for the TOA and TDOA localization methods. In [13], the authors examined
closed-form solution algorithms and iterative algorithms for four localization methods,
as well as a hybrid source localization algorithm based on TOA and AOA. Methods for
TDOA localization based on multidimensional scaling and convex optimization have been
proposed in [14,15]. Ref. [16] developed a ML approximation for the closed-form solution
of AOA under low noise conditions. Maximum Likelihood Estimators utilizing Gauss-
Newton or quasi-Newton iterations were developed in [17] to localize a moving target
by time delay and Doppler frequency shift using sensors in motion, a structured total
least squares method with hybrid TDOA-AOA measurements was developed in [18] to
reduce estimation bias, and an algebraic solution using TDOA and FDOA measurements
to determine the location and velocity of moving sources was developed in [19] and the
method suffers from no initialization and local convergence problems.

In addition to the measurement precision of physical quantities and algorithm per-
formance, the geometric position of the measurement sensor in relation to the target is a
significant factor influencing localization accuracy. For two-dimensional TOA and TDOA
measurement and localization methods, the minimum value of the target localization error
CRLB can be derived theoretically when the receiving station is arranged at an identical
angle around the target [20,21]. Ref. [22] uses polar coordinates to decouple the influence of
distance and angle, and then developed the optimal deployment scheme for TOA, TDOA,
and AOA sensors in remote localization scenarios based on the minimal value of CRLB.
TDOA and TOA both have the same optimal deployment form, which is a ring array with
the same number of nodes on each ring. In [23], the AOA-based two-dimensional station
deployment strategy is extended to a three-dimensional scenario, and it is proposed that
when N stations (N ≥ 4) are spatially equidistant from the target, the optimal geometry
between the sensor and the target is a uniform distribution of N stations on a unit sphere
with the target at the center of the circle. For the CRLB minimization problem in the TDOA
localization scenario, [24,25] investigated the optimization of ground station deployment
for TDOA localization utilizing the GA algorithm and particle swarm algorithm, with CRLB
minimization as the objective function, and produced superior results. In [26], TOA-based
sound source localization was investigated, and the adaptive GA algorithm was employed
to determine the optimal sensor placement scheme based on the probability distributions
of target occurrence in the area.

Against this background, we propose a hybrid source localization technique that in-
corporates TOA and TDOA measurement information to boost the localization precision of
moving targets to the maximum extent possible. To the best of our knowledge, most of the
research has centered on individual TOA or TDOA localization algorithms, performance
analysis, and placement optimization, but the hybrid source localization technique has
received less attention. First, the fundamental architecture of the hybrid source localization
system is developed and investigated by combining TOA and TDOA measurement infor-
mation. Secondly, an iterative localization algorithm based on the least squares criterion
is proposed, and the performance of localization error and CRLB is quantified through
theoretical analysis and experimental simulations. Finally, the average CRLB value of target
line trajectory localization error is used as the performance estimation objective function,
and a GA algorithm is introduced to search for the optimal station placement scheme
for TOA and TDOA hybrid source localization, the general principles of optimal station
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placement are given, and the localization performance is simulated and validated under
various scenario configurations.

The rest of this paper is structured as follows. Section 2 analyzes the TOA/TDOA
system model, while the structure of the proposed TOA/TDOA algorithm and simulation
results are discussed in further detail. In Section 3, we derive the positioning error and
CRLB and study their properties. Section 4 presents the simulation results of TOA, TDOA,
and TOA/TDOA positioning accuracy to demonstrate the proposed system’s placement
optimization. Finally, Section 5 provides conclusions.

2. Hybrid Source Localization Based on TOA and TDOA
2.1. Hybrid Source Localization Algorithm Model

As shown in Figure 1, we consider three-station TOA and four-station TDOA local-
ization systems in three-dimensional space, where the TOA system is composed of three
observation stations denoted as S4, S5, and S6, and the TDOA system is composed of four
observation stations denoted as D0, D1, D2, and D3. The position coordinates of each station
are denoted as Di = [xi yi zi]

T , i = 0 ∼ 3, Si = [xi yi zi]
T , i = 4 ∼ 6, and the coordinate of

the signal source is T = [x y z]T .
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The distance and difference in distance between each station in the TDOA positioning
system and signal source T are given as follows

ri =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2, i = 0 ∼ 3 (1)

rTDOA, i = ri − r0 =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2

−
√
(x− x0)

2 + (y− y0)
2 + (z− z0)

2, i = 1 ∼ 3 (2)

Similarly, the distance between each station in the TOA positioning system and signal
source T are stated as follows:

rTOA, i =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2, i = 4 ∼ 6 (3)

Combining Equations (2) and (3) yields the function matrix f(x) as
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f(x) =



√
(x− x4)

2 + (y− y4)
2 + (z− z4)

2√
(x− x5)

2 + (y− y5)
2 + (z− z5)

2√
(x− x6)

2 + (y− y6)
2 + (z− z6)

2√
(x− x1)

2 + (y− y1)
2 + (z− z1)

2√
(x− x2)

2 + (y− y2)
2 + (z− z2)

2√
(x− x3)

2 + (y− y3)
2 + (z− z3)

2


−



0
0
0√

(x− x0)
2 + (y− y0)

2 + (z− z0)
2√

(x− x0)
2 + (y− y0)

2 + (z− z0)
2√

(x− x0)
2 + (y− y0)

2 + (z− z0)
2


(4)

The measured values of TOA and TDOA are represented as r̃TOA and r̃TDOA, respec-
tively. The complete measurement result is given as r̃ = [r̃TOA,4 r̃TOA,5 r̃TOA,6 r̃TDOA,1 r̃TDOA,2
r̃TDOA,3]

T . The TOA and TDOA measurement positioning models can then be expressed as

r̃ = f(x) + n (5)

where n is the measured noise vector and satisfies the random probability distribution.
Solving Equation (5) yields the position vector x. Typically, there are two types of

solution algorithms: linear and nonlinear. Nonlinear approaches are more computationally
intensive but more accurate, and often use least squares or maximum likelihood estimators
to estimate the position vector x. There are two types of least squares methods, weighted
and unweighted, when the measurement noise n conforms to the zero-mean Gaussian
distribution, weighted least squares are identical to the maximum likelihood estimation.
Weighted least squares employ the inverse matrix of the measurement noise’s covariance
matrix to weigh the square of the error. Although this algorithm’s accuracy performance
has increased, it is less stable than least squares and is prone to large errors.

The nonlinear least squares estimator can be used to continuously approximate the
position vector x through iterative operations, and the regular iterative algorithms are
the Newton–Raphson method, the Gauss–Newton method, and the steepest descent
method [13], among which the steepest descent method is highly stable but slow to con-
verge, and the Newton–Raphson method and Gauss–Newton method are fast to converge,
but have poor stability, and require matrix inversion with a large amount of calculation.
Levenberg–Marquardt algorithm combines the advantages of the Gauss–Newton method
and steepest descent method, and by adding the judgment condition of first-order approx-
imation and weighting the two algorithms, it can improve the stability of the algorithm
and accelerate the convergence speed of the algorithm at the same time. The DOG-LEG
algorithm based on the steepest descent method, which adjusts the step according to the
gradient change of f(x), can improve the convergence speed.

Let F(x) = r̃− f(x), the nonlinear least squares estimation can be used to find the x̂,
that minimizes the sum-of-squares function of the nonlinear error function J(x)

J(x) =‖ F(x)2 ‖=‖ r̃− f(x)2 ‖= (̃r− f(x))T (̃r− f(x)) (6)

x̂ = arg min
x

J(x) (7)

The Gauss-Newton method is employed to obtain the iterative equation for the esti-
mation of x̂ as

x̂k+1 = x̂k + (GT
(

x̂k
)

G
(

x̂k
)
)
−1

GT
(

x̂k
)(

r̃− f
(

x̂k
))

(8)

G(x) = ∇T
(

fT(x)
)

, substituting f (x) into the equation and simplifying it gives

G(x) =


x−x4

r4

x−x5
r5

x−x6
r6

x−x1
r1
− x−x0

r0

x−x2
r2
− x−x0

r0

x−x3
r3
− x−x0

r0
y−y4

r4

y−y5
r5

y−y6
r6

y−y1
r1
− y−y0

r0

y−y2
r2
− y−y0

r0

y−y3
r3
− y−y0

r0
z−z4

r4

z−z5
r5

z−z6
r6

z−z1
r1
− z−z0

r0

z−z2
r2
− z−z0

r0

z−z3
r3
− z−z0

r0


T

(9)
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2.2. Analysis of Positioning Accuracy Analysis
2.2.1. Least Squares Localization Error Analysis

The precision of positioning is determined by two factors: the measurement error
and the geometric factor of the positioning error, which are usually coupled together. The
geometric factor of the measurement error and the positioning error are usually mixed
together, but can be considered separately and independently only when the measurement
noise of each signal source is independent and has the same variance. Independent consid-
eration of the geometric factors of measurement error and positioning error facilitates the
separate evaluation of the station placement scheme, and the geometric factor of positioning
error is usually expressed as GDOP, which can also be expressed as HDOP (horizontal)
or DOP in the direction of the other axis. The measurement error generally includes the
station location positioning error of each station and the measurement error of TOA and
TDOA, which are considered to be independent of each other, and the measurement error
of TOA and TDOA includes the signal propagation error, synchronization error between
measurement stations, a random error caused by receiver noise, Doppler effect error, etc.

Considering the error terms of TDOA, it is obtained from (2) that

d(rTDOA, i) = dri − dr0 = d(
√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2

−
√
(x− x0)

2 + (y− y0)
2 + (z− z0)

2)

= (gix − g0x)dx +
(

giy − g0y
)
dy +

(
giy − g0y

)
dz− hi + h0, i = 1, 2, 3

(10)

where
gix =

x− xi√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2
(11)

giy =
y− yi√

(x− xi)
2 + (y− yi)

2 + (z− zi)
2

(12)

giz =
z− zi√

(x− xi)
2 + (y− yi)

2 + (z− zi)
2

(13)

hi = gixdxi + giydyi + gizdzi (14)

d(rTDOA i) represents the measurement error of distance difference, dxi,dyi, dzi are the
measurement errors of the station positions in the three-coordinate axis. dx,dy,dz are signal
source T positioning errors. Combine the three equations in (10), and let

GTDOA =

g1x − g0x g1y − g0y g1z − g0z
g2x − g0x g2y − g0y g2z − g0z
g3x − g0x g3y − g0y g3z − g0z



dxs TDOA =

h1 − h0
h2 − h0
h3 − h0

, dx =

dx
dy
dz



drTDOA =

d(rTDOA, 1)
d(rTDOA,2)
d(rTDOA,3)

 =

dr1 − dr0
dr2 − dr0
dr3 − dr0


Then we have

GTDOAdx = drTDOA + dxs TDOA (15)

Considering the error terms of TOA, from (3) we can obtain

dri = d
(√

(x− xi)
2 + (y− yi)

2 + (z− zi)
2
)
= gixdx + giydy + gizdz− hi, i = 4, 5, 6 (16)
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Presents the simultaneous equations from 4 to 6 of (16), and let

GTOA =

g4x g4y g4z
g5x g5y g5z
g6x g6y g6z

, dxs TOA =

h4
h5
h6

, drTOA =

dr4
dr5
dr6


Then we have

GTOAdx = drTOA + dxs TOA (17)

Combining Equations (15) and (17) to obtain

Gdx = dr + dxs (18)

where

G = [GT
TOA GT

TDOA]
T

, dr = [drT
TOA drT

TDOA]
T

, dxs = [dxT
s TOA dxT

s TDOA]
T

(19)

The error value of Least square estimation is denoted as

dx = (GTG)
−1

GT(dr + dxs) (20)

The covariance matrix of positioning error is[
dxdxT

]
= (GTG)

−1
GTE[(dr + dxs)

(
dr + dxs)

T
]
G(GTG)

−1
(21)

Given that the station location positioning errors dxi,dyi,dzi are independent, as are
the measurement errors dri, the station location positioning errors and measurement errors
are independent as well, and the mean values are all zero. The variance of station location
positioning errors can be expressed as E[(dxi)

2] = E[(dyi)
2] = E[

(
dzi)

2] = σ2
s , and the

measurement errors can be denoted as E[
(
dr)2] = σ2

m.

E[(dr + dxs)
(

dr + dxs)
T ]= E[drdrT ]+E[dxsdxs

T
]

(22)

E
[
drdrT

]
= E

((
drTOA

drTDOA

)(
drTOA

drTDOA

)T
)

= blkdiag
(

diag
([

σ2
m σ2

m σ2
m

])
, diag

([
σ2

m σ2
m σ2

m

])
+ σ2

m•ones(3, 3)
)

(23)

E
[
dxsdxs

T
]
= E

((
dxs TOA

dxs TDOA

)(
dxs TOA

dxs TDOA

)T
)

= blkdiag
(

diag
([

σ2
s σ2

s σ2
s

])
, diag

([
σ2

s σ2
s σ2

s

])
+ σ2

s •ones(3, 3)
)

(24)

where blkdiag{.}: Block diagonal matrix operator in MATLAB, blkdiag(A,B) represents a
matrix with matrices A and B as diagonal blocks; diag{.}: Diagonal matrix operator in
MATLAB, diag(a) represents a matrix with the elements of vector a as diagonal elements;
ones{.}: define a matrix with all elements equal to 1 in MATLAB, ones{a,b} represents an all
1 matrix with the size of a row and b column.

E
[
drdrT] and E

[
dxsdxs

T] have the same form, and the variance E[(dr + dxs)
(
dr + dxs)T]

can be obtained after adding the two terms. The station location error and measurement
error can be combined as the same noise source, so the two items can be considered
equivalently; that is, the station location positioning error and the measurement error
variance are summed as the total error, and let σ2 = σ2

m + σ2
s , then the positioning estimation

error covariance matrix C with least squares estimation can be denoted as
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C = E[(dr + dxs)
(

dr + dxs)
T
]
=



σ2 0 0 0 0 0
0 σ2 0 0 0 0
0 0 σ2 0 0 0
0 0 0 2σ2 σ2 σ2

0 0 0 σ2 2σ2 σ2

0 0 0 σ2 σ2 2σ2

 (25)

The covariance matrix of positioning error σ2 based on least square estimation is
denoted as

σ2 = E
[
dxdxT

]
= (GTG)

−1
GTCG(GTG)

−1
(26)

The positioning error can be denoted as Tr
(
σ2).

2.2.2. Cramer Rao Bound

Cramer Rao Low Bound (CRLB) gives a lower bound on the variance of the unbiased
estimator and can serve as an essential comparison indicator for the performance of the
estimation algorithm. As can be seen from the previous analysis, the measurement error
n in Equation (5) can be regarded as the sum of station location positioning error and
measurement error, which generally satisfies the zero mean Gaussian distribution, so the
probability density function of TOA and TDOA measurements can be expressed as

p(̃r) =
1

(2π)
L
2 |C|

1
2

exp(−1
2
(̃r− f(x))C−1 (̃r− f(x))) (27)

CRLB is equal to the trace of the inverse matrix I(x) of the Fisher information matrix
(FIM) [27]

CRLB =
[
I(x)]−1 = E[ (∂ ln(p(̃r))/∂xT)(∂ ln(p(̃r))/∂xT)T ]−1

=

([
∂f(x)

∂x

]
C−1

[
∂f(x)

∂x

]T
)−1 (28)

where ∂f(x)/∂x is the transpose matrix of G in Equation (19), and then we can obtain the
positioning error

positioningerror = Tr[CRLB] (29)

3. Genetic Algorithm-Based Optimization of the Station Placement Scheme

The objective of the station placement scheme optimization is to optimize the de-
ployment of stations according to the target trajectory to be measured so that the total
positioning error is minimized [28], and the CRLB is used as the objective function of the
optimized placement due to the consistency of the CRLB and LS positioning errors. The
positioning error function can be expressed as

positioningerror =
1
V

∫ xb

xa

∫ yb(x)

ya(x)

∫ zb(x,y)

za(x,y)

√
Tr(CRLB)dxdydz (30)

where xa, xb, ya(x), yb(x), za(x,y), zb(x,y) are corresponding to the upper and lower integral
limits of variable x, y, z. V is the volume of the entire integral space.

Since the function in Equation (30) is nonlinear and nonconvex, we use a Genetic
Algorithm (GA) to solve for the optimal station deployment scheme. A GA algorithm is
a stochastic search algorithm that draws on natural selection and natural genetic mecha-
nisms in biology and is very suitable for dealing with complex, nonconvex, and nonlinear
optimization problems that are difficult to solve by traditional search algorithms. Un-
like traditional search algorithms, GA algorithms start from a randomly generated initial
solution and iterate step by step through a series of selection, crossover, and mutation
operations to generate a new solution. A certain number of sound individuals are selected
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from the previous generation according to their fitness, and the next generation population
is formed by crossover and mutation. After several generations of evolution, the algorithm
converges on the best chromosome, which is the optimal or suboptimal solution to the
problem. Genetic algorithm has strong global search ability, but weak local search ability,
and usually can only get the suboptimal solution of the problem, but not the optimal solu-
tion. Classical nonlinear programming algorithms mostly use the gradient descent method
to solve the problem, which has a stronger local search ability but a weaker global search
ability. Therefore, this paper combines the advantages of both algorithms, using a Genetic
Algorithm for global search on the one hand and a nonlinear programming algorithm for
local search on the other hand, so that the global optimal solution of the station placement
scheme can be obtained.

In practical applications, TOA and TDOA measurement stations are generally de-
ployed on the ground, and the range of station placement is limited to a certain range due
to the influence of radio link receiving distance. Therefore, it is necessary to put additional
constraints on the station range in the GA algorithm, i.e., the station location is constrained
to be within the square formed by four points in the XOY plane (−8 × 103, −5 × 103),
(−5 × 103, 5 × 103), (5 × 103, −5 × 103), and (5 × 103, 5 × 103). The target trajectory is
to be located in a line from point (5 × 102, 5 × 102) to point (5 × 103, 5 × 103) in the YOZ
plane and the positioning error is calculated according to Equation (30) to find the optimal
station location estimation vector θ̂ to minimize the positioning error.

θ̂ = argmin
θ

(
1
V

∫ xb

xa

∫ yb(x)

ya(x)

∫ zb(x,y)

za(x,y)

√
Tr(CRLB)dxdydz

)
(31)

where θ = [x1 y1 x2 y2 · · · xN yN ], N is the number of ground TOA and TDOA stations.

4. Simulation Experiment and Performance Analysis
4.1. Simulation Results of Hybrid Source Localization Algorithms

According to Equations (8) and (9), TOA, TDOA, and TOA and TDOA hybrid source
localization are simulated, and the Gauss–Newton method is adopted for the localization
iterative algorithm. The simulation results are shown in Figure 2, with the horizontal
coordinate as the measurement variance and the vertical coordinate as the positioning
error. TOA stations’ coordinates are S4(1 × 104 0 0), S5(0 1 × 104 0), and S6(0 0 1 × 104),
the TDOA stations’ coordinates are D0(0 0 0), D1(1 × 104 0 0), D2(0 1 × 104 0), and
D3(0 0 1 × 104). Target’s coordinate is T(5 × 103 5 × 103 5 × 103). The measurement
variance in Figure 2 is the noise variance in Equation (5), which satisfies the zero mean
Gaussian distribution. Figure 2a shows the error curves of 3-TOA positioning stations
(asterisks), 4-TDOA positioning stations (triangle), 1-TOA and 4-TDOA hybrid positioning
stations (circle). Figure 2b,c also corresponds to the error curves of also 3-TOA stations and
4-TDOA positioning errors, while the hybrid positioning error curves are corresponding to
2-TOA/4-TDOA hybrid source localization, and 3-TOA/4-TDOA hybrid source localiza-
tion. Figure 2c also shows a 3-TOA Cramer Rao Low Boundary (CRLB) curve. Figure 2a–c
also show a 3-TOA CRLB Boundary curve. Figure 2d illustrates the spatial distribution of
each station.

It can be seen from Figure 2 that the accuracy of 3-station TOA positioning and 4-
station TDOA positioning is essentially the same, which is consistent with the Cramer Rao
boundary of 3-station TOA positioning, while the accuracy of hybrid source localization is
higher than the individual positioning accuracy of the two methods alone, and the error
of the TOA and TDOA hybrid source localization gradually decreases with the gradual
increase in TOA stations, i.e., an increase in the amount of TOA stations and TDOA stations
can improve the positioning precision.
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4-TDOA sensors; (c) Simulation results for 3-TOA sensor and 4-TDOA sensors; (d) Placement scheme
for 3-TOA sensor and 4-TDOA sensors.

4.2. Simulation Analysis of Positioning Accuracy of Typical Placement Topology Structure

Based on the previous analysis of solution accuracy on TOA, TDOA, and TOA/TDOA
hybrid positioning, we give the simulation results and comparative analysis on positioning
error spatial distribution of CRLB and least square algorithms with three kinds of solution
accuracy. During the simulation, we assume the variance of measurement and position
σ2 = 1; therefore, the positioning error is equivalent to the value of GDOP. The spatial
distribution of GDOP is calculated according to the line trajectory, and three-dimensional
spatial station placement is adopted, as shown in Figure 3. We consider seven stations when
calculating the TOA/TDOA hybrid positioning errors, that is, TOA stations are marked
as S4(1 × 104 0 0), S5(0 1 × 104 0), and S6(0 0 1 × 104), the TDOA stations are marked
as D0(0 0 0), D1(1 × 104 0 0), D2(0 1 × 104 0), and D3(0 0 1 × 104).

For the three-dimensional spatial station deployment, we carried out the GDOP
distribution calculation for the line trajectory parallel to the Z-axis and varying in height
from 1000 m to 10,000 m, as shown in Figure 4. It can be seen from the figure that the
difference between the LS positioning solution error and the theoretical value of CRLB is
basically the same; only the LS error is slightly larger than CRLB when the hybrid source
localization solution is applied, and the LS error is also marginally higher than CRLB when
the stationing placement scheme is altered, but in general, the LS positioning calculation
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error is close to CRLB, and it is robust and does not require a priori knowledge, such as
noise distribution, to obtain.
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Figure 4. GDOP curves of TOA, TDOA, and TOA/TDOA hybrid positioning of line trajectory.

The GDOP of TDOA is more uniformly distributed with little performance deterio-
ration, while the GDOP of TOA suddenly deteriorates sharply at a certain position in the
low altitude, and the deterioration region is caused by the inverse of the sick matrix due to
the rank of the matrix G dropping to 2 due to the coplanarity of S4, S5, and S6. The GDOP
accuracy of the hybrid source localization is better than the separate localization accuracy
of TOA or TDOA alone, which is consistent with the results of the previous localization
solution in Figure 2.

4.3. Simulation Results of Placement Optimization Based on Genetic Algorithm

We set the main parameters of the GA algorithm for the scenario in this paper: the
population size is taken as 200, the selection parameter is chosen as 0.05 multiplied by
the population size, the crossover probability is set as 0.8, and the variogram function
parameters Scale and Shrink are both taken as 1 to ensure that global optimization is
achieved within the range of values taken. The number of iterations is adjusted according
to the number of stations to be deployed, which is obtained by multiplying the number of
stations by 600. The accuracy of the variables is chosen as 1 × 10−3, and the accuracy of the
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objective function calculation is chosen as 1 × 10−6. The target’s line trajectory varies from
point (5 × 102, 5 × 102) to point (5 × 103, 5 × 103) in the YOZ plane, as shown in Figure 3.

Figure 5 shows the simulation results of the optimal GA algorithm-based station de-
ployment scheme under different numbers of TOA and TDOA stations, where the asterisks
in Figure 5a give the simulation results of optimal station placement for five TDOA stations
and the asterisks in Figure 5b give the simulated results of optimal station placement for
seven TDOA stations. From the figure, it can be seen that when there are only TDOA sta-
tions, the optimal station placement is generally symmetric around the target line trajectory,
and the station locations are mainly spread out at the four corners of the boundary and
below the target trajectory line. When there is a combination of TOA and TDOA stations,
the optimization algorithm gives the station placement scheme as shown in Figure 5c,d,
where the TDOA stations are mainly located at the four corners of the boundary and the
TOA stations are mainly located below the target line trajectory.
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Figure 5. Optimal station placement results based on GA algorithm: (a) 5-TDOA stations T-type
placement and optimized layout structure; (b) Optimized layout structure for 7-TDOA stations;
(c) Optimized layout structure simulation for 1-TOA and 4-TDOA stations; (d) Optimized layout
structure simulation for 3-TOA and 4-TDOA stations.

Based on the optimization results of each of the above placement schemes, we obtained
the positioning accuracy or GDOP curve of the target line trajectory from point (5 × 102,
5 × 102) to point (5 × 103, 5 × 103) in the YOZ plane by simulation, as shown in Figure 6.
The line trajectory positioning accuracy curves of the T-shaped placement scheme are also
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added in Figure 6, and the T-shaped placement scheme is shown in Figure 5a. It can be
seen from the figure that when there are five TDOA stations, except for the positioning
accuracy of the optimal deployment scheme and the T-type placement scheme at the height
of 500 m–900 m, which is essentially the same, the positioning accuracy of the optimal
deployment scheme for other points of the line trajectory is better than that of the T-type
deployment station, which indicates that the optimization effect of the GA algorithm on
the placement scheme is apparent. Meanwhile, the positioning accuracy improves with
the increase in the number of stations, for example, the positioning accuracy of 7 TDOA
stations is better than that of 5 TDOA stations, and the positioning accuracy of 3 TOA
stations plus 4 TDOA stations is better than that of 1 TOA station plus 4 TDOA stations. In
addition, the improvement effect of TOA station on positioning accuracy is better than that
of TDOA station, and the performance of hybrid source localization of TOA plus TDOA
is better than that of pure TDOA positioning, for instance, the positioning accuracy of
1 TOA station plus 4 TDOA stations is better than that of 5 TDOA stations or 7 TDOA
stations, and the hybrid source localization accuracy of TOA and TDOA stations does not
deteriorate much with the increase in height, while the pure TDOA station positioning
accuracy deteriorates more significantly with the increase in altitude.
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Figure 6. Target trajectory positioning accuracy of different station layout schemes.

Compared with the above-mentioned station placement schemes, the positioning
accuracy of 1TOA station plus 4TDOA station can obtain higher positioning accuracy
with fewer stations, and the performance of positioning accuracy is more stable, and the
performance deterioration is not apparent. Figure 7 shows the contour distribution surfaces
of the GDOP values in the YOZ plane for x values equal to −1 × 103, 0, and 1 × 103,
respectively, for this station placement optimization scheme. From the figure, it can be seen
that the GDOP distribution curves in three different YOZ profiles do not change much in
both the Y-axis and Z-axis direction, which shows that the station placement optimization
also has good stability in the X-axis direction. When the target trajectory to be located is in
other shapes, such as when the target trajectory is a point or a region, the integral region of
the objective function needs to be adjusted to obtain the corresponding optimal placement
of stations.
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5. Conclusions

In this paper, we propose a Gauss–Newton algorithm based on the least squares
method to implement a hybrid TOA and TDOA positioning system for a three-dimensional
spatial positioning scenario where both TOA and TDOA measurement data exist and
conduct theoretical analysis and experimental simulations on the hybrid source localization
system consisting of three TOA stations combined with four TDOA stations. The simulation
results show that the hybrid source localization accuracy of TOA and TDOA is better than
that of pure TOA or TDOA alone, and the localization performance can be significantly
improved with the increase in the number of hybrid stations.

We derive the theoretical results of the least-squares estimation error and the CRLB
boundary for the hybrid positioning algorithm of TOA and TDOA, and the analysis results
demonstrate that the effects of the measurement error and the station location error on
the positioning performance are equivalent. Simulations are performed to compare the
least-squares estimation error and the CRLB boundary based on the theoretical results and
the simulation results show that the least-squares estimation error and the CRLB boundary
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are generally consistent, which confirms the promising estimation performance of the least
squares method.

For the ground station placement scenario under typical conditions, the station place-
ment scheme is optimized by using the GA algorithm for pure TDOA positioning and
TOA plus TDOA hybrid source localization with the mean value of the CRLB boundary of
the target line trajectory as the objective function. The positioning errors of the optimized
station placement are compared by simulation experiments, and the results demonstrate
that the overall positioning accuracy of the optimized station placement scheme is better
than that of the typical station placement scheme, and it is more adaptable to the trajectory
form and provides better positioning performance. Finally, we summarize the general
principles for the placement scheme optimization on the basis of the simulation results.
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