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Abstract: The issue addressed by this research study is the public’s scepticism about the benefits of
adopting 5G technology. Some have even gone so far as to say that the technology can be harmful
to people, while others are still looking for reassurance. This is why it is crucial to comprehend the
primary factors that will affect the spread of 5G networks. The method used for this heavily relies on
a deep learning algorithm. Channel metrics, context metrics, cell metrics, and throughput data are
the conceptualized variables that will serve as the primary indicators for determining the adoption
of 5G technology. Three deep learning models—deep reinforcement (DR), long-short term memory
(LSTM), and a convolutional neural network (CNN)—were applied. The results show that the DR
model and the CNN model are the most effective at predicting the elements that would affect 5G
adoption. Despite the fact that LSTM models appear to have a high degree of accuracy, the quality
of the data they output is quite poor. However, this is the case even when the models appear to be
rather accurate. The logical inferences drawn from these findings show that the DR model and the
CNN model’s applicability to the problem of predicting the rate at which 5G will be adopted can
be put into practice with a high degree of accuracy. The novelty of this study is in its emphasis on
using channel metrics, context metrics, cell metrics, and throughput data to focus on predictions for
the development of 5G networks themselves and on the generation of the elements that determine
the adoption of 5G. Previous efforts in the literature failed to establish methods for adopting 5G
technology related to the criteria considered in this study; hence, this research fills a gap.
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1. Introduction

5G is a name that is used to refer to the fifth-generation technological standard for
broadband associated with various categories of networks. It comes with speeds that are
up to one hundred times faster than those of 4G, which enable it to offer opportunities
for businesses and organisations that have never been available before [1]. South Korea
became the first country in the world to offer mobile 5G services for commercial use in
2019 [2]. Many industry stakeholders as well as analysts feel that the transition from 4G
to 5G networks will constitute a significant technological advancement that will result in
a shift in the market for broadband services. This belief is supported by the fact that this
transition is currently underway [3]. It is difficult to predict what the future holds for 5G
service because the technology has not yet matured to its full potential [4]. Businesses
need to wait for research findings into the emerging 5G mobile industry, and then use the
findings to inform the development of long-term strategic plans so that they can make the
most of the enormous opportunity that presents itself. It is critical to conduct extensive
research into the general demand for 5G services, as well as customer preferences and the
impact of using 5G technology.

“What is already known in the open literature” [4–9] is that as 4G networks continue
to expand, they will eventually be unable to meet the ever-increasing demand for high-
speed broadband-loving service. Active network investment and high service uptake for
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4G services are widespread, confirming the prior prediction result obtained by using a
multi-generational diffusion model [5]. As a result, it is reasonable to believe that a network
administrator should not place an excessive amount of value in adoption predictions. The
inability of the telecommunications industry oversight to properly evaluate the implemen-
tation on a ground-share basis, as well as an overabundance of competitors and inadequate
network service allocation, have all contributed to the plethora of problems that have
recently surfaced [6]. Inadequate network service allocation, an excessive number of rivals,
and insufficient network management are among the issues [7].

What the literature lacks is the ability to predict the adoption of 5G technology in
advance of its eventual implementation for 5G mobile. The utilization of a deep learning
model as a prediction model for the rate at which 5G technology will be adopted is required
because the world is moving closer to its deployment for 5G mobile. This needs to be
carried out as soon as possible. The manner in which this will be accomplished can be
determined by reviewing past examples of how different parts of the world have dealt
with the rollout of 4G. In order for the transition from 4G to 5G to be successful and for
the 5G implementation to have any kind of influence over user behaviour, it is essential
to be more efficient in the prediction evaluations, which is why deep learning techniques
are adopted for this study. The Ultra-Broadband Forum 2022 is currently planning to
release five heavyweight industry white papers that provide insight into the future of
ultra-broadband over the next five years, in order to promote and drive the evolution
of the ultra-broadband industry’s adoption of 5G and to discuss the strategic direction,
requirements, and challenges of the ultra-broadband industry [8]. Insight about ultra-
trajectory broadband over the next five years can be gleaned from these papers. This factor
is useful for making educated guesses regarding the rate of 5G adoption. The study takes
into consideration deep learning algorithms as a key prediction paradigm, since they can be
used to construct a model that reacts to changes with regards to any amount of data. This
study was also motivated by an ever-increasing amount of data as time passes. This paves
the way for improved and more efficient performance predictions of the adoption of any
technology, including 5G, using models generated by artificial intelligence techniques. This
opens the door for improved and more efficient performance prediction with the adoption
of any technology. Although TAM has been the most successful theory for modelling the
adoption of technology by consumers, it is based on subjective judgments and assigns little
weight to the particulars of the technology in question [9].

The most common application of deep learning is the problem solving of issues whose
potential solutions can be derived from massive amounts of data. The extensive application
of deep learning for prediction has contributed to the development of a well-deserved
reputation for the quality of the models it generates. The three most commonly used deep
learning models are DR, LSTM, and CNN [10]. They are becoming increasingly popular as
a result of the flaws that are present in all of the machine learning models that have been
developed up until this point [11]. These machine learning models are defined by their
weakness as more data is added, which causes their accuracy to degrade, since they have a
tendency to have difficulties with overfitting [12]. On the other hand, the circumstances in
which deep learning methods are most successful are those in which the dataset is quite
extensive [13]. This is another justification for why this current study adopted the use of
deep learning for the prediction of 5G technology adoption.

• The most important contributions of this work include the application of deep learning
to define what the deployment of 5G will require, how simple it is to make predictions
about the adoption of 5G, what role each component will play in those forecasts,
etc. Consequently, by highlighting deep learning’s potential to predict the adoption
of 5G, the components for predicting the adoption of 5G, the contribution that each
component makes in predicting the adoption of 5G, and the implementation of 5G, this
study contributes to the body of work on the potential applications of deep learning
by exposing it to the area of 5G adoption.
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• Another significant component of the contribution consists of the logical inferences
that are obtained from the prediction models. These inferences show that the DR
model and the CNN model can be applied to the problem of predicting the rate at
which 5G will be adopted, and that they can do so with a high degree of accuracy if
they are used in practice. Additionally, these inferences show that the DR model and
the CNN model can be applied to the problem of predicting the rate at which 5G will be
adopted. This suggests that organizations that plan to invest in 5G or are considering
doing so may find it easier to make predictions now that this research has provided
them with the variables and model. It is possible that this will be advantageous to
both companies.

• The final contribution focuses on the fact that it is now possible to implement a novel
method of deep learning that places an emphasis on using channel metrics, context
metrics, cell metrics, and throughput data in order to predict the development of
5G networks themselves as well as the generation of the elements that determine
the adoption of 5G. This indicates that the network capability of 5G is of the utmost
importance, and that it should be the primary focus of efforts focused toward the
adoption of the technology.

The remainder of the paper consists of the following: the second section presents
the related work, the third section presents the research methodology, the fourth section
presents the results and discussion, and the fifth section concludes the work.

2. Related Work

Numerous empirical research studies have been carried out in the past that are linked
with 5G technology and its implementation. According to Jahng and Park [14], it is crucial to
obtain an accurate forecast of the potential size of the new mobile market that will capitalise
on the potential benefits of 5G technology. In order to better comprehend the development
of 5G services, the study presents a customer adoption model based on system dynamics
paired with an agent-based model that takes into account 5G adoption estimates under
categories with three possible scenarios. One of the most significant findings is that the
initial rate of acceptance for 5G is higher than that of 4G. Considering customer preferences
and acquisition delay behaviour, Maeng et al. [5] assessed the accuracy of prediction for
the 5G service industry. The study found that customer preference and purchase delay
behaviour are key to the demand for 5G services, and that consumers have a significant
degree of heterogeneity regarding the characteristics of 5G services. As the study also
establishes, understanding mobile communication service customers, who are anticipated
to be crucial initial users for the creation and diffusion of 5G services, is essential at a
time when 5G commercialization is in its infancy. Therefore, the study concludes that data
transmission rates and data offers are crucial for 5G spread and that price and a lack of
necessity are the key issues delaying the acquisition of 5G services. This is why the adoption
rate of 5G drops by an additional 50% when the purchasing delay is taken into account.

Deep learning algorithms have been used in a variety of different applications of 5G
technology. In order to efficiently detect vulnerabilities in a 5G mobile wireless network
and to gain users’ confidence in adopting 5G technology, Maimó et al. [15] present a deep
learning anomaly detection method for network flows. The study used a deep belief
network (DBN) and a long short-term memory (LSTM)-based anomaly prediction method
to analyse the network data in real time. The finding reveals that an alert was generated
once a flaw was detected in the network’s traffic. In a similar approach, Thantharate
et al. [16] utilised a dense deep neural network to detect and eliminate security threads
before attacking the 5G core wireless network. The proposed model has the ability to
sell network slices as a service to serve different services on a single infrastructure that is
reliable and highly secured.

Abiko et al. [17] propose deep reinforcement learning for allocating 5G radio resources
to meet slice number-independent service requirements. Similarly, Shahriari et al. [18]
use deep reinforcement learning for the prediction of the adoption of a generic 5G online
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learning system. Other models that are used in the previous research work are associated
with CNN and LSTM, where Huang et al. [19] propose CNN-LSTM multitasking for 5G
mobile network traffic estimation. Furthermore, CNN-based LeNet-5 was proposed by
Alhazmi et al. [20] to detect cellular signals. LeNet-5 successfully identifies 5G, 3G, and LTE
signals. Li et al. [21] mapped 5G on-demand service function chaining using an adaptive
deep Q-learning network. A low-complexity heuristic service function chaining mapping
algorithm helps agents make customer-specific decisions. Luo et al. [22] propose dynamic
transmission power regulation using CNN and deep Q-learning for 5G non-line-of-sight
transmission. Godala et al. [23] utilised CNN for 5G mobile network radio state channel
information estimation. Klus et al. [24] recommend the use of CNN for user position
estimation in 5G technology. Doan and Zhang [25] utilised CNN to detect 5G mobile
wireless network difficulties. Razaak et al. [26] adopted a deep generative adversarial
network-based model for image processing using 5G wireless networks. Dai et al. [27] use
DRL for designing a caching solution for 5G mobile networks and beyond. Gante et al. [28]
propose a temporal CNN for 5G mobile network millimetre wave location.

Despite 5G’s impressive security architecture for wireless network communications,
previous research has reported an important finding: it is not enough to thwart traffic
analysis attacks. This finding has motivated researchers to focus their attention on the
traffic analysis defence domain within 5G networks. It is crucial to implement defence
solutions for traffic analysis that are both strong and efficient. The goal of the proposal by
Abolfathi et al. [29] is to determine how real and false packets should be dispersed across
several channels of varying capacity in order to best protect networks from traffic analysis
attacks. The research presents the issue as a zero-sum game and demonstrates that the
optimal defence is achieved through the watered-down distribution of real and phoney
packets. Using the proposed method considerably reduces the effectiveness of traffic
analysis assaults, as shown by the results. This study is unique in that it is effective without
real-time knowledge of protected traffic flows or any manipulation of production traffic. In
addition, in a different setting, Javaheri et al. [30] show that the trained models emphasise
the efficacy of deep learning based on their predictions acquired from the dataset. Using
the recovered data, Mughaid et al. [31] reveal that the accuracy for detecting dropping
attacks within the 5G network was quite high, recommending the use of multiple ML and
DL algorithms in this endeavour. Additionally, the architecture for intrusion detection
provided by Yadav et al. [32] is capable of quickly and accurately identifying genuine
worldwide attackers. The neural network used in this study performs fantastically at
detecting intrusions. Morabito et al. [33] presented further uses for deep convolutional
neural networks associated with categorization of Alzheimer’s disease and moderate
cognitive impairment using scalp EEG recordings.

According to the findings of the previous research that was conducted, the vast
majority of the relevant work that has been carried out regarding the application of deep
learning in connection with 5G has focused more on technical evaluations. Even though
the works by Jahng and Park [14] and Maeng et al. [5] emphasise the necessity of predicting
the potential size of the new 5G mobile market and assessing the accuracy of predictions
for the 5G service industry, it is essential to also highlight the prediction of the production
of 5G itself. This is due to the fact that the works of Jahng and Park [14] and Maeng et al. [5]
emphasise the need to predict 5G adoptions, but either a very limited amount or none of
the strategies proposed for adopting 5G technology were implemented.

3. Methodology

An effective structure in the applied methodology allows for the realization of a
reliable comparison of the different artificial intelligence models. Thus, in the first part of
this section, the techniques applied to obtain suitable data are pointed out. The models are
introduced in the subsequent part, focusing on the exposition of the cost function, i.e., the
function to be minimized. This allows for accurate results in each of the models. Finally,
the metrics used to carry out the comparative analysis with certainty are presented.
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3.1. Deep Learning Models

Models and issues associated with 5G that need to be solved, which are highly depen-
dent on the deep learning architectures and the tasks connected with each deep learning
architecture, need to be studied carefully. Those models that these studies found ap-
propriate for use in 5G are LSTM, CNN, and DR; this can be justified by the work of
Almutairi [34].

3.1.1. Long Short-Term Memory

Among the many challenges that recurrent neural networks (RNN) must contend
with, vanishing gradients and growing gradients are two that the LSTM is able to address
in an effective manner [35]. Because of the error caused by the vanishing gradient problem,
RNNs are unable to be trained when there is a delay of more than 5–10 timesteps between
the events that are input and the signals that indicate success. On the other hand, the LSTM
is able to connect up to a thousand timesteps despite having low temporal delays. The cells
that are assembled here to form these specialised units are the ones that are to blame for the
constant flow of errors. Multiplicative gate units control cell entry [36]. The memory nodes
of a typical LSTM network are always situated in the hidden layer of the network [37]. A
set of memory cells and a pair of multiplicative gate units are the only components of a
memory block that are responsible for processing input and output data. The constant error
carousels in a memory cell solve the problem of vanishing gradient error by preventing
the local backflow error from decreasing or increasing when no input or error signals are
present. Because of the input and output gates, the constant error carousel is safeguarded
against faults that originate from both inside and outside the computer. The level of activity
of the constant error carousels is what determines the state of the cell. The switching states
of the input gate y(in) and the output gate y(out) at discrete times such as 1, 2, . . . make use
of the Equations (1) and (2):

netoutj(t) = ∑
m

woutjmym(t− 1), youtj(t) = foutj

(
netoutj(t)

)
(1)

netinj(t) = ∑
m

winjmym(t− 1), yinj(t) = finj

(
netinj(t)

)
(2)

where j is the memory block, f is the logistic sigmoid in the range [0, 1], and wlm denotes
the connection weight from the unit m to the unit l.

To compute the internal state of a given memory cell Sc(t), the squashed gate input
to the state at the recent time step Sc(t− 1) where (t > 0) can be added by the following
Equations (3) and (4):

netcv
j
(t) = ∑

m
wcv

j mym(t− 1) (3)

Scv
j
(t) = Scv

j
(t− 1) + yinj(t)g

(
netcv

j
(t)
)

(4)

where cv
j denotes cell v of the memory block j, squashing of the cell input is performing

by g, and Scv
j
(0) = 0. To determine the output of a cell yc, the internal state Sc is squashed

using an output squashing function h and gating it with the activation of the output gate
yout expressed in Equation (5):

ycv
j (t) = youtj(t)h

(
Scv

j
(t)
)

(5)

where h denotes a centered sigmoid in the range [−1, 1].
The output units K of a network with layered topology consisting of hidden layer with

memory blocks, standard input, and output layer can be defined by the Equations (6) and (7):

netk(t) = ∑
m

wkmym(t− 1) (6)
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yk(t) = fk(netk(t)) (7)

where fk denotes the squashing function with logistic sigmoid in the range [0, 1] and m
ranges over all input units and the cells in the hidden layer. The LSTM is capable of solving
tasks with complex long time-lags that were never solved by RNN.

3.1.2. Convolutional Neural Network

The CNN is one of the most important deep learning approaches that can be applied
in the context of 5G technology. In the realms of image processing and pattern recogni-
tion, feed-forward neural networks such as the convolutional neural network (CNN) are
particularly useful. It has a straightforward design, is flexible, and requires little adjust-
ment throughout training [38]. Layers such as the input layer, the convolution layer, the
pooling layer, and the output layer make up a CNN’s overall structure. The input image
is fed into the convolution layer, where a filter is used to generate a feature map. After
the convolution layer sends its output, the pooling layer receives the feature maps and
performs a downsampling operation on them [39]. When n neighbouring pixels are pooled
into a single pixel, a narrow feature map is created by applying an activation function,
scalar-weighing by a factor of Wx + 1, and adding a bias of bx + 1. Parallel learning is
one of CNN’s main benefits since it reduces the network’s complexity. Once again, the
sub-sampling procedure can be used to increase resilience and scalability. Equation (8)
have been developed to represent how each layer of a CNN processes its output [40]:

O(l,k)
x,y = tanh

(
f−1

∑
t=0

Kh

∑
r=0

Kw

∑
c=0

W(k,t)
(r,c)O(l−1,t)

(x+r, x+c) + Bias(i,k)
)

(8)

where O(l,k)
x,y is the output of neuron at convolution layer l, feature pattern k, row x, and

column y. f denotes the number of convolution cores in a given feature pattern. At the
sub-sampling stage, the output of neuron at the lth sub-sampling layer, kth feature pattern,
row x, and column y is expressed in Equation (9):

O(l,k)
x,y = tanh

(
W(k)

Sh

∑
r=0

Sw

∑
c=0

O(l−1,t)
(x×Sh+r, y×Sw+c) + Bias(i,k)

)
(9)

At the lth hidden layer H, the output of neuron j is provided in Equation (10):

O(l,k)
x,y = tanh

(
W(k)

Sh

∑
r=0

Sw

∑
c=0

O(l−1,t)
(x×Sh+r, y×Sw+c) + Bias(i,k)

)
(10)

where s denotes the number of feature patterns in the sub-sampling layer.
At the output layer, the output of neuron i at the lth output layer is expressed in

Equation (11):

O(l,i) = tanh

(
H

∑
j=0

O(l−1,j)W
l
(i,j) + Bias(i,j)

)
(11)

3.1.3. Deep Reinforcement Learning

Reinforcement learning is one of the best strategies for making decisions in real time.
As it acts and recognises things in the world, it learns [41]. At each level of interaction, the
agent chooses an action that modifies the environment based on the current state of the
environment. Whether an activity is useful or not, the agent receives feedback in the form
of a reward or a penalty.

To describe RL, the research uses the notation of a Markov decision process (MDP)
tuple, written as (S, A, R, P), where S is the current state of the environment, A is the current
action being taken, R is the current reward, and P is the probability of a successful state
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transition. The goal of RL is to maximise the total discounted reward across all states by
learning the optimal strategy [42]. That idea can be presented in Equation (12):

Jπ∗ = max
π

Jπ = max
π

Eπ

[
∑∞

t=0 γtrt

]
(12)

where π∗ and π denote the optimal policy and policy respectively, Jπ denotes total expected
reward, Eπ [.] is the expectation based on the policy π and the transition probabilities, and
γ is the discount factor in the range [0, 1). The agent becomes opportunistic about the
present reward when γ = 0, and strives for long-term great reward when γ = 1. rt denotes
the reward at time t.

The achievable return for execution of an action a in a state s is represented by the
value function Q(s, a). This can be updated according to each state–action pair till a given
threshold turns out to be greater than the highest change in the value, as presented in
Equation (13):

Q(s, a)←∑s′ p
(
s′
∣∣s, a

)[
r
(
s, a, s′

)
+ γ max

a
Q
(
s′, a′

)]
(13)

where p(s′|s, a) denotes the transition probability from state s to state s′ when action a has
been executed, and the reward is denoted by r(s, a, s′). Following the convergence of the
algorithm, the optimal policy is achieved by performing a greedy action on each state s.
This is expressed in Equation (14):

a∗ = argmax
a

Q∗(s, a), (∀sεS) (14)

In situations where the system does not have prior knowledge about the environment,
optimal policies can be achieved by a type of RL algorithm known as Q-learning. Given αt
as the learning rate, such that when αt = 0, the agent becomes incapable of learning, and
when αt = 1, the agent only considers the most recent information. The updating rule of
Q-learning is provided in Equation (15):

Q(st, at) = (1− αt)Q(st, at) + αt

(
rt+1 + γ max

a
Q
(
st+1, a′

))
(15)

This implies at time step t, state st is observed by the agent and an action at is chosen,
reward rt+1 is received by the agent for execution of the action at. Q-learning always tries
to choose the optimal action by considering the state–action pair with the best Q value.
RL algorithms are very good for solving various problems, especially problems relating to
messaging and mobile networks [43].

3.2. Dataset Preparation

The dataset that is used for the study is the 5G production dataset obtained from
Raca et al. [44]. The dataset is the production dataset. The data in this set was collected
from a major Irish mobile service and consists of 5G trace data. There were two distinct
modes of transportation (stationary and mobile) and two distinct uses for the data (video
streaming and file download). The collection includes key performance indicators (KPIs)
for cellular connections on the client side, such as channel metrics, context metrics, cell
metrics, and throughput data. These data were collected by G-NetTrack Pro, a well-liked
monitoring tool for non-rooted Android networks. This is the first open-source dataset that
includes throughput, channel, and context information for 5G networks. Soon after the
data is collected, it is cleaned and organised in a process called preprocessing. At this point,
anomalous or duplicate information is identified. Data scrub methods are used to correct
the data with only the minor discrepancies found.
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3.3. Performance Metrics

The success of implementing 5G using deep learning must be measured across a num-
ber of dimensions (including channel metrics, context metrics, cell metrics, and throughput
data). Performance metrics are used to evaluate the efficacy of a deep learning algorithm
or model. Several performance measures can be used to learn about the efficiency of the
models, methods, or processes. By comparing a proposed method or algorithm to existing
ones, flaws may be revealed. To evaluate the relative merits of various 5G implementa-
tions based on deep learning, we must first dissect each component individually (channel
metrics, context metrics, cell metrics, and throughput data). Despite the fact that there are
numerous success indicators, the current study used the most widely used performance
indicators in the academic research community. As a result, this study explores many
performance metrics to evaluate the performance of the experimental analysis carried out.
However, since the deep learning algorithms utilised need to be compared in order to find
the difference among them, the measurement of error metrics is the crucial measurement
considered. Despite the number of measures computed in order to evaluate the perfor-
mance of various deep learning models, mean squared error (MSE) is adopted to measure
how far the estimated value deviates, on average, from the actual value. The predicted
value of the squared error is represented by Equation (16):

MSE =
1
n ∑n

i=1

(
Yi − Ŷi

)2 (16)

Root mean squared error (RMSE), with the residuals of the prediction errors, measures
how, and shows how closely, the data gravitate toward the optimal line of fit and measure
by Equation (17):

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (17)

Furthermore, while determining how closely the predicted values fall along the op-
timal line of fits at the target values, the coefficient of determination (R2) measured by
Equation (18):

R2 =
∑n

i=1
(
Yi − Ŷi

)2

∑n
i=1(Yi −Y)2 (18)

A confusion matrix provides a concise summary of the prediction output of a technique
in relation to specific test data. It is a matrix with two dimensions; the first dimension is
indexed by the entity’s actual class and the second dimension is indexed by the class that
the algorithm assigns to the entity. In this particular use of the uncertainty matrix, there
are two classes: one is referred to as the positive class, and the other is referred to as the
negative class. According to this interpretation, the four cells that make up the matrix
are referred to as true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN), as outlined in the table that follows.

Furthermore, accuracy is critical in the evaluation of a deep learning algorithm; one
can say that a measurement or calculated value is accurate if and only if it agrees with
the real value or meets some other criterion. The extent to which experimental values
approximate genuine value is what is meant by “accuracy”. The accuracy (Acc) is provided
as Acc = TP+TN

P+N , while the sensitivity is the “True positive rate” which can be referred to
as “Recall (R)” provided as R = TP/(TP + FN), and the specificity (S), referred to “True
negative rate”, where R = TN/(TN + FP).

The receiver operating characteristic (ROC) curve has been established as a reliable
method for evaluating the performance of both deterministic and probabilistic models [45].
The ROC curve is an all-inclusive and visually appealing summary of prediction accuracy.
Its usefulness extends to a variety of contexts and prediction methods. Plotting the model’s
“sensitivity” (X axis) against its “specificity” (Y axis) generates the ROC curve. When a
model can accurately forecast whether or not 5G adoptions are dependent on the component



Appl. Sci. 2023, 13, 119 9 of 18

of 5G production dataset, it will be represented by a high value for the area under the
curve (AUC).

4. Presentation of the Results and Discussion

The deep learning algorithm was implemented on Google Colab using Python libraries.
In particular, Keras and TensorFlow were utilised. Several iterations of the algorithms were
carried out. The outcomes of the DR, LSMT, and CNN that were proposed were evaluated
and compared. Both mean squared error and root mean squared error were used as
performance indicators in order to evaluate how well the algorithms performed. Keras and
TensorFlow are the software platforms that are used for the library. This is due to the fact
that both TensorFlow and Keras are open-source software platforms, and Tensor is written
in both C++ and Python. Python, the language in which The Odyssey is written, lends
the pair an air of familiarity; in addition to their popularity, both are frequently employed
in academic contexts. Keras is a tool that can be used on the TensorFlow backends to
easily define deep learning models. Regarding the hardware, the type of CPU used is a
GPU. The system’s specifications include Windows 11 (64 bits), a 12 Gen Intel® CoreTM
i5-12500 (18 MB cache, 6 cores, 12 threads, 3.00 GHz to 4.60 GHz Turbo, 65 W), 8 GB,
1 × 8 GB, DDR4.

The insights associated with why the proposed approach performed much better than
the existing methods lie in determining whether or not the algorithms were effective by
applying them to the complete datasets. The outcomes were reviewed by contrasting the
DR, LSTM, and CNN approaches that were proposed. The following configuration is used
by the deep network algorithms: 60 epochs, one with various steps for each set of data for
each epoch, and four hidden layers for the DR, CNN, and LSTM models, respectively. The
optimal ratio for the data partitioning between training and testing is 70:30. The results
of the investigation, which included carrying out the experiment with each of the models,
are shown in Table 1, which summarises the findings and indicates how successful the
proposed R, LSTM, and CNN models were. Consequently, when compared with other
studies [11–26], the MSE and RMSE achieved by the proposed R, LSTM, and CNN models
were the lowest. This indicates that DR, LSTM, and CNN have the best performance
when it comes to predicting and preventing the adoption of 5G technology. Table 1, which
includes DR, LSTM, and CNN, shows that the MSE for DR is 0.000064, and the RMSE is
0.0080. CNN has an MSE of 0.000041 and an RMSE of 0.0071, and LSMT has an MSE of
0.000066 and an RMSE of 0.0074.

Table 1. The performance of the first analysis.

Model MSE RMSE

DR 0.000064 0.0080
CNN 0.000041 0.0071
LSTM 0.000066 0.0074

In light of the fact that the mean errors obtained through the application of the cross-
validation method in each of the splits—training, validation (dev), and testing—are detailed
here, the characteristics of the 5G adoption in the present circumstance as well as the general
information of the generated models are also detailed here. This is done on the basis of the
fact that the mean errors acquired by utilising the cross-validation technique in each of the
splits, specifically, are high (see Table 2).

In addition, despite the fact that LSTM models appear to produce accurate findings,
the quality of these outcomes is poor. With the use of the RMSE measure, it is possible to
demonstrate that the forecast in the validation set, as well as in the test set, has a significant
gap in comparison to the training set. Because of this, it is possible to reach the conclusion
that the convergence of these models is insufficient due to the presence of overfitting in the
findings. Because of this, these models cannot be used to make accurate predictions about
how quickly 5G will catch on.
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Table 2. Average error obtained with the first cross-validation.

Partition Metric DR LSTM CNN

Train MSE
RMSE

0.03
0.173

0.06
0.245

0.06
0.245

Test MSE
RMSE

0.04
0.2

0.07
0.264

0.05
0.22

R2 0.91 0.93 0.91

Finally, the results that the other two models—DR and CNN—produce are extremely
satisfactory. These are compatible with every set. The CNN model stands out because
it is able to extract patterns from convolutions, which enables it to produce results that
are consistent and accurate. Therefore, it is possible to assert that this model is the most
accurate one for estimating the uptake of 5G. Both DR and CNN are modified, but based
on the outcomes of the metrics that are presented, it is not possible to determine which of
the two is superior.

Adoption of 5G may occur despite the fact that erroneous outcomes are possible,
despite the fact that models may or may not be forecasting exactly properly. In order to
evaluate the models’ accuracy in the relevant time periods, the results of the models are
presented in Table 2 with no regard assigned to night-time throughput. Table 3 confirms the
prior decisions made using Table 3. CNN is the worst model, the DR and LSTM models are
overfitting; CNN is the best model; DR and LSTM models are good but not as good as CNN.
If one looks at Table 3, they will notice that the CNN model consistently produces better
outcomes than the DR model. As a result, the DR model will provide more convincing fits
during non-normal times. The results are also unaffected by the fact that we are considering
the entire time span. When all factors are taken into account, modelling can be made more
resistant to data changes as a result of continuity and expertise.

Table 3. Averaged error obtained with the second cross-validation.

Partition Metric DR LSTM CNN

Train MSE
RMSE

0.006
0.0775

0.0042
0.0649

0.0068
0.0825

Test MSE
RMSE

0.016
0.126

0.0042
0.065

0.0068
0.0825

R2 0.87 0.72 0.94

According to the decision made, DR and CNN are the models that are best suited to
projecting 5G uptake. Since the models continue to produce the same results regardless of
whether the throughput is taken into account, the variations between the two approaches
do not produce significant a priori distinctions. Despite the fact that it demonstrates the
positive changes that were produced by the DR, CNN, and LSTM models during the
training split for both situations, the SVR model is the one that has periods with better
accuracy during the times where 5G adoption can be observed, where the mean errors are
0.91% in DR, 0.93 in CNN, and 0.91 in LSTM. This is shown by the fact that the DR model
has mean errors of 0.91%, while CNN and LSTM both have mean errors of 0.91.

In this section of the study, the researchers present the characteristics of the implemen-
tation of 5G in this environment. They also provide general information on the models that
were developed, such as the mean errors that were obtained by using the cross-validation
method during each of the stages of training, validation, and testing. In order to find the
optimal solution, the cross-validation method is used to evaluate and contrast the mean
errors of each of the sub-splits. Specifically, this is due to the common mistakes that are
made (see Table 4).
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Table 4. Average error obtained with the last cross-validation.

Partition Metric DR LSTM CNN

Train MSE
RMSE

0.0075
0.0867

0.0025
0.05

0.0012
0.035

Test MSE
RMSE

0.0085
0.0922

0.0094
0.097

0.0086
0.093

R2 0.95 0.94 0.96

Despite the fact that LSTM models appear to have a high degree of precision, the
quality of the data they generate is quite low. Using the root-mean-squared error (RMSE)
measure, it is possible to demonstrate that the forecasts for the validation set and test set are
significantly different from the forecasts for the training set. When compared side-by-side,
the validation set and the test set reveal a number of intriguing discrepancies. Consequently,
it is possible to conclude that the results have been overfit and that the convergence of
these models is insufficient. This is because such a conclusion can be drawn from the
presented information. Due to this, it is difficult to utilise these models to provide accurate
predictions regarding the uptake of 5G technology.

In conclusion, the outcomes generated by the DR model and the CNN model are
equally aesthetically pleasing. These can be used with any other set one already possesses.
The ability to recognise and extract patterns from convolutions distinguishes the CNN
model from other models. Because of this, the results it generates are reliable and accurate.
Due to this, one may claim that the model delivers the most accurate forecasts of 5G’s adop-
tion rate. Because both models have been updated, it is impossible to identify which model,
DR or CNN, is superior based on the outcomes of the supplied measures. Improvements
have been made to both DR and CNN.

The possibility of erroneous results and the unpredictability of model forecasts do not
exclude the broad use of 5G technology. This has been carried out so that we may evaluate
the models’ dependability during the pertinent time periods. The research provides support
for decisions made in the past based on research. CNN has the lowest accuracy, DR and
LSTM models are overfitted, CNN has the highest accuracy, and DR and LSTM models
are good but inferior to CNN. CNN achieves the highest level of accuracy possible when
used as a model. If one examines the prior findings, one will observe that the CNN model
consistently outperforms the DR model. This characteristic appears in every instance of
the sentence. This has a direct impact on the DR model’s capacity to provide compelling
matches in out-of-the-ordinary situations. The outcomes have not changed in any manner
as a result of taking into account all of the available time. When all relevant factors are
considered, continuity and competence may make the model more resistant to changes
in the data.

Figure 1 depicts the ROC curves for the first training case where some of the 5G
parameters are used (NetworkMode, RSRP, RSRQ, SNR, CQI, and RSSI), whereas Figure 2
depicts the ROC curves for the validations. Because of this, the AUC value based on the
training dataset cannot be examined independently when validating a model. Rather, it
must be taken into account together with the validation. Hence, the AUC values from
the validation dataset were also used in the construction of the model and are taken
into consideration while validating the model. The ROC curve values show consistent
behaviour, with the training set performing very well, at AUC (0.954), and the validation
set performing at AUC (0.989). Each ROC curve for a different collection of features
clearly shows that the model set is always superior to the analysis and that this dominance
increases for the remaining parameters in the training and validation set. For a model to
have a greater likelihood of making accurate predictions, the area under the curve (AUC)
must be close to one unit. This lends credence to our assertion that our model is the best in
the more plausible real-world setting when 5G networks are adopted.
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Figure 1. The ROC area of the first trained data: AUC (0.954).

Figure 2. The ROC area of the validation data: AUC (0.989).

Figure 3 depicts the ROC curve and the AUC value based on the training dataset
following the addition of additional components from 5G production datasets as well as
an increase in the weight. Figure 4 depicts the ROC curve and the AUC value based on
the validation dataset. Every model demonstrates some degree of predictive power, as
indicated by the AUC values of the area, which are (0.986) and (0.927) for training and
validation, respectively. On the other hand, the performance can be considered to be the
best possible. When validating a model, the AUC value calculated based on the training
dataset cannot be considered separately because this is the case. The AUC values for the
validation dataset were not used in the construction of the model; however, they ought to
be taken into consideration while verifying the model.

The findings of the ROC curve study show that the model with two parameters also
has the greatest AUC value (0.867) with a high weight, followed by the model with a
combination of all the parameters. This was discovered through more research (0.851). That
is, as shown in Figure 5, there is a decline in the ROC curve and the AUC value based on
the training dataset, and Figure 6 shows a similar decrease for the validation dataset. In
other words, the value of the ROC curve has decreased.
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Figure 3. The ROC area of all the trained data: AUC (0.986).

Figure 4. The ROC area of validation data: AUC (0.927).

Figure 5. The ROC area of all the modified trained data: AUC (0.851).
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Figure 6. The ROC area of modified validation data: AUC (0.877).

In a similar manner, the model of Figure 7 depicts the ROC curve and the AUC value
based on the culmination of training, and Figure 8 depicts the same information based on
the validation dataset. Both models have predictive power, with the AUC values of the
latter being lower than those of the former in comparison to the first two rounds of the
tests. In general, all of the trials turned out to be quite successful, and the performance can
be considered to be the very best possible.

Figure 7. The ROC area of all the final adjusted trained data: AUC (0.867).

Figure 8. The ROC area of all the final adjusted validation data: AUC (0.885).
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The findings of this study provide credence to the contention that it is critical to
emphasize prediction on the manufacturing of 5G networks as well. This is the situation
because it is extremely important to anticipate the adoption of 5G technology, but relatively
few of the recommended solutions have been put into practice [46–50]. In the present
investigation, a deep learning method is utilised to investigate the numerous facets of 5G
technology and to estimate the degree to which it will be generally accepted. Some of
the components that factor into this are channel measurements, context metrics, cellular
metrics, and throughput data. Indicators that these regions are the most likely to adopt
5G can be found there. Deep reinforcement (DR), long short-term memory (LSTM), and
a convolutional neural network (CNN) were the three distinct deep learning models that
were put into use. Deep learning has been completely ignored in virtually all of the earlier
research that has been carried out on the subject of 5G rollout. On the other hand, they have
placed a higher priority on technical research, while others have stressed the significance of
estimating the size of the new 5G mobile market and analysing the reliability of forecasts in
the 5G service sector. The vast majority of the earlier studies that were conducted on the
topic of the installation of 5G did not make use of deep learning, which is the key reason
why this is the case. The findings of the prediction indicate that although LSTM models
may give the impression of accuracy, the quality of the data that they supply is in fact rather
poor. This is the case, in spite of the fact that the models provide the impression of being
quite precise. An examination of the root-mean-squared error (RMSE) revealed that the
visual appeal of results generated by the DR model and the CNN model are on par with
one another. The findings of this study lend support to the notion that it is essential to
provide equal weight to different projections on the expansion of 5G networks. This is due
to the fact that accurate forecasts regarding the adoption of 5G technology are required, but
either very few or none of the strategies that are advised for achieving this goal have been
put into practice. This was spurred by the requirement to produce projections regarding
the expansion of 5G networks.

5. Conclusions

A deep learning system is used to determine whether or not 5G will be successful by
utilising channel data, context metrics, cell metrics, and throughput statistics, as well as
an analysis of their application. Utilized in this scenario were the deep learning models
known as deep reinforcement learning (DR), LSTM, and convolutional neural networks
(CNN). Deep learning has not been utilised in the majority of the recent research that has
been conducted on the subject of the implementation of 5G; rather, the emphasis has been
placed on technical assessments. Those businesses that use deep learning are more likely to
emphasise the need to estimate the size of the 5G mobile industry and evaluate the accuracy
of such estimates. The results of the predictions showed that LSTM models provide the
impression of being very accurate but generate data of poor quality. It was proved, through
the use of the metric known as root-mean-squared error (RMSE), that the outputs of both
the DR model and the CNN model are aesthetically pleasing. The novelty of this research
lies in the fact that it places an emphasis on the utilisation of channel metrics, context
metrics, cell metrics, and throughput data in order to concentrate on generating predictions
regarding the development of 5G networks themselves as well as the generation of the
factors that will determine the adoption of 5G. The limitation of this study dwells in the
dataset itself, which represents one of the most significant aspects of this research. The
dataset was for a 5G production dataset that had been obtained from a large Irish mobile
service provider. In future research, dataset issues ought to be taken into consideration
when deciding whether or not to make use of other datasets from other countries in order
to gain some additional insights from those other countries. The deep learning algorithm
model that was utilised presents yet another limitation to the findings. Despite the fact
that it is effective at mapping inputs to outputs, it is not very good at comprehending the
context of the data it is managing. A future research project ought to consider several
architectural models that take the context into account.
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