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Abstract: Adopting an integrated strategy to realize efficient fractionation of lignocellulose into
well-defined components for its valorization is challenging. Combinatorial pretreatments in this
study decomposed hemicellulose of green bamboo during hydrothermal pretreatment (HP), and the
hydrothermally pretreated bamboo was subsequently subjected to delignification using deep eutectic
solvent (DES) consisting of choline chloride and lactic acid, finally facilitating enzymatic hydrolysis
of cellulose residue. Upon hydrothermal treatment at 180 ◦C for 35 min, hemicellulose removal of
88.6% was achieved with xylo-oligosaccharide yield and purity of 50.9% and 81.6%, respectively.
After DES treatment at 140 ◦C for 2 h, lignin removal was determined to be 79.1%. Notably, the
regenerated lignin with high purity of 96.8% displayed superior antioxidant activity, and the decrease
in the ratio of syringyl units to guaiacyl units led to a slight decrease in radical scavenging activity
of lignin after five recycling runs of DES. Moreover, the two-step treated residue had much higher
enzymatic digestibility than that of single HP residue and untreated green bamboo. Results show that
synergistic pretreatment is a promising strategy to tackle the recalcitrance of lignocellulose towards
high value-added utilization.

Keywords: bamboo; hydrothermal; deep eutectic solvent; enzymatic hydrolysis; antioxidant

1. Introduction

China, as one of the world’s largest carbon emitters, has proposed the goal of carbon
neutrality by 2060 [1]. The development of clean and renewable energy sources, such
as wind power, solar power, hydropower, nuclear power, and biomass power, is an ef-
ficient solution to achieve this challenging goal [2,3]. Among them, biomass, especially
lignocellulose, is an abundant, readily available, and sustainable resource. As is known,
bamboo is a typical kind of lignocellulosic biomass with approximately 1500 species un-
der 87 genera, and the total forest area of bamboo in China is approximately 6 million
hectares [4,5]. Notably, bamboo grows rapidly (a peak growth rate up to 100 cm per day)
and can be harvested every 3–5 years, well exceeding the growth rate (typically 0.1–0.4 cm
per day) and the 20–60-year growth cycle of traditional timber [6]. Consequently, bamboo
is widely treated as a substitute for woody biomass, exerting enormous influence in easing
the pressure on traditional timber [7].

However, the high-value utilization of lignocellulose is generally hampered by its
structural recalcitrance to a large extent. It is commonly believed that the recalcitrant
and rigid characteristics of lignocellulose are derived from its integral compact structure.
To disrupt the compact structure of lignocellulose, tremendous pretreatment techniques
have been developed [8–11]. Compared with other pretreatment techniques, hydrothermal
pretreatment has various advantages such as high separation efficiency, high through-
put, and the possibility of coordination with other pretreatment techniques [12]. During
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hydrothermal pretreatment, hydronium ions, generated from water auto-ionization, and
carboxylic acids, liberated from deacetylation of hemicellulose, act as hydrolytic cata-
lysts [13,14]. Rather than cellulose, hemicellulose is much less resistant to hydrolysis [15].
Zheng et al. [16] showed that 80.2% of bamboo hemicellulose was dissolved during hy-
drothermal pretreatment at 180 ◦C for 90 min. Xiao et al. [17] studied the hydrothermal
pretreatment of bamboo for xylo-oligosaccharide production, and their maximum recovery
yield of xylo-oligosaccharides was 47.5% at 180 ◦C for 30 min. Huang et al. [18] demon-
strated that the highest xylo-oligosaccharide concentration of 10.5 g/L was obtained during
hydrothermal pretreatment of bamboo at 180 ◦C for 40 min. However, due to the unin-
tended hydrolysis of xylo-oligosaccharides, the yield of xylo-oligosaccharides from bamboo
was only around 8.0% via hydrothermal pretreatment at 200 ◦C for 60 min [19].

It is generally acknowledged that lignin cannot be easily deconstructed using hy-
drothermal pretreatment [18], whereas deep eutectic solvent (DES) can easily dissolve
lignin [20,21]. DES also has promising properties such as non-toxicity, low volatility and
flammability, biocompatibility, low cost, and ease of synthesis [22–24]. Fernandes et al. [25]
revealed that choline chloride (ChCl)-based DES was more efficient in delignification than
betaine- or urea-based DES. Komesu et al. [26] pointed out that lactic acid (LA) could be
manufactured via fermentation from agricultural products and exhibited high thermal
stability with an evaporation temperature of ∼180 ◦C. Tan et al. [27] investigated the effect
of functional groups in carboxylic acid on lignin extraction, demonstrating that a short
alkyl chain and an extra α-hydroxyl group enhanced the extraction rate of lignin. There-
fore, ChCl–LA DES is widely used in the delignification of lignocellulose [28–30]. For
example, Wang et al. [28] demonstrated that the delignification of bamboo using ChCl–
LA DES (80.1%) was much higher than that using betaine–LA DES (54.5%) at 140 ◦C for
6 h. Although ChCl–LA DES exhibits a superior performance in delignification as well as
hemicellulose removal, hemicellulose was usually treated as waste in DES liquid [29,30].

The total content of hemicellulose, cellulose, and lignin in bamboo is between 89
and 93% [5]. It is known that hemicellulose and cellulose can be used for the production
of bio-ethanol as well as platform chemical production, and lignin, the most abundant
natural source of aromatic compounds, can also be regarded as a promising alternative to
fossil-based resources in energy and chemical industries. Therefore, pursuing fractionation
of lignocellulose into three main separated components, and further realizing its compre-
hensive and value-added utilization is of great significance. Additionally, Questell-Santiago
et al. [14] pointed out that biomass-deconstruction treatment starting with hemicellulose
and lignin decomposition before cellulose depolymerization tended to be kinetically more
favorable, and developing an integrated approach to achieve efficient fractionation of
lignocellulose was always challenging. Hence, this work aimed to systematically study the
fractionation of green bamboo via an integrated hydrothermal–DES pretreatment, where
hydrothermal treatment selectively degraded hemicellulose into xylo-oligosaccharides and
swelled up the cell wall structures of bamboo, contributing to the sequential delignification
via ChCl–LA, and finally facilitating the enzymatic hydrolysis of crude cellulose. In brief,
this study hopes to shed light on the biorefinery through investigating the effects of the
integrated hydrothermal–DES pretreatment on enzymatic digestibility of green bamboo.
In this study, hydrothermal and DES treatment processes were thoroughly optimized; the
crystallinity and structural properties of bamboo residue after hydrothermal and DES
treatments were also comparatively investigated using an X-ray diffractometer (XRD),
Fourier-transform infrared (FTIR) spectroscopy, and field-emission scanning electron mi-
croscopy (FE–SEM). In addition, heteronuclear single quantum correlation nuclear magnetic
resonance (HSQC–NMR) was employed to characterize the structure of DES-extracted
lignin (DEL), and the antioxidant activity of DEL was also evaluated.
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2. Materials and Methods
2.1. Materials

Green bamboo (Dendrocalamopsis oldhami) culms and long-staple cotton were kindly
provided by local processing factories (Fujian, China), 40–60 mesh ground bamboo frac-
tions were employed as experimental feedstock. The principal component analysis of
bamboo followed the sequential gravimetric method [31,32] with hemicellulose, lignin,
and cellulose, respectively accounting for 20.7%, 24.8%, and 52.2%. ChCl (AR, 98%), D-(+)-
Xylose (≥99%), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). LA (AR, 85.9–90.0%) and
D-Glucose (AR) were purchased from Xilong Scientific Co., Ltd. (Shantou, China). Cellu-
lase (Cellic CTec3) was provided by Novozymes (Beijing, China) with a measured filter
paper activity of 260.0 FPU/mL. Cellulase (PH9018, 1/3 of the price of Cellic CTec3) with a
measured filter paper activity of 200.0 FPU/g, Tween-20, and bovine serum albumin (BSA)
were generously provided by Phygene Biotechnology Co., Ltd. (Fuzhou, China). All other
reagents were of analytical grade and used as received.

2.2. DES Preparation

ChCl–LA (1:3 to 1:15) was prepared by mixing ChCl with LA and stirring at 60 ◦C
until a homogeneous and transparent solution was obtained.

2.3. Hydrothermal Treatment

The combinatorial pretreatments for bamboo fractionation were sequentially per-
formed with hydrothermal and DES treatments, as shown in Figure 1. During hydrothermal
treatment, the experiments were conducted in a batch reactor (SLM 250, Beijing Century
Senlong experimental apparatus Co., Ltd., Beijing, China). Specifically, 3.0 g dry bamboo
powder was mixed with a certain amount of distilled water depending on the specified
solid-to-liquid ratio. Hydrothermal parameters including temperature (160–210 ◦C), time
(20–50 min), and solid-to-liquid ratio (1:8–18, w/v) were investigated using a single-factor
experimental method. The agitation rate of magnetic stirring was set at 350 rpm. The air
that remained in the reactor was driven out using nitrogen purging. The mixture was then
heated up to a target temperature for a designed period of time. Upon completion of the
reaction, the reactor was immediately quenched in an ice–water bath to stop the reaction.
The mixture was separated using low-pressure filtration; the filtrate was collected and
concentrated using rotary evaporation at 65 ◦C. Anhydrous ethanol was then used as an
antisolvent to precipitate xylo-oligosaccharides at a volume ratio of 5:1. The subsequent cen-
trifugation and freeze-drying procedures were performed to obtain xylo-oligosaccharides.
The hydrothermally treated bamboo (HTB) was then washed with distilled water until the
effluent turned colorless and oven-dried at 105 ◦C to a constant weight.

Additionally, the severity factor (log R0, as shown in Equation (1)) was employed to
consider the combined effects of hydrothermal temperature and time. Both heating and
cooling stages were taken into account to reduce the error [33]:

log R0= log (
∫ t

0
exp[

T(t)−100
14.75

]dt), (1)

where t (min) is the reaction time, and T(t) (◦C) is the experimental temperature for t.
The records of experimental temperatures to reaction times under different hydrothermal
conditions can be referred to in Figure S1.
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Figure 1. Flowchart of the fractionation of green bamboo using sequential hydrothermal and
DES treatments.

2.4. DES Treatment

Sequentially, HTB obtained under the optimal hydrothermal parameters was subjected
to ChCl–LA treatment for further delignification. A single-factor experimental method was
also employed to optimize the parameters in DES treatment, including molar ratio of ChCl
to LA (1:3–15), temperature (90–160 ◦C), time (1–5 h), solid-to-liquid ratio (1:10–30, w/v),
and water content (0–60%, v/v). In detail, 1.0 g HTB was mixed with a defined amount
of DES and incubated at a target temperature with magnetic agitation for a certain period.
After the reaction, the reaction apparatus was cooled down at RT. The cellulose-rich residue
(CR) was separated using vacuum filtration and the filtrate was collected. Distilled water
was then introduced at a volume ratio of water/filtrate of 9:1 to drive lignin precipitation.
Lignin precipitates were obtained using centrifugation at 10,000 rpm for 5 min and washed
with additional ethanol/water (1:9, v/v) solution. Finally, DEL was obtained using freeze-
drying. CR was then washed with an excessive amount of water and oven-dried at 105 ◦C
to a constant weight.

To recycle DES, the effluents were collected and concentrated at 65 ◦C using rotary
evaporation, and then oven-dried at 105 ◦C to obtain anhydrous DES.

2.5. Analysis of Antioxidant Activity of Regenerated Lignin

The antioxidant activity of DEL was evaluated based on its radical scavenging prop-
erties following a previously reported method [34]. Lignin samples were dissolved in
dioxane/water solution (9:1, v/v), and aqueous dioxane solutions (3.8 mL) with different
concentrations (0.05, 0.1, and 0.2 mg/mL) were mixed with 11.8 mL of a 6.1 × 10−5 mol/L
DPPH methanol solution at 25 ◦C for 16 min. The concentrations of DPPH radicals at 0 and
16 min were measured at 516 nm (λmax) using a UV-vis spectrometer. The inhibitory ratio
(IP) of the DPPH radials was calculated using Equation (2).

IP =
A2−A1+A0

A2
×100%, (2)
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where A2 is the absorbance at 0 min; A1 is the absorbance at 16 or 60 min; and A0 is the
absorbance of the blank solution.

2.6. Enzymatic Hydrolysis of Green Bamboo Cellulose

CR pretreated under the optimal hydrothermal–DES parameters was exploited to
perform enzymatic hydrolysis in 0.05 M sodium citrate buffer (pH 4.8) at 50 ◦C and
150 rpm for 72 h. Upon completion of enzymatic hydrolysis, the supernatant was boiled
for ~10 min to stop the hydrolysis reaction, filtered using syringe filters (0.22 µm), and
then analyzed via high-performance liquid chromatography (HPLC) for glucose content.
Enzymatic parameters including solid loading (2–10%, w/v), chemical additive (Tween-
20, BSA, 5–25 mg/mL), cellulase dosage (30–90 FPU/gglucan), and the composition of
cellulase complexes (Cellic CTec3, PH9018, 0–100%) were thoroughly investigated using a
single-factor experimental method. The saccharification ratio was defined as described in
Equation (3).

Saccharification Ratio (%) =
Amount of glucose produced (g)

Amount of cellulose in the solid residue (g) × 1.11
×100% (3)

2.7. Determination of Lignin Purity

Lignin purity was determined according to NREL procedures [35]. Briefly, 0.3 g lignin
sample was subjected to hydrolysis with 3.0 mL sulfuric acid (72% H2SO4) at 30 ◦C for
60 min. Upon completion of the sulfuric acid hydrolysis, 84.0 mL deionized water was
supplemented to dilute the acid to a 4% concentration. The mixture was incubated at
121 ◦C for 60 min. The acid-insoluble fraction was separated using low-pressure filtration
and oven-dried at 105 ◦C. The amount of acid-insoluble ash was measured at 575 ◦C. The
acid-soluble lignin was measured at a wavelength of 205 nm. Results showed that 85.2% of
bamboo lignin with a purity of 96.8% was recovered.

2.8. Analytical Methods

The analysis of the hydrothermal hydrolysate was conducted using HPLC (Agilent
1260 II, Germany). Firstly, the hydrolysate was subjected to hydrolysis with dilute sulfuric
acid (4% H2SO4) at 121 ◦C for 60 min to convert xylo-oligosaccharides to xylose, and the
quantity of xylo-oligosaccharides was expressed as monosaccharides equivalents [17]. The
post-hydrolysate was then filtered through syringe filters (0.22 µm) and analyzed using
HPLC with a refractive index detector using a ZORBAX carbohydrate analysis column at
25 ◦C. A volume of 15 µL filtrate was injected by an autosampler and the mobile phase
was a mixture of acetonitrile and water (90:10, v/v), with a flow rate of 1.1 mL/min. The
deashing guard column was placed ahead of the analysis column. It should be noted
that these procedures were also employed to determine the purity of as-obtained xylo-
oligosaccharides. The yield of xylo-oligosaccharides from bamboo hemicellulose was
determined to be 50.9% with a purity of 81.6%. In addition, the quantitative analysis of
glucose content during enzymatic saccharification was also analyzed using HPLC with
a refractive index detector using a ZORBAX carbohydrate analysis column at 30 ◦C. A
volume of 20 µL filtrate was injected by an autosampler and the mobile phase was a mixture
of acetonitrile and water (75:25, v/v), with a flow rate of 1.0 mL/min.

The surface morphology of samples was observed using FE–SEM (S-4800, Hitachi,
Tokyo, Japan). The samples were coated with gold and photographed at 5.0 kV, 10 µA.

The measurement of FTIR spectroscopy was performed on an FTIR spectrophotometer
(Nicolet iS50, ThermoFisher, MA, USA) with a scanning range of 4000–400 cm−1 and an
accumulation of 32 scans.

X-ray diffraction was conducted on an X-ray powder diffractometer (X‘Pert Pro,
Panalytical, Almelo, Holland) with Cu-Kα radiation. The spectra were collected at 2θ of
5–60◦ with a scan speed of 0.2◦/s and a step size of 0.02◦. The acceleration voltage and
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current were 40 kV and 40 mA, respectively. The crystallinity index (CrI) was determined
according to Equation (4) reported by Segal et al. [36]:

CrI =
I002−Iam

I002
×100%, (4)

where CrI represents the relative degree of crystallinity, I002 is the intensity of (002) lattice
diffraction at 2θ = 22.8◦, and Iam is the diffraction intensity of amorphous scattering at
2θ = 18.0◦.

The specific surface area of untreated bamboo, HTB, and CR were determined using
N2 adsorption/desorption isotherms using the Brunauer–Emmett–Teller (BET) equation
on an automated physisorption analyzer (3Flex, Micromeritics, GA, USA) at 77 K. Results
showed that there was no significant difference among untreated bamboo, HTB, and CR
with respect to BET surface area (around 1.0 m2/g).

HSQC–NMR spectra were recorded on a Bruker AVANCE III 500 MHz NMR spec-
trometer (Bruker, Zurich, Switzerland). For HSQC spectroscopy, around 80 mg of lignin
was dissolved in 0.5 mL deuterated dimethylsulfoxide (DMSO-d6). The spectral widths
were 12–0 and 160–0 ppm for 1H and 13C dimensions, respectively. The chemical shift of
DMSO-d6 at δC/δH 39.5/2.49 ppm was treated as an internal reference. Data of spectra
were processed using Bruker Topspin 3.6.2 (Bruker, Karlsruhe, Germany)

3. Results
3.1. Hydrothermal Treatment
3.1.1. Hydrothermal Parameter Optimization

Figure 2a shows the impact of hydrothermal temperature on xylose concentration.
An initial increase in xylose concentration with increasing temperature (160–180 ◦C) in-
dicates that more hemicellulose was decomposed compared to the corresponding xylo-
oligosaccharides with an increase in log R0 from 3.4 to 3.9 and a pH drop from 4.6 to 3.9
(Figure 2g). In addition, a dramatic decline was observed as hydrothermal temperature
exceeded 190 ◦C, which is probably due to the formation of furfural [37]. The concen-
tration of xylose reached its maximum value of 9.4 mg/mL at 180 ◦C. Meanwhile, the
hemicellulose removal was 80.4%, and the retention of cellulose and lignin was 97.8%
and 82.5%, respectively, as exhibited in Figure 2d. The effects of hydrothermal time and
solid-to-liquid ratio were also investigated, as shown in Figure 2b,c,e,f. The maximum
xylose concentration of 10.5 mg/mL was obtained under the optimal conditions of 180 ◦C,
35 min, and 3:30 g/mL. Meanwhile, the hemicellulose removal is 88.6%, and the retention
of cellulose and lignin was 96.3% and 79.1%, respectively.

Furthermore, as shown in Figure 2g–i, hydrothermal temperature exerts an influence
on green bamboo deconstruction with the most significant pH drop from 4.6 to 3.4, probably
due to water auto-ionization and carboxylic acids liberated during the deacetylation of
hemicellulose [13,14].

3.1.2. Micromorphology Analysis of HTB

Figure S2 shows the surface morphology of untreated bamboo and HTB prepared
under different hydrothermal conditions. When the hydrothermal temperature exceeds
the phase transition temperature of lignin, molten lignin tends to coalesce and migrate
from the cell walls of a plant, then redeposit on the surfaces of cell walls in the morphology
of flattened disks or spherical droplets during cooling [38]. In this study, small lignin
droplets (~2 µm) migrated from the cell wall of bamboo and redeposited on its surface as
hydrothermal temperature reached 200 ◦C, as shown in Figure 3b. The morphology of HTB
obtained under the optimal hydrothermal conditions is shown in Figure S2i. Compared
with the compact, smooth, and rigid morphology of untreated bamboo (Figure S2a), it
is believed that the loosened and coarse microstructure of HTB is more beneficial to the
sequential DES delignification.
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3.1.3. FTIR and XRD Analysis of HTB

FTIR and XRD analyses of HTB prepared under different temperatures were thor-
oughly investigated, as shown in Figure 3. The FTIR signal assignments are ascribed
according to published papers [39–47], as listed in Table S1. The intensified FTIR signals
at 1514 (aromatic skeletal vibrations in lignin), and 1060 and 1030 cm−1 (characteristic
stretching in cellulose) after hydrothermal treatment (Figure 3a) elucidate that the substan-
tial removal of hemicellulose facilitates the exposure of cellulose and lignin, which was
demonstrated by lignin droplets in Figure 3b.

XRD was employed to estimate crystallinity of HTB prepared under different hy-
drothermal temperatures. The characteristic diffraction peaks at 16.4◦, 22.5◦, and 34.5◦,
corresponding to (101), (002), and (004) lattice planes, exhibit a typical cellulose I crystalline
structure [48]. CrI is related to the stiffness and strength of fibers; a higher CrI implies
a more crystalline and ordered structure [48]. As seen from the inset plots in Figure 3c,
CrI was gradually enhanced with the increase in hydrothermal temperature, highlighting
that hydrothermal treatment is an efficient way to remove amorphous portions of bamboo,
and CrI increased dramatically when the temperature exceeded 190 ◦C, which is probably
related to the further removal of amorphous lignin, as illustrated in Figure 2d.
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3.2. DES Treatment
3.2.1. Optimization of the DES Treatment Process

It was found that the treatment temperature and additional water supplementation
exert pronounced influence on lignin removal, as shown in Figure 4 (II) and (V), while
the effects of molar ratio of ChCl to LA, treatment time, and solid-to-liquid ratio of HTB
to DES on delignification were not obvious. Specifically, there was a dramatic increase
in lignin removal with increasing temperature from 110 ◦C to 140 ◦C. It is proposed
that a high temperature results in a decrease in viscosity and surface tension, leading
to an enhancement in diffusivity of mass transfer [49]. In addition, it is known that
water frequently serves as a supplementary component in DES systems to lower the
viscosity and density of the mixture [50]. However, it is observed from Figure 4 (V) that
delignification efficiency decreases significantly with additional water supplementation.
Therefore, anhydrous ChCl–LA is more beneficial to delignification. To conclude, the lignin
removal and cellulose retention were 79.1% and 81.7%, respectively, under the optimal
conditions of 1:3 of ChCl:LA, 140 ◦C, 2 h, and 1/10 (w/v) of solid-to-liquid ratio of HTB
to DES.
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3.2.2. FTIR and XRD Analysis of CR

It is concluded from Section 3.2.1 that temperature and additional water supplemen-
tation are crucial factors during DES treatment; FTIR and XRD analyses of CR prepared
under different treatment temperatures and water addition were therefore thoroughly
investigated, as shown in Figure 5a–d. The signal at 1737 cm−1 in Figure 5a is strengthened
significantly and enhanced with the increase in treatment temperature. In general, the
signal at 1737 cm−1 is deemed the carbonyl stretching of acetyl or carboxylic groups [41].
It is known that pseudo-lignin containing carbonyl, carboxylic, aliphatic, and aromatic
structures can be derived from the degradation of cellulose, especially in the company of
high temperatures, acids, and oxygen [51–53]. Thus, α-cellulose and long-staple cotton
were selected to be treated with ChCl–LA (Figure 5e), and the presence of an obvious and
strong signal at 1737 cm−1 in the FT-IR spectra of (ChCl–LA)-treated α-cellulose and (ChCl–
LA)-treated cotton probably verify the transformation of cellulose to pseudo-lignin [51].
The other possible reason for the newly generated signal at 1737 cm−1 is the esterifica-
tion of LA with hydroxyl groups of cellulose [54]. In Figure 5b, the signal at 1514 cm−1

becomes stronger as the water content increases from 0% to 60%, reflecting that water
addition in ChCl–LA exerts a negative effect on delignification, which further demon-
strates the conclusion drawn in Section 3.2.1 that anhydrous ChCl–LA is more beneficial
to delignification.

Seen from Figure 5c, the CrI of HTB was 60.3%, and an initial increase in CrI of CR
may suggest effective removal of the amorphous portion (mainly lignin) and an enhanced
exposure of crystalline cellulose [22], while a gradual decrease in CrI could be seen when
the temperature was increased from 110 ◦C to 160 ◦C, probably indicating that the ordered
polymer chain of bamboo cellulose was disrupted. However, it is observed in Figure 5d
that the CrI of CR increased first and then nearly reached a plateau when the water content
in ChCl–LA was higher than 10%. It is suggested that excessive water addition to ChCl–
LA leads to a limited disruption to lignocellulosic structure. In addition, XRD spectra of
α-cellulose and long-staple cotton before and after ChCl–LA treatment are exhibited in
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Figure 5f, and the results verify that ChCl–LA treatment can increase the CrI of cellulose or
cellulose-rich biomass.
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Figure 5. FTIR analysis of CR prepared under (a) ChCl:LA (1:3), 90–160 ◦C, 3 h, 1:25 g/mL without
water addition, (b) ChCl:LA (1:3), 140 ◦C, 2 h, 1:10 g/mL, and water addition of 0–60% (v%); XRD
analysis of CR prepared under (c) ChCl:LA (1:3), 90–160 ◦C, 3 h, 1:25 g/mL without water addition,
(d) ChCl:LA (1:3), 140 ◦C, 2 h, 1:10 g/mL, and water addition of 0–60% (v%); (e) FTIR and (f) XRD
analysis of α-cellulose and cotton before and after DES treatment.

3.2.3. DES Recycling Assessment

The recycling of DES is crucial in the reduction in operating cost and meets the
requirements of green chemistry. Herein, recycling experiments were carried out under
the optimal DES treatment conditions mentioned above. Figure 6a shows the recycling
performance of ChCl–LA on the fractionation of green bamboo. Contrary to CR yield
and cellulose retention, lignin removal exhibited a decreasing trend with increasing run
number, which is probably related to the decrease in acidity and the increase in viscosity
and impurity of recycled DES [55–57]. Although it requires in-depth understanding of the
recycling performance of recycled DES, the recycling assessment clearly demonstrates that
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ChCl–LA can be recycled and reused, exhibiting the potential to reduce the operating cost
for industrial consideration.
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The weak FTIR signals corresponding to lignin (Figure 6b) and the similar CrI of
CR (Figure 6c) indicate that ChCl–LA can be recycled five times without a significant
decrease in delignification efficiency. Additionally, Wang et al. [58] pointed out that when
the residual lignin was less than 36.0%, the adverse effect of lignin on enzymatic hydrolysis
efficiency via non-productive enzyme adsorption and steric hindrance was not remarkable.
Therefore, achieving complete removal of lignin from bamboo may not be essential and
cost-effective for the following saccharification process of CR.

It is generally believed that HSQC–NMR is a powerful technique for lignin struc-
tural characterization. The side-chain (δC/δH 50–95/2.5–6.0 ppm) and aromatic (δC/δH
95–160/5.5–8.5 ppm) regions of HSQC spectra of DEL after the 1st and 5th run of DES
recycling are presented in Figure 7. The main cross-signals are assigned according to
previous publications [47,59–63], as listed in Table S2. A correlation for the γ-position
cross-signal of the β-O-4’ (A) substructure is observed at δC/δH 59.8/3.73 ppm, while a
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Cγ–Hγ correlation of γ-acylated A can be seen at δC/δH 63.0/4.30 ppm, and acylation
probably occurs between the hydroxyl group at the γ-position of lignin and the carboxyl
group in lactic acid [62]. It is believed that ferulate (FA) is responsible for cross-linking
in the cell wall of grasses [59], and a C2–H2 correlation of FA can be observed at δC/δH
110.2/7.30 ppm, implying that a slight amount of FA is still associated with lignin [64].
Furthermore, the contents of guaiacyl- (G), syringyl- (S), and p-hydroxyphenyl (H)-type
lignin substructures, as well as the S/G ratio are inset in Figure 7. Since the value of
S/G decreases dramatically from 11.6 to 3.4, S-type lignin substructures were probably
demoxylized and partially converted to G-type lignin substructures [16].
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3.3. Evaluation of antioxidant activity of DEL

It is generally considered that the lower the lignin concentration (IC50) required for
reaching a 50% inhibitory ratio is, the better the antioxidant activity of lignin [20,34,65–67].
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The effect of the DEL concentration on its antioxidant activity was investigated, and the
results are shown in Figure S3. Compared with other lignin samples reported in previous
literature (listed in Table 1), the lower IC50 of DEL shows its better antioxidant activity,
highlighting that the regenerated lignin obtained from green bamboo after the sequential
hydrothermal–DES pretreatment could be well used as natural antioxidant and preservative
in industry.

Table 1. Comparison in IC50 among lignins from different lignocelluloses using different pretreat-
ment methods.

Lignocellulosic Source Pretreatment Method IC50 (mg/mL) Ref.

Bamboo
(bambusa rigida sp.) Dimethyl sulfoxide/N-methylimidazole-dissolved lignin 0.06~0.11 [65]

Bamboo
(Phyllostachys pubescen) Steam-exploded lignin 0.18~0.50 [66]

Pine wood Organosolv ethanol lignin nearly 0.10 [34]
Pennisetum FeCl3-catalyzed ChCl/glycerol DES pretreatment 0.055~0.115 [20]

Bamboo
(Dendrocalamopsis oldhami) Sequential hydrothermal–ChCl/LA DES pretreatment <0.05 In this work

Dizhbite et al. [68] found that syringyl derivatives (dimethoxy compounds) showed
higher antioxidant efficacy than guaiacyl derivatives. It is suggested that the antioxidant
activity of DEL from green bamboo after ChCl–LA treatment is higher than that of lignins
from different bamboos after different treatments reported in the literature [65,66], mainly
owing to a higher S/G ratio in the structure of the former (11.6) (Figure 7a) compared to the
others (1.77–2.06 and 2.80–7.60). The slight decrease in DPPH radical scavenging activity
for DEL obtained after five runs of ChCl–LA recycling is probably due to the decrease in
the S/G ratio from 11.6 to 3.4, as shown in Figure 7. Nevertheless, the recycling of ChCl–LA
has no significant influence on the antioxidant activity of DEL.

3.4. Enzymatic Hydrolysis of CR

CR obtained from green bamboo after the sequential hydrothermal–DES pretreatment
was employed as feedstock for enzymatic hydrolysis. As shown in Figure S4 (I), the
glucose concentration increased with increasing solid loading, whereas the saccharification
ratio reached a maximum value of 22.7% at the solid loading of 5%. It is seen from
Figure S4 (II) and (III) that the maximum saccharification ratios were 36.2% (increase of
59.7%) with adding Tween-20 at 5 mg/mL, and 37.4% (increase of 64.8%) with adding
BSA at 17.5 mg/mL, which probably results from Tween-20 or BSA binding to the residual
lignin instead of enzyme and thus reducing the nonproductive adsorption of the enzyme.
Moreover, without adding chemical additives, cellulase complexes composed of 60% Cellic
CTec3 and 40% PH9018 exhibited a maximum saccharification ratio of 26.0% shown in
Figure S4 (IV). From Figure S4 (V–VII), the saccharification ratio was not proportional
to cellulase dosage, which is probably due to the limited reaction sites (~1 m2/g) or the
inherent recalcitrance of the substrate. Consequently, considering the cost of the enzymatic
saccharification process, the optimum enzymatic conditions are 5% (w/v) of solid loading,
Tween-20 at 5 mg/mL, a cellulase dosage of 30 FPU/gglucan, and a Cellic CTec3 percentage
of 60% (40% of PH9018), and the corresponding saccharification ratio is 37.2% (marked as
dotted line in Figure S4).

Notably, it is observed in Figure 8 that although the enzymatic digestibility of crude
green bamboo is low, with a saccharification ratio of 6.5% owing to its inherent recalcitrance,
the saccharification ratio of CR (37.2%) is nearly twice as high as that of HTB (20.9%),
demonstrating a high efficiency of the integrated hydrothermal–DES pretreatment upon
destroying the recalcitrance of green bamboo.
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4. Conclusions

The proposed integrated hydrothermal–DES pretreatment is efficient in destroying
the recalcitrance of green bamboo into three well-defined components, with hemicellulose
and lignin removal of 88.6% and 79.1%, respectively. The comprehensive and value-added
utilization of bamboo is achieved by the transformation of hemicellulose, cellulose, and
lignin into xylo-oligosaccharides, glucose, and antioxidants. More importantly, ChCl–LA
has a superior delignification performance even after five recycling runs, exhibiting the
potential to reduce operating cost for industrial consideration.
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