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Abstract: We develop and computationally analyze a mathematical model for natural convection to
a non-Newtonian fluid in a long and thin channel. The channel is bounded by antisymmetric heated
and cooled walls and encloses a non-Newtonian pseudoplastic fluid. The flow and heat transfer
characteristics are investigated subject to the prevailing buoyancy forces resulting from the combined
natural convection and gravitational effects. An efficient and accurate semi-implicit finite difference
algorithm is implemented in time and space to analyse the model equations. In the case when the
fluid flow and heat transfer are sustained for a long enough time to allow for steady states to develop,
the model equations would reduce to a boundary value problem. Even in such cases, we demonstrate
that, by recasting the problem as an initial boundary value problem, our numerical algorithms would
still converge in time to the relevant, steady-state solutions of the original boundary value problem.
We also demonstrate the dependence of solutions on the embedded parameters at a steady state.

Keywords: natural convection flow; pseudoplastic fluid; finite difference methods

1. Introduction

Natural convection flow plays a crucial and central role in a variety of thermal engineering
applications involving, among others, heating, cooling, and energy generations [1–6]. The
contemporary challenges of climate change have incentivised large-scale technological
investment in environmentally friendly technologies such as solar and geothermal energy.
Unlike traditional energy generation processes that require costly external pressure driving
forces, solar energy technologies, for example, do not require any such equipment, relying
solely on otherwise cost-effective natural convection heat transfer processes, [3].

Unlike forced convection heat transfer processes with their associated high external
pressure driving forces and, therefore, equivalently high associated velocities and heat
transfer characteristics, the fluid velocities and heat transfer characteristics associated with
natural convection heat transfer processes are relatively low by comparison. As a result,
the surface areas required for, say, energy generation via natural convection heat transfer
processes are considerably larger [3]. An example that readily comes to mind would be a
coal (or nuclear) fired power station versus a solar array that would be required to produce
an equivalent amount of energy.

The work in [7] explores natural convection flow for non-Newtonian fluids described
by shear-thickening power law models. The two-phase natural convection flow of a
nanofluid fluid with a dusty solid phase is investigated in [8]. Hydrothermal and entropy
investigations of the natural convection flow of hybrid nanofluids are investigated in [9].
Rotation, heat transfer, and magnetic effects on natural convection flow of nanofluids are
variously investigated in [10–12]. The work in [10] employed lattice Boltzmann Methods,
and this approach was also used in the natural convection flow studies in [13,14]. The
natural convection flow of Newtonian fluids over vertical plates was studied in [15,16].
Natural convection flow of Newtonian fluids with density stratification was investigated
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in [17]. Thermodynamic analyses are not considered in this article. For detailed thermody-
namic analyses, including phase-equilibria investigations, as well as energy efficiency, we
refer the reader to the works in [18–20].

This work proceeds along similar lines for heating and cooling applications.
We assume a very long and thin channel over which convective heat exchange occurs.
The works of [21–28] investigated the effects of non-Newtonian characteristics, in particular
fluid viscoelasticity, in the heat transfer processes including in heat exchangers. This work
takes a similar approach but limits attention to the non-Newtonian effects of shear-thinning
as modelled by pseudoplastic fluids. In particular, we explore the fluid flow and heat
transfer characteristics of an incompressible pseudoplastic fluid in a long thin channel,
subject to natural convection heat transfer resulting from antisymmetric heated and cooled
walls.

2. Mathematical Modelling

Figure 1 illustrates the schematic diagram of the model problem.

x

y

Pseudoplastic fluid

u = 0, Θ = 1

u = 0, Θ = 0

u = 0, Θ = 0u = 0, Θ = 1

LxO

Ly

6

-

Figure 1. Schematic of the model.

We work in rectangular coordinates, and all quantities are assumed to be dimension-
less. In particular, the field variables x, y, u, Θ respectively represent the dimensionless
horizontal coordinate, vertical coordinate, horizontal velocity component, and temperature.
A pseudoplastic (shear-thinning) non-Newtonian fluid is confined to the rectangular do-
main;

Ω = {(x, y) : 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly},

where Lx and Ly are dimensionless lengths with Ly � Lx. Under these conditions, the
transverse velocity component, v, is assumed small compared to u, i.e., v� u. We consider
a situation in which the boundaries x = 0 and y = Ly are heated, and the remaining
boundaries y = 0 and x = Lx are cooled. Being a non-Newtonian fluid, the assumption of
fluid incompressibility is automatically invoked. If this setup can sustain for a relatively
long time, then the velocity field (u, v) and the temperature Θ would satisfy a coupled set
of boundary value problems derived from the mass, momentum, and energy conservation
equations of fluid dynamics. Under the current assumptions, the relevant and steady mass,
momentum, and energy conservation equations are respectively given by Equations (1)–(3),
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∂u
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∂v
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(
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∂x2 +

∂2Θ
∂y2

)
+

η(γ̇, Θ)

Re Pr

(
∂u
∂y

)2
, (3)

subject to the boundary conditions,

u(0, y) = 0, u(Lx, y) = 0, u(x, 0) = 0, u(x, Ly) = 0, v(0, y) = 0,

(4)

Θ(x, 0) = 0, Θ(x, Ly) = 1, Θ(0, y) = 1, Θ(Lx, y) = 0.

Here, the dimensionless parameters, Re, Gr, and Pr are the Reynolds, Grashof, and
Prandtl numbers, respectively, with,

Re =
ρ0 Umax Ly

η0
, Pr =

cp η0

κ
, Gr =

ρ2
0 g cβ L3

y ∆Θ

η2
0

,

where ρ0 is a constant density, Umax is a characteristic maximum velocity, η0 is a constant
viscosity, cp is the specific heat capacity at constant pressure, κ is the thermal conductivity
of the fluid, g is the gravitational acceleration, cβ is the coefficient of thermal expansion, and
∆Θ is the temperature difference between the hottest and coldest walls, see for example [21].

Given that the transverse velocity, v, may be obtained by integrating the first order
Equation (1), we only impose the no-slip boundary condition at the left vertical wall.
Also η represents the fluid viscosity which, for the non-Newtonian fluids under consid-
eration, depends on the temperature (Θ) and shear-rates (γ̇), where, under the current
assumptions,

γ̇ ≈
∣∣∣∣∂u

∂y

∣∣∣∣.
The non-Newtonian viscosity, η, will be modelled via an appropriate constitutive

equation that captures both the shear-thinning properties of the pseudoplastic fluid as
well as the temperature dependence. The shear-rate dependence of the viscosity is herein
described by a Cross model [29], and the temperature dependence follows a Nahme-
type law,

η(γ̇, Θ) =

(
1

1 + β γ̇n

)
e−αΘ, (5)

where α, β, and n are material parameters. As demonstrated in [29,30], the values of n are
limited to the range of the values 0 ≤ n < 1. Shear-thinning (pseudoplastic) behaviour
is ensured for the values 0 < n < 1 with strongly shear-thinning behaviour obtaining
as n → 1. Taking n = 0 and/or β = 0 leads to Newtonian viscosity. The viscosity of all
fluids is expected to decrease with increasing temperature, hence α ≥ 0. The value α = 0 is
synonymous with assumptions of isothermal (temperature-independent) viscosity.

3. Numerical Solution

The nonlinear and coupled boundary value problem (BVP) given by
Equations (1)–(4) is not amenable to analytic solution techniques. Direct numerical treat-
ment of the equations as given is also very challenging. We deploy an innovative, robust,
and efficient numerical approach that recasts the boundary value problem as a time-
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dependent initial-boundary value problem (IBVP). We then extract the steady solutions of
the IBVP. Indeed, the steady-state solutions of the IBVP are the same as the solutions of the
original BVP. The main advantage here is that the IBVP solutions are obtained efficiently,
accurately, and with relative ease. In this work, we employ numerical solutions based
on the Finite Difference Methods (FDM). Similar time-dependent numerical solutions for
non-isothermal non-Newtonian (viscoelastic) fluid flow have been recently developed via
Finite Volume Methods, see for example [24,25].

Equations (1)–(3) are, therefore, recast as the equivalent time-dependent IBVP,

∂u
∂x

+
∂v
∂y

= 0, (6)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
1

Re
∂

∂y

(
η(γ̇, Θ)

∂u
∂y

)
+

Gr
Re2 Θ, (7)

∂Θ
∂t

+ u
∂Θ
∂x

+ v
∂Θ
∂y

=
1

Re Pr

(
∂2Θ
∂x2 +

∂2Θ
∂y2

)
+

η(γ̇, Θ)

Re Pr

(
∂u
∂y

)2
. (8)

In addition to the boundary conditions in Equation (4), the IBVP as represented
by Equations (6)–(8) would need to be supplemented by appropriate initial conditions.
We employ zero initial conditions,

u(t, x, y) = 0, v(t, x, y) = 0, Θ(t, x, y) = 0, for t = 0 and ∀(x, y) ∈ Ω\δΩ, (9)

where,
δΩ = {x = 0} ∪ {x = Lx} ∪ {y = 0} ∪ {y = Ly},

is the boundary to the domain Ω. The boundary conditions are also recast to include the
time as,

u(t, 0, y) = 0, u(t, Lx, y) = 0, u(t, x, 0) = 0, u(t, x, Ly) = 0, v(t, 0, y) = 0,

(10)

Θ(t, x, 0) = 0, Θ(t, x, Ly) = 1, Θ(t, 0, y) = 1, Θ(t, Lx, y) = 0, for t ≥ 0 and (x, y) ∈ δΩ.

Numerical Algorithm

To solve Equations (6)–(8) subject to the boundary conditions given in Equation (10)
and the initial conditions given in Equation (9), we employ finite difference numerical
techniques. In particular, the computational algorithms are based on the semi-implicit
finite difference methods. Details of our numerical algorithms are illustrated, say, in [21,22].
Taking N as the current time level, N + 1 as the subsequent time level, and N + ξ with
0 ≤ ξ ≤ 1 as an intermediate time level, the semi-implicit scheme for the u-velocity
component reads,

u(N+1) − u(N)

∆t
+

[
u

∂u
∂x

+ v
∂u
∂y

](N)

=
1

Re
[η(γ̇, Θ)](N)

[
∂2u
∂y2

](N+ξ)

(11)

+
1

Re

[
∂

∂y
η(γ̇, Θ)

∂u
∂y

](N)

+
Gr
Re2 Θ(N).

The equation for u(N+1) then becomes:

−r1 u(N+1)
i,j−1 + (1 + 2r1) u(N+1)

i,j − r1 u(N+1)
i,j+1 = explicit terms, (12)
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where
r1 =

ξ

Re
[η(γ̇, Θ)]

(N)
i,j

∆t
∆y2 .

The solution procedure for u(N+1) reduces to efficient linear algebraic processes of
inversion of nonsingular, diagonally dominant, and tri-diagonal matrices. The semi-implicit
scheme for the temperature equation is similarly approached; unmixed second partial
derivatives of the temperature are treated implicitly,

Θ(N+1) −Θ(N)

∆t
+

[
u

∂Θ
∂x

+ v
∂Θ
∂y

](N)

=
1

Re Pr

[
∂2Θ
∂x2 +

∂2Θ
∂y2

](N+ξ)

(13)

+
1

Re Pr

[
η(γ̇, Θ)

(
∂u
∂y

)2
](N)

.

The algorithm (13) allows for the decoupling of variables, which represents a signifi-
cant advantage over a fully implicit scheme. The implicit terms are,

1− 1
Re Pr

ξ ∆t
(

∂2

∂x2 +
∂2

∂y2

)
Θ(N+1).

The operator on Θ(N+1) factorizes with an associated error term of order,

factorization error = O

((
ξ ∆t

Re Pr

)2
)

. (14)

Small ∆t and relatively large Re Pr lead to very small factorization errors. The semi-
implicit algorithm for the temperature equation, therefore, reduces to,(

1− 1
Re Pr

ξ ∆t
∂2

∂x2

)(
1− 1

Re Pr
ξ ∆t

∂2

∂y2

)
Θ(N+1) = explicit terms. (15)

The solution procedure again reduces to the efficient linear algebraic processes of
inversion of nonsingular, diagonally dominant, and tri-diagonal matrices.

4. Numerical Stability

Before we proceed to the computational results obtained from our numerical algo-
rithms, it is fundamentally important to demonstrate the numerical stability of the under-
lying algorithms. Specifically, we need to demonstrate that the computational results are
independent of both mesh size and time-step size. Figures 2 and 3, respectively, illustrate
that our numerical algorithms are indeed independent of mesh size and time-step size.

The results of Figures 2 and 3 indeed illustrate, as expected, that our numerical
algorithms are independent of mesh size and time-step size. The mesh sizes used in
Figure 2 range from 101× 101 to 401× 401 grid points. These grid points respectively
correspond to 100× 100 to 400× 400 computational cells. The time-step sizes employed in
Figure 3 range from 0.0001 to 0.1.

The values for temperature and velocity plotted in Figures 2 and 3 correspond to the
values at the midpoint of the computational domain at time t = 5, i.e.,

Θ(x, y, t) = Θ
(

Lx

2
,

Ly

2
, 5
)

, u(x, y, t) = u
(

Lx

2
,

Ly

2
, 5
)

, v(x, y, t) = v
(

Lx

2
,

Ly

2
, 5
)

.
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Figure 2. Illustration of mesh size independence at mid-point of the domain and t = 5.
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Figure 3. Illustration of time-step size independence at mid-point of the domain and t = 5.

5. Computational Results

To improve computational costs, we need to avoid using very small time-step (∆t)
values. The versatility of our semi-implicit finite difference algorithm means that we can
take ξ = 1, which in turn would allow us to use large time-steps. As a comparison, an
explicit finite difference method (with ξ = 0) would require extremely small time-step sizes.

Even though our choice of ξ = 1 allows for larger time-step sizes and hence low com-
putational costs, we need to balance this with the requirements of minimizing the numerical
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factorization errors as given by the conditions of Equation (14). We will, therefore, employ
reasonably low time-step sizes that will still keep the computational costs manageably low
while also ensuring that the numerical factorization errors remain negligibly small.

Unless otherwise stated, we will discretize the domain Ω into a 201× 201 mesh grid
and employ the parameter values,

Ly = 0.5, Lx = 50, α = 0.1, β = 10, Gr = 0.1, Pr0 = 25, Re = 1, n = 0.5, ∆t = 10−4. (16)

Figures 4–6 show the time development of solutions until steady states are reached.
The figures are plotted along the main diagonal, which connects the hottest and coldest
corners, i.e., the (x, y) points (0, Ly) and (Lx, 0).

0 5 10 15 20 25 30 35 40 45 50

Main diagonal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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t = 1

t = 2

t = 4

t = 5

Figure 4. Time development of steady-state temperature profiles.
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Figure 5. Time development of steady-state axial velocity profiles.
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Figure 6. Time development of steady-state transverse velocity profiles.

Figures 7–12 give the steady-state surface plots and respective contour plots of the
temperature and velocity components at time t = 10. The results confirm the prediction, as
summarized in the introduction, that the velocities associated with natural convection flow
are relatively low.

Figure 7. Surface plot of the temperature profile at t = 10.
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Figure 8. Contour plot of the temperature profile at t = 10.

Figure 9. Surface plot of the u-velocity profile at t = 10.
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Figure 10. Contour plot of the u-velocity profile at t = 10.

Figure 11. Surface plot of the v-velocity profile at t = 10.
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Figure 12. Contour plot of the v-velocity profile at t = 10.
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6. Parameter Dependence of Solutions
6.1. Dependence on Shear-Thinning Parameter, n

The dependence of solutions on the shear-thinning parameter n is illustrated in
Figures 13–15. As already predicted and indeed demonstrated in the previous subsec-
tion, the velocities associated with natural convection flow are relatively low. This, in turn,
implies very low shear rates within the channel flow. This means that the pseudoplastic
viscosities would be much larger than the corresponding Newtonian viscosity since,

(1 + βγ̇n)� (1 + β) ⇒ 1
1 + β

� 1
1 + βγ̇n .

The lower viscosity Newtonian fluid, therefore, leads to much larger velocities than
the corresponding pseudoplastic fluids as illustrated in Figures 14 and 15. The fluid
temperature is largely influenced by the boundary conditions of the heated and cooled
walls and hence is not significantly affected by the changes to the fluid viscidity, see
Figure 13.
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0.5
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Figure 13. Temperature dependence on n at t = 5.
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Figure 14. Axial velocity dependence on n at t = 5.
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Figure 15. Transverse velocity dependence on n at t = 5.

6.2. Dependence on Non-Isothermal Viscosity Parameter, α

The dependence of solutions on the non-isothermal viscosity parameter α is illustrated
in Figures 16–18. The behaviour of solutions is similar to that with respect to the shear-
thinning parameter n and hence is similarly explained. In particular, higher values of α
result in lower fluid viscosity and vice versa.
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Figure 16. Temperature dependence on α at t = 5.
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Figure 17. Axial velocity dependence on α at t = 5.
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Figure 18. Transverse velocity dependence on α at t = 5.

6.3. Dependence on Grashof Number, Gr

The dependence of solutions on the buoyancy parameter, i.e., the Grashof number,
Gr, is illustrated in Figures 19–21. The Grashof number represents the driving force for
the fluid velocity. In particular, the fluid velocity is driven purely by natural convection
effects and hence should remain zero when there is no convection (Gr=0) and other-
wise increase with increasing Gr. These observations are illustrated in Figures 20 and 21.
As already observed, the fluid temperature is driven largely by the boundary conditions,
and hence the parameter Gr, being connected to the fluid velocity, has limited influence on
fluid temperature as shown in Figure 19.
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Figure 19. Temperature dependence on Gr at t = 5.
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Figure 20. Axial velocity dependence on Gr at t = 5.
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Figure 21. Transverse velocity dependence on Gr at t = 5.
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6.4. Dependence on Prandtl Number, Pr

The dependence of solutions on the Prandtl number Pr is illustrated in Figures 22–24.
Unlike the Grashof number, the Prandtl number represents the driving force for the fluid
temperature. In particular, higher Prandtl number values lead to lower fluid temperatures
and vice versa, as illustrated in Figure 22. Given that the fluid velocity, in the setting of
natural convection flow, is directly influenced by the prevailing temperature conditions,
the behaviour of the fluid velocity, therefore, mirrors that of the temperature as shown in
Figures 23 and 24.
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Figure 22. Temperature dependence on Pr at t = 5.
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Figure 23. Axial velocity dependence on Pr at t = 5.
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Figure 24. Transverse velocity dependence on Pr at t = 5.

6.5. Dependence on Reynolds Number, Re

The dependence of solutions on the Reynolds number Re is illustrated in Figures 25–27.
The Reynolds number plays significant roles in the source terms of both the fluid velocity
and fluid temperature. In the fluid velocity, the Reynolds number plays an inverse role
to that of the Grashof number and hence increased Reynolds number leads to lower fluid
velocities and vice versa. this is illustrated in Figures 26 and 27. In the fluid temperature,
the Reynolds number plays a similar role to that of the Prandtl number and hence increased
Reynolds number leads to lower fluid temperature and vice versa, see Figure 25.
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Figure 25. Temperature dependence on Re at t = 5.
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Figure 26. Axial velocity dependence on Re at t = 5.
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Figure 27. Transverse velocity dependence on Re at t = 5.

7. Conclusions

We successfully investigated, numerically, a nonlinear boundary value problem (BVP)
that models the natural convection flow and heat transfer to a non-Newtonian pseudoplastic
fluid in a long thin channel by recasting the BVP as an initial boundary value problem
(IBVP). Our numerical algorithms are based on efficient and convergent semi-implicit
time-space finite difference methods. The fluid temperature and velocities develop in
time, from the zero initial conditions inside the channel until steady states are reached.
At a steady state, the solutions both increase or decrease with decreasing (respectively
increasing) Prandtl and/or Reynolds numbers. Changes in those flow parameters that
are directly linked to the fluid velocity, such as the Grashof and viscosity parameters, are
shown to have a significant effect on the fluid velocity but not on the fluid temperature.
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Nomenclature
Variables
η Viscosity
ρ Density
k Thermal-conductivity
t Time
Θ Temperature field
U = (u, 0, v) Velocity field
x = (x, y, z) Rectangular coordinates
Parameters
α Thermal-conductivity parameter
β non-Newtonian parameter
n non-Newtonian parameter
Abbreviations
Gr Grashof-number
Pr Prandtl-number
Re Reynolds-number
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