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Abstract: The beam analysis model and the initial imperfection are predominant factors in analyzing
the lateral buckling behavior of submarine pipelines under high temperature. However, the existing
beam models do not consider the inhibition provided by the virtual anchor point of the pipeline.
In this study, a fixed-fixed beam model is introduced to simulate the lateral buckling response of a
submarine pipeline. This model considers the suppression tension provided by the virtual anchor
point during the pipeline feeding-in process, which better reduces the buckling response phenomenon
of the pipeline. Based on the assumption of rigid-plastic pipe-soil interaction, the analytical solution
of the buckling development of pipeline under full-contact repetitive cosine imperfection is derived.
The effectiveness of the fixed-fixed model is verified by comparing with the analytical solutions
in other literature. The influence of the imperfection model, the temperature difference, and the
soil resistance on the pipeline buckling is investigated. Finally, the size effect of the pipeline on the
effective axial force development is discussed. The results show that the pipeline undergoes stress
vibration under tensile force, and the frequency and density of the pipeline stress vibration increase
with the increase of the initial defect amplitude. Increasing the diameter–thick ratio will significantly
increase the bending amplitude and bending stress of the pipeline. Attention should be paid to the
fatigue damage caused by continuous stress mutations during pipeline buckling, which could further
lead to the structural destruction of the pipeline.

Keywords: submarine pipeline; lateral buckling; initial imperfection; fixed-fixed beam

1. Introduction

Submarine pipeline running at high temperature and high pressure will trigger global
thermal expansion. When the axial pressure caused by the thermal expansion and the
pressure increase is greater than the critical axial pressure of the pipeline, local buckling,
fracture, fatigue, or excessive displacement of the pipeline would occur [1]. During the
manufacturing or laying of submarine pipelines, imperfection would occur, which may
develop into weak surfaces when the pipeline buckles. Therefore, it is necessary to study
the lateral buckling behavior of submarine pipelines containing imperfection.

To date, considerable efforts have been made to improve the analytical understanding
of the thermal buckling behavior of defective pipelines. Hobbs [2] first derived the analyti-
cal solution for both lateral and upheaval buckling of ideal submarine pipeline embedded
on ideal rigid foundation, and deduced the corresponding critical axial force, buckling
displacement amplitude, and bending moment based on the assumption of buckle mode.
Taylor and Tran [3] conducted both theoretical analysis and experimental study on the axial
buckling of pipelines under high temperature and high pressure. Three different initial ge-
ometric imperfections were investigated to obtain the critical flexion load of the submarine
pipeline. In addition, Sriskandarajah et al. [4] analyzed the influence of the geometry of
initial imperfection on the lateral buckling of submarine pipelines, and obtained the critical
axial force of the lateral buckling of pipeline laying under different initial imperfection.
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Zeng et al. [5]. derived the analytical solution of the critical buckling load considering the
initial geometric imperfection size, imperfection waveform, and geometric instraightness
(ωm0/L0) of the initial imperfection. Furthermore, Wang et al. [6] established an analytical
solution for local buckling in unburied pipelines based on a nonlinear pipe-soil interaction
model, and found that the snap-through required higher temperature differences between
the pipes and the environment. Liu et al. [7] and Shi et al. [8] established an analytical solu-
tion for the high-order lateral overall buckling of the pipeline considering the single-arch
symmetric initial imperfection and the double-arch antisymmetric initial imperfection.

For the analytical model of pipeline, pipeline has been modeled as moving beams
placed on a rigid [9] or flexible [10] seabed. Hunt et al. [10] proposed the lateral buckling
control equation of elastic rods with bending stiffness on buckling foundations, and since
then, which provides the basis for most theoretical studies on the thermal buckling of sub-
marine pipelines. Based on the Euler–Bernoulli beam theory, Kiani [11] and Wang et al. [12]
studied the buckling of the beam under different types of thermal loads. Fu et al. [13]
studied the thermal buckling of the pipe as a refined beam model, and analyzed the lateral
shear deformation, volume fraction, and internal radius of the pipeline on the critical
buckling. Mudhaffar et al. [14] analyzed the thermal buckling behavior of the pipeline at
low temperature based on a viscoelastic plate model. Emam [15] discussed the formulation
for the nonlinear buckling problem of buckling loads and posterior buckling states.

In recent years, scholars have found that when the pipeline releases the internal axial
force through buckling deformation, a virtual anchor point (VAS) will form at the end
of the slide segment [16,17]. The virtual anchor point divides the pipeline into multiple
independent buckling short pipes. All existing analytical solutions for lateral buckling
assume that the pipeline have infinite length, which indicates that the axial force at the
end of the sliding segment is fully constrained. The axial force at the virtual anchor points
between multiple buckles is less than the fully constrained axial force, and does not satisfy
the basic assumption of the classical analytical solution. This problem belongs to the lateral
buckling problem of the short pipe, and the classical analytical solution of the long tube
is no longer applicable. In this study, a fixed-fixed beam model is introduced where the
pipeline is regarded as a limited long beam, and both ends should keep a fixed distance
during the buckling process. Compared to the existing studies, the fixed-fixed model
additionally considered the tensile force generated in the pipe support section during the
pipe buckling, which is suitable for the lateral buckling of the short pipes.

On the other hand, the finite element method (FEM) is also widely used in the study
of lateral buckling behavior of submarine pipelines. Walker et al. [18] studied the influence
of soil friction coefficient, material properties of the pipeline, and the maximum vertical
strain of the virtual anchor spacing (VAS) on the global thermal buckling of the submarine
pipeline. Based on the calibrated numerical simulation method, Haq et al. [19] studied the
effect of external hydrostatic pressure, internal pressure, thermal expansion, and geometric
instraightness (ωm0/L0) of the pipeline. Liang et al. [20] studied the lateral buckling of
submarine pipelines laid on seabed pits and trenches. Zhang et al. [21] studied the effect of
the initial imperfection on the critical axial force of the transverse buckling, and proposed a
simple formula for the critical force calculation.

Both the initial imperfection and the beam analysis model have a great influence on
the results of the buckling behavior analysis. In this study, a fixed-fixed beam model,
considering the influence of initial imperfection, is introduced to study the lateral buckling
problem of a pipeline with virtual anchor points. The analytical solution is first derived
based on the full contact imperfection model and the fixed-fixed beam model. The analytical
solution results are compared with numerical results from other scholars. Then the size
effects of the short pipeline and the effects of the imperfection are discussed in detail, and
the effect of the soil constraints on the lateral buckling of pipelines embedded on different
seabed is studied.
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2. Mathematical Model and Assumptions

Due to the incomplete structure of the pipeline and the initial imperfection, pipelines
are more prone to lateral buckling with the decrease of critical temperature difference. As
shown in Figure 1, when full-contact repeat imperfection is considered, the imperfection
profile can be expressed as:

ω0(x) =
ωm0

2
sin(λex) 0 ≤ x ≤ L0 (1)

where λe = π/L0; ωm0 is the amplitude of imperfection and L0 is the half wavelength of
imperfection.
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For submarine pipelines, there is a temperature difference ∆T between the fluid
flowing inside the pipe and the environment. If the pipe can expand, the axial compressive
strain caused to thermal expansion will accumulate at the axial resistance between the pipe
and the seabed. Therefore, within the online elastic response range, the axial compressive
force P0 corresponding to the axial strain should be written as:

P0 = AEα∆T (2)

where E is the elastic modulus, A is the cross-sectional area of the pipeline, α is the linear
thermal expansion coefficient.

The lateral buckling behavior of the pipeline is simulated using the linear beam theory.
The equation controlling the lateral imperfection of the beam is [22]:

EI
d4ω

dx4 + P
d2ω

dx2 = −FA − P
d2ω0

dx2 (3)

where P is the effective axial compression force at the center of the buckle, FA is the axial
soil resistance, ω is pipeline buckling amplitude.

In this study, the sea bed is assumed to be fully rigid. A new parameter λ can then be
introduced as follows:

λ2 =
P
EI

(4)

The general solution of the equation can be written as:

ω(x)= A1+A2x+A3 cos λx+A4 sin λx− FA
2λ2EI

x2 +
ωm0λ2

2(λ2
e − λ2)

sin λex (5)

The pipeline at the anchor point (x = 0) of the buckling amplitude is inextensible,
unshearable. So, the lateral deflection and slope must be zero.

ω(0) = 0

dω
dx (0) = 0

(6)



Appl. Sci. 2023, 13, 3227 4 of 17

At the other end of the pipeline, buckling amplitude, shearing force, and bending
moment are zero at x = LS. 

ω(LS) = 0

dω
dx (LS) = 0

d2ω
dx2 (LS) = 0

(7)

Combining Equations (5)–(7), the solved equation coefficients are:
A1 = FA

λ4EI

A2 = − FA LS
λ2EI(1−λ cos λLS)

+ ωm0λ2λe(λ cos λLS−cos λeLS)
2(λe2−λ2)(1−λ cos λLS)

A3 = − FA
λ4EI

A4 = − FA LS
λ3EI(1−λ cos λLS)

+ ωm0λλe(2λ cos λLS−1−cos λeLS)
2(λe2−λ2)(1−λ cos λLS)

(8)

The buckling part of the pipe is regarded as a separate short pipe and divided into three
parts, namely the buckle section (0 < x < L0 + ∆L), the sliding section (L0 + ∆L < x < LS), and
the anchor section (x > LS). As shown in Figure 2, the central part of the pipeline will move
horizontally during lateral buckling. Then, when the pipeline enters the buckling section, the
effective axial compression force of the pipe drops, pulling more pipes into the buckling.
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Based on the profile of axial compressive force shown in Figure 3, the distribution of
axial compressive force P(x) is written as:

P(x) = P− N + FAx (0 ≤ x ≤ LS) (9)

where N is the tension force corresponding to the beam tension. The axial friction force can
be expressed as:

FA = µAq (10)

where µA is the axial friction coefficient between pipeline and seabed, and q is the sub-
merged weight per unit length of the pipeline.

Combining Equations (1), (3) and (19), the axial force balance is obtained:

AEα∆T = EIλ2 − N + µAqLS (11)

Burgreen [23] and McDonald [24] proposed a beam model considering the linear
elastic isotropic response of beam under compressive axial force P0. If the pipeline end
remains fixed in space and the axial compression load exceeds the critical buckling load,
lateral buckling of the pipeline occurs. During lateral buckling, the buckling area gradually
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expands along the pipeline length, and the pipeline experiences planar feeding-in during
lateral buckling. As shown in Figure 4, the effective compression load at the support of
the pipeline reduces the tension generated along the buckling, reducing the initial axial
compression load and thus reducing the support reaction [25].
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condition.

Assuming that the pipeline is a limited long beam, the bending of the beam is allowed
while the two ends remain fixed. Based on this assumption, the pipeline buckling shows
a midplane stretching phenomenon when the effective axial stress exceeds the buckling
stress. In the range of second-order effects, the midplane stretch due to buckling is defined
as the feeding-in segment length and can be expressed as:

L1 =
1
2

∫ LS

0

dω

dx
dx (12)

Based on Equation (12), the corresponding tensile force N at the beam supports can be
given by Hooke’s law [25]:

N =
EA
L

L1 (13)

For the eigenvalue problem of beam vibration under temperature load, there is the
following eigenvalue equation:

(P0 + 4ωL
2) sin k1 sin λk2 = 0 (14)

where ωL is the linear natural frequency and k1 and k2 are two constants given by: k1 =
√

1
2 (P0 +

√
P02 + 4ωL

2)

k2 =
√

1
2 (−P0 +

√
P02 + 4ωL

2)
(15)

Since ωL must be positive, Equation (14) yields k1 = nπ and the linear natural frequency
of the first mode is given by:
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ωL
2 = π2(AEα∆T− π2) (16)

For the fixed-fixed beam, the linear natural frequency of the first mode can be obtained
by solving the following transcendental equation:

2k1k2(cos k1 cos λk2 − 1) + (k1 − k2)(k1 + k2) sin k1 sin λk2 = 0 (17)

Considering the bending stress distribution along the pipeline, the moment M along
the bending pipeline is:

M = EI(
dω2

d2x
− dω0

2

d2x
) (0 ≤ x ≤ LS) (18)

It is concluded that the corresponding bending stress σm along the bending pipe is:

σm =
MD
2I

(19)

where D is the pipeline external diameter.
The maximum axial compression stress σm along the pipeline is composed of the

maximum bending stress σMm and the axial compression stress σP:

σm = σp + |σMm| (20)

The axial compression stress σP is:

σp =
P0

A
(21)

The maximum bending stress σMm is:

σMm =
MmD

2I
(22)

3. Comparison

Based on the cantilever beam assumption [26] and the simplified fixed-fixed beam
assumption [27], a fixed-fixed beam model is proposed to simulate the buckling response
of short pipe. As shown in Figure 5, the analysis results are first compared with numerical
results. The trend of the buckling distribution in Figure 5a is roughly the same as the
distribution in the study of Lagrange [26] and Wang [27]. It can be seen that the maximum
value of buckling (ωm) is less than that in the study of Lagrange and Wang under the
suppression of the buckling deformation. Meanwhile, the relationship between the effective
axial force and the maximum value of the buckling is shown in Figure 5b. The effective
axial force becomes larger as the maximum value of the buckling increases. But when
the fixed-fixed beam model is considered, the posterior buckling behavior of the pipeline
will be suppressed, so λ2 decreases later when compared to the research of Lagrange. At
the same time, due to the stress mutation of the pipeline under thermal vibration, the
relationship between the effective axial force and the maximum value of the buckling in
this study is not smooth. Therefore, the analytical model in this paper is reliable to simulate
the thermal buckling of pipelines.
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Figure 5. Comparison of buckling development of pipelines in different studies: (a) Comparison of
the buckling distributions; (b) comparison of the buckling maximum to λ2 [26,27].

4. Parametric Study
4.1. Initial Imperfection Effect

In this section, the effect of the amplitude of the initial imperfection ωm0 on the lateral
buckling configuration and the typical lateral buckling behavior is analyzed. The pipeline
parameters, pipeline properties, soil properties, and soil parameters are kept constant, as
shown in Table 1.

Table 1. Parameters.

Parameter Value Unit

Elastic modulus E 206 GPa
External diameter D 0.65 m

Wall thickness t 0.0227 m
Steel density ρ 7850 kg/m3

Moment of inertia I 1.509 × 10−3 m4

Coefficient of thermal
expansion α

1.1 × 10−5 ◦C−1

Axial friction coefficient µA 0.5 -

The buckling amplitude development and bending stress distribution of the pipeline
with the variance of ωm0/L0 are shown in Figure 6. As the initial imperfection ratio
increases, the global buckling amplitude of the pipeline also increases. From the buckling
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deformation shown in Figure 6a, the initial imperfection ratio can greatly increase the
buckling amplitude of the pipeline. The pipeline still deflects in the imperfection center
as ωm0 increases. Therefore, the imperfection is the weak part of the pipeline, and stress
concentration would occur at the imperfection.
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Figure 6. Effect of the initial imperfection on the buckling configuration: (a) Influence of ωm0 on
deformation; (b) influence of ωm0 on bending stress.

In Figure 6b, the maximum bending stress is referred as σMm. When the initial
imperfection exists, the maximum axial compressive stress σMm increases significantly
with increasing initial imperfection ratio. With the increase of the initial imperfection, the
maximum bending stress value moves in the positive direction of LS. This is because as
the imperfection locates closer to the center of the pipeline, the stress is more likely to be
affected by the initial imperfection amplitude. Moreover, the feeding-in amplitude increases
with the increase of the imperfection during the buckling of the fixed-end pipeline.

λ2 is expressed as a dimensionless form of the effective axial compressive force, and
the values of N and λ2 can be obtained by solving the transcendental equations to obtain
their relationship with the pipeline virtual anchor segment length LS. During the lateral
buckling of the pipeline, both λ2 and the pull force N by the pipeline feeding-in will change
with the initial imperfection ωm0. They are related to the pipe virtual anchor segment
length LS. As can be seen from Figure 7a, as ωm0 increases, the N values will also decrease
nonlinearly. This means that the bearing capacity of the pipeline decreases as the initial
imperfection ratio increases. When the initial imperfection ratio remains unchanged, the
bearing capacity increases from LS/L0 = 3 to LS/L0 = 8 and the corresponding tensile force
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N decreases by 0.21 MN. The change in tension is more drastic, and its influence cannot
be ignored.
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Figure 7. Changes in concentration forces during buckling under different ωm0 conditions: (a) tensile
force N; (b) parameter λ2.

It can be clearly seen that local stress vibration occurs with the decrease of LS. And
with increasing tension of the pipeline, the lateral buckling of the pipeline maintains the
feed. When the pipeline is perfect, the local stress vibration is not obvious. However, when
the initial imperfection is considered, the vibration becomes obvious. During continuous
mutation, the pipeline has a fatigue effect. At the same time, as the influence of ωm0
increases, the vibrations effect becomes more obvious. As ωm0 increases, the frequency of
the stress vibrations becomes denser and the buckling amplitude increases, which indicates
stronger vibrations effect.

The rise of λ2 implies the rise of the effective axial force, which leads to a greater
probability of pipeline buckling. In Figure 7b, it can be seen that λ2 increases with increasing
initial imperfection ratio, thus increasing the possibility of lateral buckling of the pipeline.
Similar to Figure 7a, the same local mutation also exists with the nonlinear growth of λ2.
It can be found that the imperfection amplitude ωm0 has a great influence on the thermal
buckling behavior. It can be found that both the initial imperfection of the pipeline and the
increasing amplitude of the imperfection will increase the risk of lateral buckling of the
pipeline, and have an obvious impact on the thermal vibration of the pipeline.
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4.2. Pipeline Design Size Effect

In this section, the effect of pipeline size on the lateral buckling of submarine pipelines
is discussed. The pipeline size considered in this study includes the diameter–thick ratio
and the virtual anchor segment length (VAS). The amplitude and the initial half-wavelength
of the initial imperfection remain constant.

4.2.1. Virtual Anchor Segment (VAS) Length Effect

For pipelines with no installed triggers, the virtual anchor segment length LS depends
on the soil resistance. For pipelines that have triggers installed to control lateral buckle,
the LS is the space between the two triggers. The buckling deformation and amplitude of
bending stress under different virtual anchor section lengths are shown in Figure 8a,b.
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Figure 8. Effect of the virtual anchor segment length on the buckling configuration (∆T = 70 ◦C):
(a) deformed shapes; (b) bending stress.

When the length of the anchor section of the pipeline becomes larger, the amplitude
of the buckle along the corresponding point of the pipeline increases, and the buckling
extreme point will also move in the positive direction of the x-axis. This is followed by a
decrease in the sliding segment distance when the trigger spacing is unchanged. As can
be seen from Figure 8b, as the anchor segment lengths LS of the pipeline keeps growing,
the maximum bending stress increases, and the wavelength of the overall bending stress
dσMm1 becomes shorter. This leads to more drastic changes in the bending stress over a
local area. At the same time, as the anchor segment lengths LS becomes longer, the bending
stress waveform moves toward the fixed point position. Therefore, the sensitivity of the
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bending stress increases with the design length of the pipe, and the external bending stress
is higher. This phenomenon means that under the fixed-fixed beam model, the probability
of buckling instability is greater. Therefore, increasing the spacing of the triggers increases
the risk of the pipes failure.

4.2.2. Diameter–Thick Ratio Effect

The effect of pipeline diameter–thick ratio on lateral buckling is analyzed at a constant
trigger length (LS = 200 m). As shown in Figure 9, the increase in the diameter–thick ratio
leads to increasing bending stress, but the global distribution of bending stress remains
unchanged. With the same wall thickness, the increase in pipeline external diameter would
result in increasing liquid flow volume in the pipeline, as a result, the axial force and the
bending stress of the pipeline increase. Since the effective axial force provided by the overall
thermal expansion of the pipeline is evenly distributed along the pipeline, the increase in
the flow volume does not change the distribution state of the axial force. At a constant
temperature of ∆T = 70 ◦C and a constant wall thickness of t = 30 mm, the external diameter
D affects the maximum axial compressive stress, as shown in Figure 10. The maximum
axial stress increases linearly with the pipeline diameter–thick ratio. As shown in Figure 11,
as the feeding-in section length increases, the received effective inhibitory tensile stress
increases, and the anchoring effect of the pipeline is more obvious. The growth rate of
tensile stress increases with the diameter–thick ratio. Therefore, large diameter pipeline are
more likely to fail compared to small diameter pipeline during lateral buckling.
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Figure 9. Effect of the external diameter D on bending stress.
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4.3. Temperature Effect

In this section, the influence of temperature rise load on the lateral buckling structure
and typical lateral buckling behavior of submarine pipeline is discussed. The initial
imperfection amplitude, initial half-wavelength, pipeline design parameters, pipeline
appropriate relationships, soil characteristics, and those considered in Table 1 remain
unchanged. The effects of temperature difference inside and outside the pipeline on the
pipe buckling amplitude and bending stress distribution are shown in Figure 12a. In the
constant imperfection condition, the buckling amplitude increases with the rise of pipeline
temperature. The buckling state still shows a symmetric distribution at the imperfection.
However, the feeding-in length decreases with increasing temperature, which reduces the
suppression of the anchor point.

In Figure 12b, when the temperature difference increases, both the maximum axial
compression stresses σMm increase significantly. At the same time, an increase in the
temperature difference causes the bending stress extreme point to move in the positive
direction of LS, and the value of dσMm becomes smaller.

As can be seen from Figure 13, λ2 increases linearly with the anchor point length as
the temperature increases. At the same time, the effective axial force will grow faster with
the increase of temperature, which risks the stability of the pipeline.

As shown in Figure 14, in the thermal vibration model, the vibration frequency of the
pipeline increases with increasing temperature, and the thermal expansion force will cause
the thermal vibration effect of the pipeline material. At the same time, the increase rate of the
linear natural frequency becomes faster with the increase in the pipeline diameter–thick ratio.

4.4. Soil Resistance Effect

Soil resistance is a key factor affecting the lateral buckle shape of the pipeline. Previous
studies showed that the high transverse resistance was beneficial for the lateral buckling
stability, but would lead to increasing bending moment [28–31]. Figure 15 shows the
lateral displacement and bending moment of the pipeline under different soil resistance
coefficients µA. As shown in Figure 15a, with the increase of soil resistance, the lateral
buckle near the middle part of the pipeline tends to accumulate, and the maximum buckling
amplitude decreases. Moreover, the suppression of the deformation is more serious with
increasing distance to the midpoint. As can be seen from Figure 15b, the increase in
soil resistance will increase the distance between the extreme value and the anchor point
while increasing the maximum value of the bending moment, and further inhibiting the
deformation. This result is also in line with the actual engineering situation. As can be seen
from Figure 16, an increase in soil resistance increases the effective axial force. With the
absence of initial imperfection, the increase of soil resistance will also increase the stress
mutation of the pipeline.
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Figure 12. Effect of the temperature difference on the buckling configuration: (a) influence of ∆T on
deformation; (b) influence of ∆T on bending stress.
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Figure 13. Changes in concentration forces during buckling under different ∆T conditions (ωm0 = 0).
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Figure 14. The linear natural frequency of pipeline varies with temperature difference under different
diameter–thick ratio.
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Figure 15. Effect of the solid resistance on the buckling configuration: (a) Influence of µA on
deformation; (b) influence of µA on bending stress.
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5. Conclusions

An analytical solution is provided for the lateral buckling of the seabed pipeline based
on the fixed-fixed ends beam model, considering the initial imperfection. The distribution
of the external stress and displacement is determined by comparing the different extreme
values of the axial compression stress and displacement amplitudes. The influence of the
pipeline diameter–thick ratio effect on the buckling behavior is then analyzed. A detailed
parametric analysis investigates the effects of temperature loading, imperfection amplitude,
soil resistance on lateral buckling development and thermal vibration. The following
conclusions can be drawn:

1. When the virtual anchor section divides the pipeline into multiple short sections, the
thermal vibration phenomenon can be found based on the fixed-fixed beam model.
The thermal vibration of the beam will cause the fatigue effect when the pipe bears
the thermal load or the axial load, reducing the service life of the pipe. Therefore,
when studying the lateral buckling problem of the pipeline, attention should be paid
to the thermal vibration effect of the pipeline.

2. With increasing initial imperfection amplitude, the displacement amplitude and
bending stress of the pipe increase linearly and the maximum bending stress position
moves toward the position of the imperfection. At the same time, with increasing
initial imperfection, the frequency and density of the pipeline stress vibration also
increases, making the stress mutation effect more obvious. Attention should be
paid to the fatigue disruption caused by continuous stress mutations in the pipeline
during buckling.

3. Virtual anchor segment length (VAS) and diameter–thick ratio of the pipeline have an
obvious influence on the behavior of lateral buckling. Increasing the diameter–thick
ratio significantly increases the bending stress of the pipeline, and the anchoring effect
of increasing the tensile stress on the pipeline. This is advantageous for the pipeline
stability. When lateral buckling of the pipeline occurs, there is an obvious size effect.
Therefore, in the pipeline design, the size effect of the pipeline must be considered.

4. With increasing temperature difference, the buckling amplitude and bending stress
increase linearly. In addition, the maximum bending stress point moves in the positive
direction of LS, making the stress response at the pipe imperfection stronger. The cor-
responding tensile force also increases linearly with increasing temperature difference.
Therefore, the pipeline running at high temperature is more likely to undergo lateral
buckling at the initial imperfection.

5. As the soil resistance increases, the buckling amplitude decreases, and the bending
stress increases accordingly. The maximum bending stress point moves toward the
imperfection. With increasing soil resistance, pipe buckling is less likely to occur.
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Therefore, it is prudent to prevent lateral buckling by increasing the effective friction
coefficient, such as by digging trench lines.
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