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Abstract: Hydro generation is the simplest and oldest method of electricity generation, with a century
of successful operation. Using a pump as a turbine (PAT) is an optimal solution for minimizing the cost,
particularly in low-head and small-scale hydro plants. Commercially available centrifugal pumps have
become a popular solution for small-scale hydro and pumped-hydro facilities owing to their simple
geometry, ease of operation, maintenance, and abundant availability in local markets. Variations in
the water flow in hydro facilities, such as pumped-hydro and small-scale hydro facilities, are common;
however, a PAT is unable to respond to variable flows because it is a fixed-speed device. To overcome
this problem, different techniques have been suggested by researchers: (a) a system of parallel PATs;
(b) geometrical modifications in the impeller of the PAT; and (c) power electronics-based variable
frequency drives. All the aforementioned techniques have limitations, such as low output, high cost,
complexity, transportation, and operation and maintenance. In this study, a simple and economical
technique is proposed to smooth the output of a PAT on variable/decreasing water flow profiles. In the
proposed technique, water columns connected in parallel (PWCs) are used to produce a pressurized
water flow, as they have a convergent nozzle at the outlet. The PWC creates more space for water, and
this additional mass of water boosts the water flow at the outlet. In this manner, the PWC technique
maintains the flow at the inlet of the turbine. A serial integration of five PWCs with the same dimensions
was conducted to inject the additional flow into the existing PAT penstock, governing a 37-kW generator.
The design flow was maintained at 192.1 L/s without any additional power usage at the inlet of the PAT,
and the output was smoothed even at the minimum water flow/head. Pump design and computational
fluid dynamics simulations were performed using ANSYS software, whereas generator simulations
were performed using MATLAB/Simulink software.

Keywords: energy resources; hydropower generation; small hydro; pump as turbine; PWC technique;
smooth output power

1. Introduction

Environmental effects, fear of the extinction of conventional energy sources (such as oil,
gas, nuclear, and coal), and the high running costs of these costs have compelled planners
toward renewable energy sources [1–4]. Among these resources, hydro energy contributes
to nearly 16% of the global energy mix [5,6]. However, extensive capital costs, danger to
aquatic life, significantly long construction times, and limited locations are the drawbacks
of hydro-generation technology. To overcome these drawbacks, new arrangements for
hydro facility construction, such as run-of-river, small hydro, and mini, micro, and pico-
hydro plants, have been studied [7–9]. These new arrangements of hydro technology have
reduced the initial cost, construction time, and environmental effects while increasing the
location spectrum for the construction of hydro plants.
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In pumped hydro storage (PHS) and small-scale hydro plants, using pumps in reverse
(PAT) instead of conventional turbines is preferable to minimize the capital cost [10–12].
However, commercially available pumps are not designed to function in reverse mode, and
if this mode is exercised, the pumps prove to be low-efficiency devices. Despite their low
efficiency, PATs are used in small-scale hydro-generation and PHS facilities [13]. The use of
PATs is abundant for numerous reasons, such as their low cost, bulk availability in local
markets, and ease of installation. Furthermore, no specialty is required for operation and
maintenance [14]. However, small-scale PHS and hydro-generation plants encounter flow
fluctuations for several reasons, including intermittent upstream inflows and the decrement
of the head in the upper reservoir of the PHS facility during generation. A PAT is unable
to respond to these flow fluctuations owing to its simple geometry, and the output of the
plant decreases. The design flow, which is obtained by the design head, determines the
maximum efficiency of a PAT. Variations in the flow from its original design flow, for any
reason, have an adverse effect on the output [15].

Researchers have adopted various methods to mitigate the adverse effects of flow
fluctuations on the output, such as parallel PATs of different capacities, geometrical modifi-
cations of a PAT, and power electronics-based variable frequency drives (VFDs). In parallel
PATs, when the flow is reduced and a PAT with a large capacity cannot deliver its rated
output, it is either manually or automatically turned off. A PAT with a lower capacity is op-
erated to minimize the adverse effects of flow fluctuations. However, the output is reduced
by the newly available water flow, and the cost increases owing to paralleling, thereby
making the design more complex [13,16]. Regarding the geometrical modifications of PATs,
different researchers have suggested certain design modifications of the impeller [13,17–22],
which better manage the variable flows. However, these modifications are unable to
manage all the flow variations, and the cost is increased. Power electronics-based VFDs
can provide any speed profile of variable flow inputs [23,24]. When the flow decreases,
which affects the output of the plant, the VFD changes the speed of the generator, and the
output of the plant becomes smooth. However, this method is significantly costly because
devices with high ratings are required, causing installation, operational, maintenance, and
transportation problems.

In this study, a simple technique is proposed to mitigate the adverse effects of flow
variations on the output of a plant. This study is novel because a parallel water column
(PWC) technique is used to smooth the output of a PAT system while maintaining the
water flow at the inlet of the PAT by acting as an auxiliary penstock. With this technique,
water columns connected in parallel are used with the existing penstock of a plant to inject
additional flow at the inlet of the PAT in the event of a decreasing flow. This additional
flow will maintain the smooth rated output of the plant, even at the minimum head. The
effectiveness of the PWC technique was confirmed by performing a simulation using
ANSYS software for the case study of a variable flow profile. Subsequently, based on the
output obtained from the PAT, the electrical output of the generator was analyzed using
MATLAB/Simulink software.

2. Materials and Methods

The details of the adverse effects of the flow fluctuations on the output of the PAT are
discussed herein, along with the basic concepts of the PWC theory for a better understand-
ing of the proposed PWC technique.

2.1. Effect of Flow Variations on the Output of PAT

The output of any hydro system is solely determined by the water flow, as given
below [14,25]:

Pout = ηρgHQ (1)

where Pout is the output power, η is the efficiency, ρ is the density of water, g is the
gravitational acceleration due to gravity (9.81 m/s2), H is the head, and Q is the water flow.
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The fluctuation of the flow “Q” varies the output of the hydro system. A smooth
output can be achieved while maintaining a constant flow, which can be accomplished
using the aforementioned techniques. A smooth output makes the system more efficient.
The effects of flow fluctuations on the efficiency of PAT are shown in Figure 1, in which
five scenarios were considered for the calculations based on a previous study [15]. Notably,
the total reduction in flow is 38.4 L/s, which causes a significant decrease of 6.62% in the
efficiency of the system. This decrease in plant efficiency is dangerous for the stability of
the system.
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The reduction in flow can be eliminated using the PWC technique. The basics of this
newly proposed technique are discussed herein.

2.2. Water Column Theory

The atmospheric pressure (0.1 MPa) is created by a column of air over the surface of
the earth. Similarly, water exerts pressure at its bottom, owing to the weight of water acting
vertically downward. A water column having a height of 10.3 m creates pressure that is
equal to the atmospheric pressure, that is, 101 kPa [26]; pressure is the force acting on an
area. Mathematically,

P = F/A (2)

where P is the pressure, F is the force, and A is the area. In this study, “A” indicates the
area of the water discharge. If the area of discharge decreases, then the pressure will
increase while the force remains constant, which is the weight of water working vertically
downward and is indicated by the following:

w = mg (3)

where w is the weight of water, m is the mass of water, and g is the gravitational acceleration.
Here, “g” is a constant, and the mass of water should be increased to increase the weight.
Traditionally, no arrangement can be used for the increment of the mass of water because
the penstock is a fixed entity and functions as a singular body. Therefore, flow fluctuations
threaten the stability of the system. Therefore, the PWC technique is presented in this
study. Increasing the number of PWCs allows more space for a larger mass of water, which
increases the force at the same height. In particular, the PWC technique makes the penstock
more flexible and can manage increased flows per the requirements.
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Alternatively, the pressure is inversely proportional to the area of the discharge area.
Therefore, to increase the pressure, the discharge area must be reduced. This reduction was
achieved using a nozzle to increase the pressure, which boosted the velocity of the water.

As the PAT is a low-head device, and this study is regarding low heads, only the Q
parameter, which indicates the discharge/flow of water, in Equation (1) can increase the
output of the PAT system. Mathematically,

Q = Av (4)

where Q is the water discharge, A is the area of the water discharge, and v is the velocity
of the water. According to the continuity equation, the flow in a closed system is always
constant. Mathematically,

Qı = Q2 (5)

where Qı is the flow through point 1, and Q2 is the flow through point 2. Furthermore,

Aı vı = A2 v2 => v2 = A1v1/A2 (6)

The inlet of the PAT is constant since it is a fixed body, and the only option for increas-
ing the value of Q through the PAT while maintaining the same height is by increasing the
velocity. The nozzle at the bottom, which has a velocity of “v2”, as indicated in Equation
(6), will increase the velocity of water, which will in turn increase the value of ‘Q’.

In this manner, as the number of water columns increases, Aı increases, which increases
v2. The PWC technique injects the additional flow at the inlet of the PAT in the event of
a flow decrease with the existing penstock of a plant; the adverse effects of the flow
fluctuations are filtered, which smooths the output of the PAT.

2.3. PWC Technique with the Design of Experiment

The PWC follows certain rules to produce an output. To understand the behavior
of the PWC, an experiment in which five water columns were connected in parallel was
conducted. This experimental design is called a “double-nozzle setup”, in which one nozzle
makes the main outlet, which injects the additional water into the existing penstock of the
PAT, while each water column has a separate nozzle. Computational fluid dynamics (CFD)
simulations were performed using ANSYS software R1 2021 [27]. The dimensions of the
PWC and specifications of the FLUENT solver are listed in Table 1.

Table 1. Dimension of the water columns and solver settings.

Dimensions/Settings Values

Head 10 m
Diameter of the outlet nozzle 0.0635 m

Upper diameter of each water column 0.4572 m
Diameter of the nozzle used at the bottom of

each water column 0.2286 m

Working fluid Water (liquid)
Outlet pressure 0 Pascals

Turbulence model k-ω (SST)
Density of water 1000 kg/m3

Boundaries
Inlet Velocity inlet

Outlet Pressure outlet
Wall function Standard

The geometrical dimensions of the PWC were composed in a design modeler, and the
settings were changed from solid to fluid, while meshing of the PWC was performed using
ANSYS meshing. A tetrahedral mesh was created using a patch-confirming algorithm, and
the span angle center was set to fine. Meshing of the PWC is shown in Figure 2, the details
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of which are provided in Table 2, including the meshing method, inflation layers, element
size, and number of elements per PWC.
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Table 2. Mesh report of PWC.

No. of PWC Element Size Method of Meshing Inflation Layers No. of Elements

1 40 Tetrahedrons 7 274,274

2 40 Tetrahedrons 7 358,456

3 40 Tetrahedrons 7 543,020

4 40 Tetrahedrons 7 736,088

5 40 Tetrahedrons 7 926,713

A mesh independence test was performed for two PWCs to obtain the optimal element
size and number of elements. Element sizes of 20, 30, 40, 50, 60, 70, 80, and 90 mm
were applied to create 1,477,215, 655,237, 358,456, 237,308, 174,459, 138,933, 100,099, and
77,206 mesh elements, respectively. The optimal element size was 40 mm, which was
selected for all the PWC simulation cases. A size of 40 mm yielded 358,456 elements for the
two PWCs, as proven by the grid independence test shown in Figure 3.
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In the experimental design, the dimensions of the PWCs were kept constant, while
the number of PWCs was increased individually. The velocity inlet was assigned as the
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boundary condition at the inlet of the PWCs, whereas the pressure outlet was assigned
at the outlet. The velocity and pressure produced in each case, which were processed in
CFD-Post, are illustrated in (a–e) of Figure 4.
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Two types of results were obtained from the experimental design study. First, the
output behavior of the PWC was determined, and a mathematical model was developed. If
the dimensions and output of the water column are known, the optimal number of PWCs
can be derived for any flow, velocity, or pressure profile. Second, the optimal number of
PWCs was derived for the aforementioned PAT, the water flow of which was variable at its
inlet owing to the variations in the head of the upper reservoir during generation.

The results of the flow, outlet velocity, and pressure were calculated in CFD-Post with
a function calculator, while the dimensions of the PWC were maintained to be the same;
only the number of PWCs was increased individually according to the requirements of the
design flow, as shown in Figure 5.
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2.4. Findings from the Design Experiment

The findings obtained from the design experiment are presented (Figure 5) while
developing a mathematical model to determine the output of the PWC.

Finding 1: Flow
The flow graph shown in Figure 5 demonstrates that the flow increases linearly as the

number of water columns increases. Mathematically,

F = Fi × n (7)

where F is the flow of water, Fi is the flow obtained from one water column, and n is the
number of PWCs used.

Finding 2: Velocity
The velocity of water also increases linearly as the number of water columns increases,

as shown in the velocity graph (Figure 5). The mathematical relationship between the
velocity and PWCs is as follows:

v = vi × n (8)

where v is the velocity at the outlet, vi is the velocity obtained from one water column, and
n is the number of PWCs used.

Finding 3: Pressure
The water pressure at the nozzle inlet increases with the square of the number of water

columns, which increases the water flow at the nozzle outlet. The pressure graph (Figure 5)
describes the mathematical relationship between the PWC and the generated pressure.
Mathematically,

P = Pi× n2 (9)

where P is the total generated pressure, Pi is the pressure obtained from one water column,
and n is the number of PWCs used in any setup.
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3. Optimal Number of PWCs for a Smooth Output of the PAT

Based on Section 2.1, the decrease in the flow of the PAT is 38.4 L/s, for which,
according to Equation (7), a total of five PWCs with a flow of 8 L/s each are required to
smooth the flow at the inlet of the PAT. The PWC dimensions used for this purpose were
the same as those shown in Table 1. Thus, the outlet nozzle of the PWC design becomes an
additional inlet of the PAT, injecting the flow into the existing penstock, which is required
for a particular stage of operation. Initially, the flow through the turbine was a design
flow, and no change was required. As the flow decreases, the output also decreases. One
water column is added by the system to acquire the design flow; if the new flow through
the turbine meets the design flow, no further water column will be added by the system.
However, considering a further deviation from the smooth output, another water column
is added to the system to check whether the new scenario provides a smooth output. No
changes are required if the new output is smooth. These five PWC were added to the
system according to the flowchart shown in Figure 6.
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The integration of the five PWCs with the existing PAT penstock and the injection of
an additional flow at the inlet were conducted in ANSYS, as shown in Figure 7.
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As the number of PWCs is increased according to the demand, the flow is maintained
at approximately the designed value, as listed in Table 3.
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Table 3. Flow profile of PAT before and after the addition of the PWCs.

Flow (L/s) Reduced Flow (L/s) PWC Added
(8 L/s Each)

Additional
Flow (L/s) New Flow (L/s)

192.1 Nil No Nil 192.1
182.2 9.9 1 8 190.2
172.9 19.2 2 16 188.9
167.1 25 3 24 191.7
153.7 38.4 5 40 193.7

4. Torque Calculation and Generator Behavior

The aforementioned flow profile produces torque in the PAT, which is applied as an
input to the generator to monitor its output. Simulations were performed using ANSYS
and MATLAB software.

4.1. Torque Produced by PAT on Different Flow Values

A pump with a flow of 192.1 L/s was designed using the ANSYS (Vista CPD) tool,
consisting of a volute and impeller with six blades, as shown in Figure 8. A flow analysis
through PAT was conducted in ANSYS CFX [13,28], in which water was used as the
material, and the standard atmospheric pressure was considered to be one atm.
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Table 4. Mesh report of the pump.

Domain Nodes Elements Tetrahedra Wedges Hexahedra

R1(Passage) 663,175 627,640 0 0 627,640
S1(B75) 82,927 258,746 165,196 93,550 0

All Domains 746,102 886,386 165,196 93,550 627,640

The mesh independence is checked for the pump and eight different cases with regard
to. element numbers, which are obtained by changing the element size and global size
factor for the volute and impeller, respectively. Element sizes of 15, 20, 25, 30, 35, 40, 45,
and 50 mm were applied for the volute in meshing, yielding 330,438, 281,176, 258,746,
248,172, 240,762, 237,168, 234,902, and 232,452 elements, respectively. In contrast, the
global size factor was the main parameter that was manipulated for impeller meshing,
achieving a range of eight element numbers. Different global size factors for the impeller
were assigned in TURBO GRID; the 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 sizes produced
141,792, 203,553, 280,080, 385,118, 501,128, 781,482, and 1,019,900 elements, respectively.
The output parameter was the velocity at the outlet, which is demonstrated by the mesh
independence test shown in Figure 10; 886,386 elements were selected for the simulations,
which were produced by a 25-mm element size and a 1.3 global size factor.
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Figure 10. Meshing independency test of the pump.

The steady-state boundary conditions for this simulation were set for the PAT. The
stationary (S1) domain is the volute, while the rotating (R1) domain is the impeller of the
pump. The inlet was assigned a boundary condition for the mass flow, while the outlet was
the pressure, and the standard atmospheric pressure was assigned. The blade and all other
boundary walls were assigned a boundary condition (no slip). A frozen-rotor mixing model
was adopted for the interface between S1 and R1. The SST turbulence model was applied
for the flow analysis, while in the solver control panel, a high resolution was applied as
an advection scheme, 1.0 × 10−5 for convergence, first order for numeric turbulence, and
SIMPLEC [27,29,30]. Transient or unsteady simulations were also performed after steady
simulations. The total time was set to 1 s, the time step to 0.0001 s, and the initial time value
to 0 s for the transient case. The transient rotor-stator mixing model was assigned to the
interface between S1 and R1. Cartesian velocity components were selected as u = 0 m/s,
v = 0 m/s, and z = 0 m/s for the global initialization [31].

Here, the pump functions as a turbine; therefore, the outlet of the pump is the inlet of
the PAT, and the direction of the flow of water through the PAT is shown in Figure 11.



Appl. Sci. 2023, 13, 3232 11 of 15Appl. Sci. 2023, 13, 3232 12 of 16 
 

 
Figure 11. Direction of the flow of water for the PAT. 

As indicated in Section 2.1, the torque produced by the variable water flow was cal-
culated using ANSYS CFD-Post, which is a function calculator. A graphical representation 
of the flow and the produced torque is shown in Figure 12a. When the PWC is integrated, 
and a new range of flows at the inlet of the PAT is obtained, the model is simulated once 
again to calculate the new torque produced by the new values of the water flow. A graph-
ical representation of the new flow and torque produced is shown in Figure 12b. 

 
Figure 12. Torque produced by PAT (a) before PWC integration and (b) after PWC integration. 

The torque produced by the PAT at variable and smooth flows is compared in Table 5, 
along with the deviations given before and after the integration of the PWC. These results 
clearly demonstrate that the values of the produced torque decrease with decreasing flow. 
Hence, fluctuations in the flow rate significantly affect the torque of the PAT. When the 
flow rate is kept constant with the integration of the PWC, the torque of the PAT is 
smoothed and maximized according to the design flow. 

  

Figure 11. Direction of the flow of water for the PAT.

As indicated in Section 2.1, the torque produced by the variable water flow was calcu-
lated using ANSYS CFD-Post, which is a function calculator. A graphical representation of
the flow and the produced torque is shown in Figure 12a. When the PWC is integrated, and
a new range of flows at the inlet of the PAT is obtained, the model is simulated once again
to calculate the new torque produced by the new values of the water flow. A graphical
representation of the new flow and torque produced is shown in Figure 12b.
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The torque produced by the PAT at variable and smooth flows is compared in Table 5,
along with the deviations given before and after the integration of the PWC. These results
clearly demonstrate that the values of the produced torque decrease with decreasing flow.
Hence, fluctuations in the flow rate significantly affect the torque of the PAT. When the flow
rate is kept constant with the integration of the PWC, the torque of the PAT is smoothed
and maximized according to the design flow.
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Table 5. Torque of PAT regarding different flow values.

Before PWC Integration After PWC Integration

Flow (L/s) Torque (Nm) Deviation (%) Flow (L/s) Torque (Nm) Deviation (%)

192.1 226.559 0 192.1 226.559 0
182.5 204.519 9.73 190.2 222.105 1.97
172.9 183.693 18.92 188.9 219.085 3.3
167.1 171.664 24.23 191.7 225.619 0.41
153.7 145.042 35.98 193.7 230.342 1.64

4.2. Generator Behavior on the Variable and Smooth Torque

Although a smooth torque is obtained, which ultimately smooths the output of the
PAT, in most cases, the PAT and generator are directly coupled. However, a Simulink model
was developed to observe the behavior of the generator with variable and smooth torques,
as shown in Figure 13.
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A built-in asynchronous machine block rated at 37 kW was selected from the Simulink
library to simulate the behavior of the generator. This block can simulate both motors
and generators, using (+) and (−) signs with the torque, respectively. The variable and
smoothed torques obtained from ANSYS CFX, as shown in Figure 14, were used as the
input signals in the Simulink model [32,33]. The model was simulated for 25 s, and each
duration of five seconds corresponds to a different torque value.
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The simulation results of the peak value of the generator current are shown in Figure 15,
which demonstrates the variations in the current with respect to the torque obtained from
the PAT. In a hydro system, the torque varies with the flow variation. The current depends
on the torque value. Therefore, any fluctuation in the flow rate affects the output current of
the generator. However, the PWC technique provides a smooth flow, which results in a
smooth output.
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5. Conclusions

A simple and economical PWC technique was proposed in this study to maintain the
design flow at the inlet of a PAT under variable flow conditions. The proposed technique
employs the series integration of parallel water columns with the same dimensions using
a double-nozzle design. Paralleling the water columns creates more space for water to
provide the design flow at the outlet. When water flow is decreased owing to a decrease in
the upstream flow or in a PHS facility, the PWC maintains a flow at the inlet of the PAT by
acting as an axillary penstock.

The design of the experiment and its findings indicate that, for a given case, the
designed flow of 192.1 L/s can create a maximum torque of 226.559 Nm. The reduction
in the flow to 153.7 L/s produced a reduced torque of 145.042 Nm. A total reduction of
38.4 L/s in the water flow was compensated for by integrating five PWCs, each having a
flow capacity of 8 L/s. After the integration, the new flow and torque values were 193.7 L/s
and 230.342 Nm, respectively, which were nearly identical to the designed values with a
deviation of only 1.64%. Furthermore, based on the smooth output of the PAT, the generator
output was confirmed. Thus, integration of the PWC using a double-nozzle design is an
effective technique for maintaining smooth output of the PAT and generator.
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Nomenclature

A area of water discharge [m2]
F force [N]
g gravitational acceleration [m/s2]
H head height [m]
m mass of water [kg]
n number of water columns
P pressure [Pa]
Pout output power [W]
PAT pump as turbine
PWC parallel water columns
Q flow of water [L/s]
v velocity of water [m/s]
w weight of water
η efficiency [%]
ρ density of water [kg/m3]
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