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Abstract: One type of ion thruster that has gained attention in recent years is the High Efficiency
Multistage Plasma (HEMP) thruster. Optimizing the performance of these thrusters can be challenging
due to the complexity of the underlying physics. Since the construction of new designs is expensive,
cheaper methods for optimization, e.g., numerical optimization, are being sought. This paper presents
a fast, analytical approach to finding realistic starting points for the magnetic geometry design of
HEMP thrusters. First, a ratio of length to radius is presented, where the magnetic field is especially
parallel at the center of the magnetic ring. This result is confirmed with the open-source library
magpylib. Its speed and accuracy qualify this tool for further optimization processes. Here, we
present some simple performance indicators, which may be beneficial to characterize the magnetic
field structure for further optimization.

Keywords: ion thruster; optimization; magnetic field

1. Introduction

Ion thrusters are electric propulsion systems that use plasma to generate thrust. These
thrusters have several advantages over traditional chemical propulsion systems, making
them an attractive option for use in space. One of the main advantages of ion thrusters is
their high specific impulse, which is a measure of the efficiency of a propulsion system.
Their specific impulses can be an order of magnitude higher than chemical propulsion
systems, allowing them to achieve much greater velocities and travel much farther with the
same amount of propellant mass. This makes them ideal for long-duration missions, such
as those of interplanetary spacecraft, where the weight and volume of the propellant is a
major concern. Because of such high specific impulses, they require much less propellant
to generate the same amount of thrust as a chemical propulsion system. This means that
they can operate for much longer periods of time without needing to refuel.

One type of ion thruster that has gained attention in recent years is the High-Efficiency
Multistage Plasma (HEMP) thruster, developed and patented by Thales Deutschland
GmbH [1]. It uses a specific configuration of magnetic fields using “cusps” to control and
accelerate the plasma. A “cusp” is a region where the magnetic field lines converge. In
HEMP thrusters, the cusp magnetic fields are created by ring-shaped permanent magnets of
opposed polarity. Usually, a thruster consists of two, three, or more of these ring magnets.

A schematic view of a HEMP-Thruster is presented in Figure 1. HEMP thrusters
consist of a cylindrical discharge chamber, surrounded by several permanent magnet rings
with pairwise opposed poles. This induces a cusp-like magnetic field structure in the
channel, acting as a magnetic mirror. The inside of the chamber is coated with a dielectric,
which has a high sputtering threshold to minimize erosion, for example. boron nitride. The
anode and the feed gas inlet are located at the bottom of the channel. Usually, xenon is used
as feed gas, because of its high mass and its properties as a noble gas. An electron-emitting
cathode, the neutralizer, is located outside the channel exit, attached to the thruster. It
feeds the discharge in the channel and neutralizes the plume. Neutralizing the positively
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charged exit stream of xenon ions keeps the satellite from charging up with a positive
charge. The positive potential at the anode leads to a plasma building up in the thruster
channel. With sufficient electric conductivity of the plasma, the potential drop is moved
from the anode to the thruster exit, where the plasma density decreases. This creates an
electric field in front of the thruster exit that accelerates the electrons toward the thruster.
There, the electrons follow the magnetic field lines provided by the permanent magnets.
The resulting gyro radius of the electrons is much smaller than the channel radius, resulting
in the magnetization of the electrons. Due to the magnetic field structure, they remain
trapped in the thruster channel. The confinement of the electrons leads to high ionization
rates. Because of the magnetization of the electrons and the magnetic field line structure
between the cusps, the electron transport parallel to the symmetry axis is strong inside the
channel. In contrast, the ions are not magnetized due to their large mass and the magnetic
field strength typical for such thrusters (≈200 mT), and drift with low energies through the
thruster, following the distribution of the electrons. At the exit, they are accelerated by
the electric field resulting from the potential drop. They are emitted with high emission
velocities, thus generating thrust. This mode of operation, with high ionization efficiency,
high exit velocity of the ions, and minimal erosion, makes the HEMP-Thruster a very
attractive electric propulsion device. It can generate thrust in a wide range from 1 µN to
100 mN. The flexibility to provide thrust over a wide range and its long lifetime due to
minimal erosion make the HEMP-Thruster a favorable concept for long-duration space
missions [2]. More information on HEMP thrusters can be found in [3]. One advantage of
the HEMP-Thruster is that it is relatively simple to operate, as it does not require the use
of high-voltage grids or other complex systems. This makes it more reliable and easier to
maintain than other types of ion thrusters. However, the HEMP-Thruster requires a lot of
power to operate, and the cost of the permanent magnets can be high.
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Figure 1. Schematic view of a three-stage HEMP-Thruster. The cylinder is cut horizontally along the
cylinder’s axis of symmetry.

Optimizing the performance of these thrusters can be challenging due to the complex-
ity of the underlying physics and the need for precise control of the ionized gases. A key
aspect of optimization is the design of the ionization chamber, where the neutral propellant
is ionized into plasma. This chamber should be designed to maximize the ionization rate
while minimizing the amount of energy required to ionize the propellant. Another impor-
tant aspect is the design of the acceleration stage, where the ions are accelerated to generate
thrust. This stage should be designed to maximize the acceleration of the plasma particles
while minimizing the amount of energy required to accelerate the ions. Additionally, the
amount of neutral particles that are not ionized and thus accelerated should be minimized,
as these particles can impede the performance of the thruster. Finally, optimizing the
overall performance of HEMP thrusters requires careful control of the operating conditions,
including the temperature and density of the plasma, the electric fields used to accelerate
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the plasma, and the magnetic fields used to confine the plasma. These operating conditions
should be carefully controlled and monitored to ensure that the thruster is operating within
the optimal range for maximum performance.

The optimization of ion thrusters is a difficult process and revolves around exper-
imental measurements [4]. Optimizing the performance of HEMP thrusters requires a
multi-disciplinary approach that encompasses the design of the ionization chamber, the
acceleration stage, and the overall operating conditions. By carefully designing and con-
trolling these aspects of the thruster, it is possible to achieve significant improvements
in performance, including higher specific impulse and lower propellant consumption.
Since the construction of new designs is expensive, cheaper methods for optimization are
sought-after. In [5–7] a HEMP-Thruster geometry was numerically optimized by a genetic
algorithm. Even using simplified power balance models with kinetic corrections requires a
lot of computational effort for such an optimization, because the parameter space of such a
search is huge. It is beneficial to characterize some traits by other means in order to speed
up the costly numerical optimization and to have the ability to improve other properties.

This paper presents a fast, analytical approach to finding realistic starting points for
the magnetic geometry of HEMP-Thruster design optimization, which can then be used for
further refined optimization. This approach to calculating magnetic fields is not only much
faster, but also has reduced error compared to numerical approaches, which is particularly
important for transport codes where artificial drifts and forces are minimized.

First, there is an analytical estimate for the best geometry of a magnetic stage, where
the magnetic field should be parallel to the symmetry axis at the center. It will be shown that
this estimate is very close to the experimental optimization of two-stage thrusters by trial
and error [8,9]. A similar ratio was also found in the rather complex and time-consuming
optimization procedure by genetic algorithms [7].

Secondly, using the analytical solutions further diagnostics can be motivated by
physics. Electrons are magnetized and follow the field lines. Therefore, long field lines
combined with the confinement by the magnetic mirror effect at the cusps will increase the
ionization and thereby the efficiency of the thruster. The different geometries are compared
with respect to the field lengths by field line tracing. For the analysis, a weight function
reflecting the observed density distribution is used. To obtain a global quality measure for
the different magnetic field configurations, a geometric scaling of the single field lines is
applied. The mirror effect at the end of the cylindrical magnets determines the electron
confinement by limiting the losses and is responsible for enhanced ionization.

2. Materials and Methods

The magnetic structure is analyzed analytically at the center of a magnetic stage. A
parallel field between the cusps is a desirable feature since it allows for high mobility of
electrons in the axial direction. Hence, axial potential gradients are small. Since electrons
are kept away from the wall except at the cusps, radial fields exist only there. Then,
electrons are able to ionize the plasma efficiently, so that ignition is facilitated. Electrons,
which enter the channel at the symmetry axis r = 0, can overcome the cusp so that the
following stages are also populated.

A simplified analytical expression on the axis is derived. The analytical result is used
to validate the Python package magpylib [10]. This uses a generalized analytical method
for the calculation of magnetic fields. The field line lengths of the magnetic flux B are then
calculated numerically. Next, their length is labeled ` and measured in mm. The Python
library matplotlib [11] is used for plotting, and the scipy library is employed for field line
integration [12].

2.1. Analytical Estimate

Throughout the paper, the symmetry of the cylindrical device is used. A HEMP-
Thruster consists of several stages of ring magnets with repelling orientation to each other.
In this paper, one stage will be studied, but the extension to more stages can be performed.
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The natural coordinate system consists of the radial r, azimuthal ϕ, and axial z coor-
dinates. Figure 2 shows the (r,z)-plane of the magnetic geometry for a typical stage of a
HEMP-Thruster. The z-axis is the symmetry axis. A rotation around the z-axis yields the
three-dimensional stage. Terms proportional to ∂ϕ and the magnetic field component Bϕ

are zero due to the symmetry.

Figure 2. (r,z)-plane of the magnetic geometry for a typical stage of a HEMP-Thruster. The center is
denoted by the origin (O). The radius R and the half-length L/2 are also shown.

Vector quantities are denoted in bold letters. The starting point for the optimization is
to find the ratio of length L to radius R where the magnetic flux B is homogeneous between
both ends of the magnet. In other words, we look for an optimal geometry of L and R,
where the field at the origin is as parallel as possible along the z-axis. The end regions form,
together with other stages, the cusp regions where the wall contact happens. Hence, the
condition of a homogeneous field in the middle of one stage supports the design goal to
limit the wall contact as much as possible to the cusps.

For the analytical analysis, the magnetization M of the magnet is assumed constant.
In the magnetostatic case, Maxwell’s equations reduce to

∇×H = 0⇔ H = −∇Φm

∇B = 0 ,

where Φm is a magnetic potential, B is the magnetic induction and µ0 is the vacuum
permeability. B is linked with the magnetic field H and M by

B = µ0(H +M) .

The two equations for the magnetic field produce a Poisson equation for the
magnetic potential

∇2Φm = ∇M ,

where the sources are the divergence of the magnetization. This equation can be treated in
the same way as the electrostatic Poisson equation [13]. Instead of charges, the divergence
of the magnetization is the source on the right-hand side. In this application, the sources of
the potential are the front faces of the magnets, where the constant magnetization changes at
the boundary to the surrounding media. For an infinitesimally thin cylinder, the calculation
of the potential on the axis of the stage (r = 0) can be simplified to

Φm(z) = µ0MR
4π

⎛
⎜
⎝

1√
R2 + (z + L/2)2

− 1√
R2 + (z − L/2)2

⎞
⎟
⎠

, (1)



Appl. Sci. 2023, 13, 3491 5 of 13

where R and L are the radius and length of the magnetic stage, respectively. Here, the front
faces are reduced to a point source. A Taylor’s series expansion of Equation (1) at the origin
(z = 0) up to the fifth order results in the numerator

Φm(z)∝16 (L5 − 20 L3R2 + 30 LR4)z5

+ 4 (L7 + 2 L5R2 − 32 L3R4 − 96 LR6)z3

+ (L9 + 16 L7R2 + 96 L5R4 + 256 L3R6 + 256 LR8)z .

The calculation is performed with the open-source mathematics software system
SageMath [14]. A corresponding notebook can be found on GitHub [15], where the data is
made public. In order to have a magnetic field H, which is parallel to the symmetry axis up
to the highest order, the fifth- and first-order terms of the potential shall remain. The z3

term must vanish, i.e., the polynomial in front needs to be zero, so that the resulting field is
parallel up to the fourth order. The roots of the polynomial are

L = −2i R, L = 2i R, L = −
√

6R, L =
√

6R and L = 0 .

Since R and L are the geometric dimensions of the magnet, we are only interested in
the real and positive solutions, so that only the geometric ratio

L =
√

6R (2)

is an adequate solution. The potential contains linear, cubic, and fifth-order terms in z. By
finding the root in front of the cubic term, the solution is left with only linear and fifth-
order terms. A multipole expansion off-axis in r with the help of Legendre polynomials
specifies the r dependency in the vicinity of the origin. The linear term is then canceled and
only a fifth-order term in Legendre polynomials remains. The calculation is found for the
electrostatic case in [13]. Due to the expansion, the potential has terms depending on r and
z. The removal of the linear and cubic terms thus minimizes the field in r as well.

This ratio for a single stage of length to radius L/R ≈ 2.45 produces a homoge-
neous magnetic field on the axis. It is remarkable that a rather complex optimization
procedure [5–7], finite element methods, power balance equations, and even kinetic correc-
tions based on Particle-in-Cell (PIC) calculations reached a similar value. Furthermore, the
experimentally optimized industry designs operate close to this parameter choice [8,9].

2.2. Numerical Analysis of Field Lines

For a set of radius R and length L of the permanent magnetic ring, the magnetic field is
evaluated at 400× 400 points in the (r,z)-plane. The magnetic field of a ring magnet of finite
width of 2 mm is calculated by the Python library magpylib [10] and is used to verify the
results. The Jupyter notebooks are hosted on [15]. The library can solve the magnetostatic
problem of a cylinder [16,17] with magnetization M analytically. Two cylinders of different
polarity and radius but the same strength result in a ring-shaped magnet, where the smaller
cylinder is inscribed within the larger one. This is allowed due to the superposition of
magnetic “charges” ∇M. The problem is equivalent to an electrostatic case with a charge
density at the front surface. The strength of the magnetization µ0M is set to 1 T, which is
about the order of rare earth magnets.

This approach is very attractive for optimization because finite element solvers for
magnetic fields require much longer run times. In addition, the conservation properties of
the resulting fields (divergence-free, etc.) are better with analytical methods. This minimizes
numerical errors from such fields, e.g., in PIC codes [18,19]. Divergent contributions from
numerical field solvers are a big concern for such codes, because they produce artificial
drifts and forces.

In Figure 3a–c the field lines of the magnetic flux B for three different geometries (R,L)
are plotted. The origin of the coordinate system is the same as in the sketch of the analytical
derivation. The three geometries have varying lengths (a) L = 10 mm, (b) L = 50 mm, and
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(c) L = 90 mm with fixed radius R = 20 mm. The magnetic flux B is depicted as a stream
plot in blue. For the different lengths of the ring magnet, the extent of the field lines in
axial direction varies greatly. A marker (★) tags the maximum z coordinate of the separatrix
zsep in Figure 3, which will be discussed in more detail. In order to better understand the
distribution of field lines, each plot contains 20 selected B field lines, which are traced from
the starting points (r0, z = 0) towards the wall. These field lines are displayed in red. The
initial radial position r0 is varied in order to scan the whole domain, which is later used for
the measures of the magnetic field B. Here, only half of the ring magnet is shown, since the
field is also symmetric with respect to the z = 0 axis.

Figure 3. A ring magnet (green rectangle) is depicted with radius R = 20 mm for different lengths L
centered around the symmetry axis (r = 0). The three geometries have varying lengths (a) L = 10 mm,
(b) L = 50 mm and (c) L = 90 mm. In each plot, the field lines are drawn in blue. The figure shows
only one half of the axially symmetric system, neglecting negative z. Red lines start from various
radii r0, where z = 0. These are integrated along the magnetic field until they reach the wall, i.e., when
they exceed R. The star (★) denotes the maximum z coordinate of the separatrix zsep on the axis r = 0.

The tracing of the field lines was formulated as a system of discretized ordinary
differential equations (ODE) where the vector of the magnetic field B is the vector of the
derivative so that the ODE solver of the Python scipy package can be used. The paths of the
20 field lines, which are picked, are integrated until they hit an ideal wall at r = R. For that
purpose, the field between the analytical grid points was interpolated linearly. Field lines
that exceed the length L/2 of the thruster ring also stop at the ideal wall r = R. Normally,
the magnetic rings are covered by dielectrics and metals so that the radial and axial extent
is usually larger. This justifies the ideal wall condition.

For a starting point close to the axis, a ratio of radial to the total magnetic field
sin(α) = Br/B is averaged over analytical sampling points in the vicinity of the origin
within the box area (r ≤ 0.1 ⋅ R, z ≤ 0.1 ⋅ L). The result is shown in Figure 4. Close to
the center of the ring magnet, the radial magnetic field Br is small compared to the total
magnetic field B. The zero radial field, equivalent to only axial parallel magnetic field,
is reached in agreement with the analytical result derived before; i.e., the root of sin(α)
is very close to the analytical result, denoted by the olive vertical bar in the figure. The
minor deviation of the root from the analytical result is attributed to the finite width of the
cylinder in the numerical calculation.
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Figure 4. Ratio of the radial to the total magnetic field sin(α) = Br/B averaged over analytical
sampling points within the box area (r ≤ 0.1 ⋅ R, z ≤ 0.1 ⋅ L,) for various configurations L and fixed
radius R = 20 mm. The olive vertical line denotes the analytical solution, where the field lines are
particularly parallel.

3. Results

After the validation of the package, further numerical diagnostics can be used to
characterize the properties of the magnetic configurations with respect to different aspects
of physics. In the following, different geometries are calculated, where the length L varies
between 10 mm and 90 mm in 2 mm increments for a fixed radius R = 20 mm. For each
geometry, the field and 20 selected field lines are computed. Visually, this procedure is
transcribed in Figure 3. Two measures are introduced in order to characterize the geometry.
The subsequent figures demonstrate different properties of the magnetic flux B.

Electrons in the HEMP-Thruster are magnetized and follow the field lines. Therefore,
long field lines and the confinement by the magnetic mirror effect at the cusps increase the
ionization and thereby the efficiency of the thruster. The different geometries are compared
with respect to the field lengths by field line tracing.

The geometries shown in Figure 3 illustrate the field configuration change when the
length L is varied. One observes different properties of the magnetic field for the short
geometry, Figure 3a, compared to intermediate, Figure 3b, or long magnets, Figure 3c.
Relative to the length of the ring magnet, the field lines protrude more into the vacuum
outside the magnet for smaller magnets. A measure z̃ of how far the concerning field lines
elongate along the z axis is plotted in Figure 5. The z coordinate at the axial symmetry
(r = 0) where the axial magnetic field Bz changes direction defines the position zsep of the
separatrix of the magnetic field. Thus, a relative distance z̃, how far the separatrix moves
from the channel axially, is defined with respect to the channel length (zsep − L/2)/L. The
position of zsep has been marked for the three cases in Figure 3 with a black star (★). For
the three panels, the position relative to the exit z̃ varies greatly with length L. The blue
curve z̃(L) in Figure 5 displays the relation for the whole scan. For smaller lengths, the
relative elongation increases quickly. Longer designs have a nearly negligible protrusion.
The exact placement influences and shapes the exit field of a HEMP-Thruster, which in turn
will influence the angular distribution of the expelled ions and consequently the thrust [20].
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Figure 5. The relative distance of how far the separatrix elongates axially z̃ = (zsep − L/2)/L and the
ratio Ṽ of the active volume Vactive to the total volume Vtotal as a function of L are plotted. Both affect
the performance of a HEMP thruster.

A second observation from the field line plots in Figure 3 is the appearance of regions
that are not accessible from field lines starting at the center of the cusp. These regions will
have less filling by parallel transport and will depend strongly on radial transport effects.
This is normally detrimental, but having such a small region here can even be beneficial for
a HEMP-Thruster, because it can further reduce the wall contact of the plasma just to the
cusp region, which is one of the design goals. The region that is not accessed by the field
lines is called the passive region, whereas the region covered by field lines is called active.
The active volume Vactive is calculated as the volume spanned by the closest diagnostic field
line to the axis. The ratio Ṽ of the active volume to the total volume within the magnetic
ring is also displayed in Figure 5. It is a measure of the volume that will be filled by
electrons due to parallel transport along field lines connected to the near-axis region.

The passive volume is filled by short field lines without contact with the central near-
axis region. Here, the radial transport of electrons from the central region populates this
region slowly, and therefore, the electron density is reduced. The active volume decreases
with the increasing length of the magnet and the passive volume increases, as expected
from the magnetic field plots, which can be seen in Figure 3.

The integration of several field lines, which correspond to the red lines in Figure 3a–c,
at equidistant radii r0 delivers a length scale measure ` of the magnetic field B, which is
shown in the upper panel of Figure 7. The field line length is nearly proportional to the
length L. For small magnet lengths, the lengths ` deviate from a linear dependence, since
the bigger elongation in the z direction adds to the path. The average of the 20 field lines
seems to be a good indicator for the qualitative behavior of `. In future studies, the average
alone might be sufficient for an optimization procedure.

Further analysis is performed by a weight function reflecting the observed density
distribution. A typical HEMP electron density distribution ne of a PIC simulation for a
xenon discharge is plotted in Figure 6. The code for the simulation was developed within
the group. Further details about the physics and the PIC code can be found in [21]. PIC
calculations can deliver a better understanding of the processes in HEMP.
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Figure 6. Electron density ne from a 2D PIC simulation of a two-stage DM3a HEMP-Thruster in the
(r,z)-plane. The rectangular regions in gray and brown indicate regions with dielectric and metal wall
boundaries, respectively. Particles are not able to penetrate into these areas.

The cusps show up as density sinks in the electron density in Figure 6 because the
plasma–wall interaction is concentrated at these locations. They are clearly visible at the
ends of the channel and at the cusp at z about 20 mm. The cusps act as magnetic mirrors
and trap the electrons in between, such that the ionization probability is strongly enhanced,
and larger densities in between the cusps are thereby obtained. For an axial position z0
between the cusps, a radial decay in density is observed due to the individual length of
the field lines. The higher the radial position r0, the lower the electron density becomes.
The weight function used in the following analysis is motivated by the density distribution
obtained by PIC, which decays linearly and radially outwards in the logarithmic plot of
Figure 6, so that for the contribution of the particle density, an exponential factor exp−r0
is assumed. Because of the cylinder symmetry, field line numbers starting at the radial
coordinate r0 scale with the circumference and are r0 times more abundant. The mirror
effect at the end of the cylindrical magnets determines the electron confinement by limiting
the losses and is responsible for enhanced ionization. It is calculated as the ratio of the
magnetic fields at the starting point B0 = B(z0, r0) to the magnetic field at the endpoint
(zw, rw) of the field line close to the wall Bmax = B(zw, rw)

Rm = Bmax/B0 .

The ratio of the velocity components yields sin(θ) = 1/√Rm of the velocity perpendic-
ular to the magnetic field v⊥ to the total velocity v. Then, the ratio sin(θ) gives the reflection
condition sin(θ) ≥ 1/√Rm [22,23]. Magnetic field lines with a high magnetic ratio are likely
to reflect electrons moving along these toward the cusps. The time τ of the electrons spent
between the mirrors is τ = l/v ∝ l ⋅√Rm. A confinement time weighted by volume and
geometry results in

τ = ` ⋅
√

Rm ⋅ r0 ⋅ e−r0 . (3)

Figure 7 shows individual field line lengths ` for three selected field lines and the
average of 20 lines. The magnetic field lines’ lengths nearly scale linearly with the length of
the magnet. Deviations occur for small lengths. Here, field lines protrude further outside
the channel (cf. Figures 3 and 5). From the twenty field lines, three are chosen in order to
understand the different behaviors of a field line for a certain geometry. In addition, the
average of the selected 20 field lines is also displayed. Trivially, magnetic field lines close to
the symmetry axis r = 0 are longer than field lines with a higher radius r0. The difference
in length is also nearly linear with respect to r0. This becomes more complicated for the
two other quantities. The magnetic mirror ratio grows non-linearly, since the distance
between the starting and end points of the field lines grows. In the bottom panel, the
confinement time τ is presented. The time increases with longer channel lengths. Due to
the radially decaying plasma density, the confinement times vary significantly for different
starting positions.
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Figure 7. Field line properties are scanned over a range of magnet lengths L and for a fixed radius
R = 20 mm. From top to bottom, the field line length `, the magnetic mirror Rm, and a confinement
time τ from Equation (3) are plotted. Shown are the average lengths over 20 field lines (in blue) and
three selected field lines for comparison. The time τ is in arbitrary units (a.u.).

In Figure 8, the same quantities as in Figure 7 are plotted. This time, L is fixed at
50 mm and R is varied between 6 mm and 40 mm, also in steps of 2 mm. Again, the field
line length grows with increasing dimensions of the magnetic ring. The magnetic mirror
Rm does not scale linearly with R. A minimum of the magnetic ratio is visible. The exact
location of the minimum for the scan varies for different field lines r0. For instance, the field
line average has a minimum at about 20 mm. The radial distance of the starting positions
to the magnetic pole becomes important with increasing radius R so that the mirror ratio
decreases. With an even larger radius, the axial spread at the wall of the radially fixed
starting positions increases geometrically. This leads to a larger area of the field lines at the
magnetic pole and thereby a magnetic field B with a strongly changing magnitude. For the
average magnetic ratio, the losses due to the diverging magnetic field at the cylinder end
first lead to a decrease in the magnetic mirror. For greater radii, this is compensated by the
distance of the starting position of the magnetic field.
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Figure 8. Same as Figure 7, but here, radius R is varied instead of the fixed length L = 50 mm. Since R
changes, the three selected field lines are plotted for fixed ratios of r0/R.

4. Conclusions

Optimization of the magnetic field geometry for a HEMP-thruster is very important for
improved thruster operation. The use of an analytical Python package allows for simplified
and fast optimization. The package was validated by comparison with the specific solution
at the center of the cusp, where a particularly parallel magnetic field was derived at the
origin. In experiments, two-stage thrusters were optimized by trial and error to reach a
length-to-radius ratio of about 5 to 1. This means that the length-to-radius ratio for one
stage is about 2.5 to 1, which is very close to the analytical optimization result of 2.45. The
geometric relation can also be seen in Figure 6 and in [8,9] for comparison. A similar ratio
was also found in the optimization procedure using genetic algorithms [7].

Further diagnosis is then numerically possible, motivated by physics. The length of
the magnetic field lines was calculated numerically in a scan of the ring geometry, which is
linked to the path lengths of the electrons. In addition, density weights from experiments
were used for the field line analysis, and the mirror effect at the end of the cylindrical
magnets was diagnosed. This is important for electron confinement. Confining the electrons
between the cusps and minimizing radial losses to the walls improves ionization.

The combination of different aspects of the optimization of the physics can be imple-
mented very quickly and flexibly by defining a penalty function with different weightings
for the different contributions. This allows numerical optimization of the magnetic field
(including manufacturing constraints for the magnets) within minutes instead of days or
weeks. Further combinations with power balance models or kinetic corrections can be
made from this initial configuration, minimizing the risk of becoming stuck in local minima
during the optimization process.

An optimizing strategy for the magnetic field B is as follows:

• Start from the optimal R and L of the analytical derivation.
• Vary R and L. R is expected to get a little smaller; see Figure 8. The magnetic mirror

ratio becomes higher, and thus the confinement time.
• L is expected to increase, which is the same statement as the previous point (cf.

Figure 5). The intention is to avoid pushing the separatrix outward, which in turn
may increase the exit angle of the ions. This is especially important for the exit stage.
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• The increase in L is limited by the reduction in the active volume Ṽ in Figure 5, which
significantly reduces the electron density in these regions.

In general, this simplified approach reduces the dimension of the remaining opti-
mization problem. The calculation of magnetic fields is not only much faster but also has
reduced error compared to common numerical approaches, which is particularly important
for transport codes where artificial drifts and forces are minimized.
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