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Abstract: Image animation aims to transfer the posture change of a driving video to the static object
of the source image, and has potential applications in various domains, such as film and game
industries. The essential part in this task is to generate a video by learning the motion from the
driving video while preserving the appearance from the source image. As a result, a new object
with the same motion will be generated in the animated video. However, it is a significant challenge
if the object pose shows large-scale change. Even the most recent method failed to achieve this
correctly with good visual effects. In order to solve the problem of poor visual effects in the videos
with the large-scale pose change, a novel method based on an improved first-order motion model
(FOMM) with enhanced dense motion and repair ability was proposed in this paper. Firstly, when
generating optical flow, we propose an attention mechanism that optimizes the feature representation
of the image in both channel and spatial domains through maximum pooling. This enables better
distortion of the source image into the feature domain of the driving image. Secondly, we further
propose a multi-scale occlusion restoration module that generates a multi-resolution occlusion map
by upsampling the low-resolution occlusion map. Following this, the generator redraws the occluded
part of the reconstruction result across multiple scales through the multi-resolution occlusion map
to achieve more accurate and vivid visual effects. In addition, the proposed model can be trained
effectively in an unsupervised manner. We evaluated the proposed model on three benchmark
datasets. The experimental results showed that multiple evaluation indicators were improved by our
proposed method, and the visual effect of the animated videos obviously outperformed the FOMM.
On the Voxceleb1 dataset, the pixel error, average keypoints distance and average Euclidean distance
by our proposed method were reduced by 6.5%, 5.1% and 0.7%, respectively. On the TaiChiHD
dataset, the pixel error, average keypoints distance and missing keypoints rate measured by our
proposed method were reduced by 4.9%, 13.5% and 25.8%, respectively.

Keywords: image animation; convolutional block attention module; first order motion model; generative
adversarial networks

1. Introduction

Image animation is the technology that transfers the motion posture of an object in a
driving video to the static object in the source frame. Given a source image and a driving
video depicting the same object type, the goal of image animation is to generate a video
by learning the motion from the driving video while preserving the appearance from the
source image. As shown in Figure 1, the motion from the driving videos in the second
row is transferred to the source images in the first row. In the animated videos in the third
row, the objects from the source images follow the exact same motion as the driving videos.
Nowadays, image animation has achieved extensive application in film production, virtual
reality, photography and electronic commerce.
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Traditional approaches for image animation typically involve using data fusion from 
different data sources to acquire prior knowledge of the object [1], (such as a 3D model), 
and using computer graphics technology to solve the problem [2–4]. Face2Face [4] uses a 
3D parametric model with 269 parameters to fit facial posture, expression, illumination 
and shape information. By detecting and tracking the face image and adjusting the rele-
vant parameters, the expression of the face in the source domain is converted into the 
expression of the face in the target domain. However, this approach is not applicable when 
the task is not limited to the face. With the development of machine learning and deep 
learning, many industries have achieved substantial development [5–7]. 

 
Figure 1. Our method animates still source images. 

Recently, with the development of generative adversarial networks [8] (GANs) and 
variational auto-encoders [9] (VAEs), many methods have been proposed and have expe-
dited the research and application of image animation. These methods have been used as 
substitutes for 3D parametric models in generating real images. These methods are mainly 
divided into two categories. The first type of method relies on pre-trained models to ex-
tract specific representations of the target object, such as facial landmarks [10,11], gesture 
[12] or human keypoints [13]. However, the performance of these methods depends on 
the labeled data and pre-trained model. The construction of the pre-trained model re-
quires the annotation of the ground-truth data, which requires expensive acquisition. In 
addition, these pre-trained models do not generally apply to all types of object categories. 
Another method is unsupervised motion transfer, which does not require real data on the 
ground. X2Face [14], proposed by Oliva Wiles et al., is a self-supervised neural network 
model that uses another person’s face to control the pose and expression of a given face, 
but the error generated by this method is obvious. Aliaksandr Siarohin et al. proposed 
Monkey-Net [15], which is the first depth model for image animation of unknowable ob-
jects. It extracts target keypoints in the image through a self-supervised keypoint detector 
and generates a dense heatmap from sparse keypoints. Following this, the input frame, 
which uses the motion heatmap and appearance information extracted from the input im-
age, is synthesized. However, it is difficult for Monkey-Net to model the appearance 
transformation of objects near the keypoints, which leads to poor generation quality when 
the scale of object change is quite large. To support more complex motion, FOMM [16] 
was proposed to use unsupervised learning keypoints and local affine transformation to 
simulate complex motion. 

In applications, the methods of image animation based on pre-trained models have 
many limitations. Meanwhile, research on the application of image animation without re-
lying on labeled data and pre-trained models has achieved great progress. However, there 

Figure 1. Our method animates still source images.

Traditional approaches for image animation typically involve using data fusion from
different data sources to acquire prior knowledge of the object [1], (such as a 3D model),
and using computer graphics technology to solve the problem [2–4]. Face2Face [4] uses a
3D parametric model with 269 parameters to fit facial posture, expression, illumination and
shape information. By detecting and tracking the face image and adjusting the relevant
parameters, the expression of the face in the source domain is converted into the expression
of the face in the target domain. However, this approach is not applicable when the task
is not limited to the face. With the development of machine learning and deep learning,
many industries have achieved substantial development [5–7].

Recently, with the development of generative adversarial networks [8] (GANs) and
variational auto-encoders [9] (VAEs), many methods have been proposed and have expe-
dited the research and application of image animation. These methods have been used
as substitutes for 3D parametric models in generating real images. These methods are
mainly divided into two categories. The first type of method relies on pre-trained models
to extract specific representations of the target object, such as facial landmarks [10,11],
gesture [12] or human keypoints [13]. However, the performance of these methods depends
on the labeled data and pre-trained model. The construction of the pre-trained model
requires the annotation of the ground-truth data, which requires expensive acquisition. In
addition, these pre-trained models do not generally apply to all types of object categories.
Another method is unsupervised motion transfer, which does not require real data on the
ground. X2Face [14], proposed by Oliva Wiles et al., is a self-supervised neural network
model that uses another person’s face to control the pose and expression of a given face,
but the error generated by this method is obvious. Aliaksandr Siarohin et al. proposed
Monkey-Net [15], which is the first depth model for image animation of unknowable ob-
jects. It extracts target keypoints in the image through a self-supervised keypoint detector
and generates a dense heatmap from sparse keypoints. Following this, the input frame,
which uses the motion heatmap and appearance information extracted from the input
image, is synthesized. However, it is difficult for Monkey-Net to model the appearance
transformation of objects near the keypoints, which leads to poor generation quality when
the scale of object change is quite large. To support more complex motion, FOMM [16]
was proposed to use unsupervised learning keypoints and local affine transformation to
simulate complex motion.

In applications, the methods of image animation based on pre-trained models have
many limitations. Meanwhile, research on the application of image animation without
relying on labeled data and pre-trained models has achieved great progress. However,
there are still some problems in the current unsupervised methods. For example, sometimes
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the prediction of the optical flow field is not accurate, which will result in incorrect or
low-quality generated frames. Sometimes, the predicted keypoints are located on the
background instead of on the moving objects. Hence, the displacement deformation
between keypoints cannot accurately describe the displacement deformation of the rigid
region of the animation object. The ghosting effect (false object shadow) often occurs in the
generated frames.

Although FOMM is an advanced model in the field of image animation, it still fails to
accurately transfer motion information in videos with significant posture changes of human
bodies or faces. For instance, when given a source image with a frontal human body and a
driving frame with a side or back human body, FOMM cannot accurately generate frames
with the correct posture, as shown in Figure 2a,b. Additionally, FOMM often generates
images with ghost effects (false object shadow), as depicted in Figure 2c,d. Furthermore, as
illustrated in Figure 3, some keypoints of the target object predicted by FOMM are located
on the background, which potentially causes the incorrect parts in the generated frames.
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Figure 2. Failure cases of FOMM. (a) Frame 1 generated with the incorrect posture. (b) Frame 2
generated with the incorrect posture. (c)Frame 1 generated with ghost effects. (d) Frame 2 generated
with ghost effects.

In order to solve these problems and improve the performance, we propose an en-
hanced model based on FOMM. In the proposed novel framework, we focus on two main
contributions.

(1) We propose an attention module to optimize the generation of optical flow field,
which could improve the precision of the generated optical flow field and obtain a
more stable and robust motion representation.

(2) We propose a multi-occlusion network to repair the details of the picture from multiple
scales, and to obtain more accurate results. We take advantage of the occlusion
map’s ability to correct the pixel values in the generated images and achieve better
visual results.

Generally, the advantages of the proposed method can be concluded as following.

(1) Using the proposed method, it has been proven by experiments that the keypoints
output by the keypoint detector module are correctly located in the region of the
target object after using the multi-scale occlusion restoration module.

(2) With the objective evaluation, the proposed method outperformed FOMM on the
Voxceleb1 dataset, with a reduction of 6.5%, 5.1% and 0.7% in pixel error, average
keypoint distance, and average Euclidean distance, respectively. The results on the
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TaiChiHD dataset also showed significant improvement, with a reduction of 4.9% in
pixel error, 13.5% in average keypoint distance, and 25.8% in missing keypoint rate.

(3) With the subjective evaluation, the proposed method also demonstrated superior per-
formance compared to FOMM, indicating its potential for a range of image animation.
These results prove that our framework has more effective repair capabilities and
generates images with better visual effects.
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Figure 3. Incorrectly located key points in FOMM, resulting in poor frame generation results.
(Different colorful dots represent different key points located by FOMM, and the red boxes indicate
the incorrect key points.)

The remainder of this paper is organized as follows, in Section 2, the proposed model
and algorithm are described in detail; in Section 3, the experimental setup and results are
described, and the experimental results are analyzed; finally, in Section 4, we conclude the
paper, and then discuss the next research directions and provide a reasonable prospect of
our study.

2. Methodology

FOMM is an end-to-end network, which does not require a priori knowledge of the
dataset. When the data are used for training, the entire network can be directly applied
to the same types of datasets. However, in the case of large-scale posture change, such
as excessive change in facial expressions or the overall rotation of the human body by
180 degrees, the video frames generated by FOMM are of low quality, and even contain
incorrect frame content. In a study of FOMM algorithm, we found that the reasons for
failure include the keypoint positioning error of FOMM and the inaccurate estimation of
the optical flow field. In order to solve these problems, we propose an attention module
to extract the strong information of intermediate features, so that more accurate features
can be used to predict the optical flow field. Furthermore, in order to enhance the repair
ability of the network, we propose a multi-scale occlusion restoration module to optimize
the quality of reconstructed images.

2.1. Algorithm Framework

Our improved FOMM is mainly composed of the keypoint detector module, the dense
motion module, the attention module, the multi-scale occlusion restoration module and
the generator module. The network structure is shown in Figure 4. The keypoint detector
module and the dense motion module are basically the same as the corresponding modules
in FOMM.
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We denote S and D as the source and the driving frames extracted from the same video,
respectively. The keypoint detection module detects the unsupervised key points of the
image. The dense motion module first establishes sparse motion and affine transformation
between individual rigid regions through the key points, and then generates dense optical
flow and an occlusion map of the whole image through the S warped by the sparse motion.

Keypoints prediction based on U-net output K heat maps, M1, . . . , MK for the input
image at unsupervised keypoints, followed by softmax, s.t. Mk ∈ [0, 1]H×W , where H and
W are the height and width of the image, respectively, and ∑z∈Z Mk(z) = 1, where z is a
pixel location (x, y coordinates) in the image, the set of all pixel locations being Z, and Mk(z)
is the k-th heatmap weight at pixel z. Equation (1) estimates the translation component of
affine transformation in the abstract coordinates mapped by the input picture.

µk = ∑z∈Z Mk(z)z. (1)

For both frames S and D, the keypoints prediction also output four additional channels
Pk

ij ∈ RH×W for each keypoint, where i ∈ {0, 1}, j ∈ {0, 1} indexes the affine matrix

Ak
X←R[i, j], where X ∈ {S, D}, and R is the assumed reference frame. This is shown in

Equation (2).
Ak

X←R[i, j] = ∑z∈Z Mk(z)Pk
ij(z). (2)

The dense motion module uses an encoder–decoder structure to predict the rigid mask
of each keypoint through the heatmap representation of the keypoints and the warped
S frame of the sparse optical flow field. Equations (3) and (4) represent the heatmap
representation of the keypoints of the input image to R and the heatmap representation of S
to D, respectively. Where σ is a hyper-parameter, we usually take 0.01 based on experience.

Gk
X = e−0.5×∑z∈Z (z−µk

X)
2
/σ (3)

H = [(GD − GS), 0] (4)

In order to obtain the sparse optical flow field, FOMM needs to obtain the affine
matrix Ak

S←D (Equation (5)) from S to D, and calculate the sparse optical flow field through
Equation (6).

Ak
S←D = Ak

S←R

(
Ak

D←R

)−1
(5)

F k = µk
S + Ak

S←D

(
z− µk

D

)
(6)

With inputting S (warped by F k) and H, the dense motion module outputs an inter-
mediate feature ξ. In Equation (7), F represents warping operation and Unet represents
model architecture.

ξ = Unet(H, fw(S,F )) (7)



Appl. Sci. 2023, 13, 4137 6 of 15

Then, the intermediate features ξ will enter the attention module to obtain the dense
optical flow field and the multi-scale occlusion restoration module to obtain multiple occlu-
sion maps. We will introduce our attention module and multi-scale occlusion restoration
module in detail in Sections 2.2 and 2.3.

2.2. Attention Module

Based on the basic CBAM (convolutional block attention module) [17], we propose an
attention module that is more suitable for our model. Similarly, the attention module also
infers the attention map of the middle feature layer from the channel and space dimensions,
and is used for adaptive feature refinement.

The attention module has two sequential sub-modules: the channel attention module
and the spatial attention module. The process is shown in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16 
 

𝜉 = 𝑈𝑛𝑒𝑡൫𝐻, 𝑓௪ሺ𝑆, ℱሻ൯ (7)

Then, the intermediate features ξ will enter the attention module to obtain the dense 
optical flow field and the multi-scale occlusion restoration module to obtain multiple oc-
clusion maps. We will introduce our attention module and multi-scale occlusion restora-
tion module in detail in Sections 2.2 and 2.3. 

2.2. Attention Module 
Based on the basic CBAM (convolutional block attention module) [17], we propose 

an attention module that is more suitable for our model. Similarly, the attention module 
also infers the attention map of the middle feature layer from the channel and space di-
mensions, and is used for adaptive feature refinement. 

The attention module has two sequential sub-modules: the channel attention module 
and the spatial attention module. The process is shown in Figure 5. 

 
Figure 5. The overview of attention module. 

The channel attention module leverages channel-wise max-pooling to identify the 
most salient activation for each channel in the feature map. This information is then fed 
through a multi-layer perceptron (MLP) [18] to get the weight of the max-pooled feature. 
These attention weights are then multiplied by a higher-parameter σ. Usually, we give σ 
the value 2. Finally, the channel attention weight is obtained through sigmoid and the 
channel-refined feature is obtained by weighting the channel attention weight to the input 
feature, as shown in Figure 6. The channel attention is computed as Equation (8). 

 
Figure 6. Diagram of the channel attention module. 

𝑊஼ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ൬𝜎ቀ𝑀𝐿𝑃൫𝑀𝑎𝑥𝑃𝑜𝑜𝑙ሺ𝜉ሻ൯ቁ൰ (8)

In the design of the spatial attention module, we follow the design of CBAM. We use 
the spatial max pooling and the spatial average pooling to obtain the maximum and mean 
values in the channel-refined feature after the channel attention module, and then obtain 

Figure 5. The overview of attention module.

The channel attention module leverages channel-wise max-pooling to identify the
most salient activation for each channel in the feature map. This information is then fed
through a multi-layer perceptron (MLP) [18] to get the weight of the max-pooled feature.
These attention weights are then multiplied by a higher-parameter σ. Usually, we give
σ the value 2. Finally, the channel attention weight is obtained through sigmoid and the
channel-refined feature is obtained by weighting the channel attention weight to the input
feature, as shown in Figure 6. The channel attention is computed as Equation (8).

WC = sigmoid(σ(MLP(MaxPool(ξ)))) (8)
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In the design of the spatial attention module, we follow the design of CBAM. We use
the spatial max pooling and the spatial average pooling to obtain the maximum and mean
values in the channel-refined feature after the channel attention module, and then obtain
the spatial attention weight after the convolution and sigmoid operation. Finally, we apply
the spatial attention weight onto the channel-refined feature to obtain the refined feature,
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as shown in Figure 7. The channel attention is computed as Equation (9), where Conv7×7
represents a convolution operation with the filter size of 7 × 7.

WS = sigmoid
(
Conv7×7

([
AvgPool

(
ξ ′
)
; MaxPool

(
ξ ′
)]))

(9)
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We input the intermediate feature ξ from the dense motion module into the attention
module to obtain the refined feature ξ ′. The calculation formula is shown in Equation (10)

ξ ′ = Attention(ξ) = WS ⊗WC ⊗ ξ (10)

Then, we predict the masks, Mask0 . . . Maskk corresponding to the key points by using
ξ ′, as shown in Equation (11).

Mask = Conv7×7
(
ξ ′
)

(11)

The final dense motion prediction FS←D(z) is given by:

FS←D(z) = Mask0z +
K

∑
k=1

Maskk �F k (12)

Note that the term Mask0z is considered in order to model non-moving parts, such as
the background.

2.3. Multi-Scale Occlusion Restoration Module

In order to improve the low-quality visual effect of reconstructed images when the
poses of animated objects change greatly, we propose a multi-scale occlusion restoration
module. The structure is shown in Figure 8. The multi-scale occlusion restoration module
takes the intermediate feature ξ of the dense motion module as input. The feature ξ will
pass through two upblock2d modules. Each upblock2d block is composed of bilinear
interpolation, a convolution module, BatchNorm and a ReLU activation function. After
the feature ξ passes through two upblock2d modules, the two intermediate features with
dimensions of (64, 128, 128) and (32, 256, 256) are output, respectively. Finally, convolution
operation with the filter size of 1 × 1 is used to reduce the channels of each feature layer
to 1, so as to obtain the occlusion map with three resolutions, with the resolutions being
(64, 64), (128, 128), (256, 256).

The function of the multi-scale occlusion restoration module is to gradually repair the
details of the reconstructed image from multiple resolutions, so as to make the details of
the reconstructed image more vivid and natural. The multi-scale occlusion map output by
the multi-scale occlusion restoration module will then be input into the generator to guide
the generation of the reconstructed image.
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2.4. Generator

The construction of the generator follows the automatic encoder structure, as shown
in Figure 9. The generator is composed of an encoder and a decoder. The encoder has
two blocks called downblocks. The downblocks will double the feature on the channel,
halve the height and width of the feature and finally output an intermediate feature with
a resolution of (256, 64, 64). At this point, we use the dense motion FS←D(z) distort the
intermediate feature, so as to transfer the motion information from the source frame to the
driving frame. In addition, in order to encode intermediate feature information at a deeper
level, we use six modules called Resblock2d. In 2016, Kaiming He et al. [19] proposed the
use of Resblock2d in ResNet to solve the problem of network gradient disappearance and
gradient explosion, so that deeper network models can be trained. The structure diagram
of Resblock2d is shown in Figure 9.
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In the decoding stage, we first use the occlusion map of (64, 64) resolution to repair
the intermediate feature. Specifically, the calculation is shown in Equation (13), where ξin
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represents the input feature, ξout represents the feature after the occlusion map repair, and
Oi represents the occlusion map with resolution (i, i) (i belongs to (64, 128, 256)). After that,
the repaired feature will go through two blocks called upblocks. The upblocks will halve
the channels of feature and double the height and width, which is the reverse operation of
the downblocks. The output of each upblock will be repaired in detail through an occlusion
map of the same resolution. Finally, convolution operation with the filter size of 1 × 1 is
used to reduce the channels of feature to 3, and our reconstructed image is obtained after
the sigmoid activation function.

ξout = Oi � ξin (13)

3. Experiments and Results

In order to evaluate the performance of our proposed method and compare with
FOMM, we conducted extensive experiments on the three benchmark datasets, including
VoxCeleb1 [20], TaiChiHD [16] and MGif [14]. Each dataset has a separate training set
and test set. Some sample images (frames of videos) in the three datasets are shown in
Figure 10.
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3.1. Datasets and Experimetal Setting

VoxCeleb1 is an open-source large-scale celebrity interview voice collection, collected
by Nagrani and others from Google. In order to obtain the corresponding video files, the
same processing method proposed in FOMM was used to download the celebrity interview
videos of VoxCeleb1. For each video, the face area was extracted and marked with a
square area, and then was normalized to size 256 × 256. The frame number range of each
video was 64-1024. There were 18,130 training videos and 503 test videos in total. In our
experiment, human faces were generated and animated for test videos.

TaiChiHD is a dataset composed of cut videos of human bodies performing Tai Chi
movements, published by Aliaksandr Siarohin et al. We also used the above processing
method to obtain video images in size 256× 256, including 2652 training videos and 285 test
videos. In our experiment, human bodies with Tai Chi movements were generated and
animated for test videos.

MGif is a GIF (graphics interchange format) file dataset that describes 2D cartoon
animals. The dataset was collected through Google search, including 900 training videos
and 100 test videos. In our experiment, cartoon animals were generated and animated for
test videos.
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3.2. Measurement Metrics

Generally, animation image quality assessment includes reconstruction quality and
animation quality. In terms of reconstruction quality, given that image animation is a
relatively new research problem, there are not many effective ways to evaluate this currently.
For quantitative metrics, video reconstruction accuracy was used as a proxy for image
animation quality. We applied the same metrics in our experiments.

We defined L1 error as the mean absolute difference between reconstructed and
ground-truth video pixel values. As shown in Equation (14), n represents the total number
of video frames, while H and W represent the height and width of the image, respectively.
Ihw represents the pixel value at (h, w) position in the real video frame, and Îhw represents
the pixel value at (h, w) position in the reconstructed frame.

L1 =

(
n

∑
i=1

H

∑
h=0

W

∑
w=0

∣∣Ihw − Îhw
∣∣)/n (14)

Average keypoint distance (AKD) and missing keypoint rate (MKR) were used to eval-
uate the difference between poses of reconstructed and ground truth videos. Landmarks
were extracted from both videos using public, body [21] (for TaiChiHD) and face [22] (for
VoxCeleb) detectors. AKD is the average distance between corresponding landmarks, while
MKR is the proportion of landmarks existing in the ground-truth video but missing in the
reconstructed video.

Average Euclidean distance (AED) was used to evaluate how well identity is preserved
in reconstructed videos. Public reidentification networks for bodies [23] (for TaiChiHD)
and for faces [24] (for VoxCeleb) extracted identity from reconstructed and ground-truth
frame pairs. Then, the mean L2 norm of their difference across all pairs was computed.

Animation quality is usually evaluated by subjective video quality assessment. We
will present some examples of image animation generation results for visual comparison.

3.3. Experimental Results and Analysis
3.3.1. Reconstruction Quality

Quantitative reconstruction results are shown in Table 1. From the results in Table 1,
we can see that our method achieved better results than FOMM with almost all indicators
on all the three datasets. Especially on the TaiChiHD dataset, L1 , AKD and MKR decreased
by 4.9%, 13.5% and 25.8%, respectively. In addition, on VoxCeleb1 for face movement
transfer, L1, AKD and AED decreased by 6.5%, 5.1% and 0.7%, respectively.

Table 1. Comparing the video reconstruction evaluation indicators. FOMM and FOMM-CBAM (ours)
set the number of key points to 10 (the best result is displayed in bold).

TaiChiHD VoxCeleb MGif
L1 (AKD, MKR) AED L1 AKD AED L1

X2Face 0.080 (17.65, 0.109) 0.27 0.078 7.69 0.405 -
FOMM 0.061 (6.75, 0.031) 0.167 0.046 1.37 0.142 0.026

Ours 0.058 (5.84, 0.023) 0.170 0.043 1.30 0.141 0.026

3.3.2. Animation Quality

In order to compare our method with FOMM in the terms of animation quality, we
performed animation generation on the TaiChiHD dataset and the VoxCeleb1 dataset. The
experimental results are shown in Figures 11 and 12, respectively. The results show that the
animation quality significantly improved in most cases, especially in the case of animated
objects with large-scale posture change.
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In Figure 11, we compared the performance of our model and FOMM on the TaiChiHD
dataset. The generated images in the first row show that our model produced more vivid
and natural results than FOMM when the posture transformation was not large enough. In
the second row, when the human body turned around, FOMM failed to locate the posture
change of the human body, particularly the change in head posture, which resulted in
completely incorrect human body posture in the reconstructed frame. In general, our
model can transfer more complex motion postures by using the attention mechanism to
extract more effective features and the multi-scale occlusion map provided by the multi-
scale occlusion restoration module reconstruction frame. Hence, the generated results
of our model were much better than those of FOMM. In the third row of Figure 11, we
observed that the video frame generated by FOMM had a large shadow, whereas our model
alleviated this problem.

In Figure 12, the comparative results on the VoxCeleb1 dataset between our model
and FOMM are provided. The images in the first and second rows show the generated
video frames when the face turned to an extreme angle, such as the side face turning to
the front or the front face turning to the side. FOMM lost the characteristics of the source
image object, resulting in obvious errors in the generated frame. Our method used the
attention mechanism to optimize the generation of the optical flow field, improving the
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accuracy of the generated optical flow field and making the motion of the generated face
more consistent to the source frame. Furthermore, as shown in the third row of Figure 12,
FOMM resulted in a ghosting effect (false object shadow) in the generated face, whereas
our method solved this problem by gradually repairing the generated results with the
multi-scale solution.

In general, the experimental results demonstrated that our model is capable of generat-
ing the optical flow fields with higher accuracy. Furthermore, our model effectively resolved
the ghosting effect (false object shadow) in the generated frames. As a result, our model
achieved a superior image animation generation effect compared to previous methods.

3.3.3. Ablation Experiment

In order to further analyze the benefits with the attention module and the multi-scale
occlusion restoration module in our method, we conducted a large quantity of ablation
experiments. The results are shown in Table 2.

Table 2. Ablation study on the TaiChiHD (256) dataset with 10 keypoints (the best result is displayed
in bold).

Methods
TaiChiHD

L1 (AKD, MKR) AED

FOMM 0.061 (6.75, 0.031) 0.167
FOMM + CBAM 0.059 (6.16, 0.024) 0.178

FOMM + our attention module 0.060 (6.60, 0.029) 0.181
FOMM + CBAM + multi-scale occlusion restoration module 0.059 (6.54, 0.027) (0.179)

Our method 0.058 (5.84, 0.023) 0.170

From Table 2, we can see that when we used the attention module exclusively, all of
our metrics were worse than those by using CBAM together. However, when we included
the multi-scale occlusion restoration module again, our method achieved much better
performance. Compared with the FOMM and CBAM methods, all the metrics indicate
that our method had the better performance. The proposed attention module seeks to
identify the most dominant features in a frame by eliminating the average pooling in space
and solely relying on maximum pooling. The task of reconstructing the background and
addressing occlusions is transferred to the multi-scale occlusion restoration module, which
employs a multi-scale occlusion map to perform step-by-step repair. Thus, there is no
conflict between the two modules.

In addition, we also visualized the keypoints, as shown in Figure 13. From the
comparison of experimental results, it is obvious that the keypoints detected by our method
were more consistent with the human body structure, such as defining a keypoint for the
head. However, in FOMM, some keypoints were incorrect. FOMM also had the problem of
keypoints positioning error, such as the keypoints on the background, which will lead to
the leakage of motion information to the background.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 
Figure 13. Our method and FOMM’s visualization of keypoints in the TaiChiHD dataset. (The 
different colorful dots represent different key points, and the red circles indicate the incorrect key 
points.) 

3.3.4. Analysis of Reconstruction Results 
Although our method has made significant improvements in both the reconstruction 

quality and the animation quality compared with FOMM, the proposed method still does 
not achieve perfect visual effects in some special cases. A few examples with poor visual 
effects in the reconstruction process are shown in Figure 14. After investigating those 
cases, we found that our method cannot achieve good visual effects in two main situa-
tions. Firstly, our method could not handle the reconstruction task when the character’s 
clothing color was very similar to the background color, as shown in Figure 14a. In this 
case, the color information of the target character in the reconstructed frame mixed with 
the color information of the background. Secondly, our method could not handle the sit-
uation when the source frame was lacking some information. As shown in Figure 14b, the 
target character in the source frame stands on the side and the facial information is oc-
cluded by one of arms, so the facial information was deficient and could not be accurately 
generated in the reconstructed frame. In these types of special cases, our method still faced 
great challenges in the TaiChiHD dataset. 

 

Figure 13. Cont.



Appl. Sci. 2023, 13, 4137 13 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 
Figure 13. Our method and FOMM’s visualization of keypoints in the TaiChiHD dataset. (The 
different colorful dots represent different key points, and the red circles indicate the incorrect key 
points.) 

3.3.4. Analysis of Reconstruction Results 
Although our method has made significant improvements in both the reconstruction 

quality and the animation quality compared with FOMM, the proposed method still does 
not achieve perfect visual effects in some special cases. A few examples with poor visual 
effects in the reconstruction process are shown in Figure 14. After investigating those 
cases, we found that our method cannot achieve good visual effects in two main situa-
tions. Firstly, our method could not handle the reconstruction task when the character’s 
clothing color was very similar to the background color, as shown in Figure 14a. In this 
case, the color information of the target character in the reconstructed frame mixed with 
the color information of the background. Secondly, our method could not handle the sit-
uation when the source frame was lacking some information. As shown in Figure 14b, the 
target character in the source frame stands on the side and the facial information is oc-
cluded by one of arms, so the facial information was deficient and could not be accurately 
generated in the reconstructed frame. In these types of special cases, our method still faced 
great challenges in the TaiChiHD dataset. 

 

Figure 13. Our method and FOMM’s visualization of keypoints in the TaiChiHD dataset. (The differ-
ent colorful dots represent different key points, and the red circles indicate the incorrect key points.)

3.3.4. Analysis of Reconstruction Results

Although our method has made significant improvements in both the reconstruction
quality and the animation quality compared with FOMM, the proposed method still does
not achieve perfect visual effects in some special cases. A few examples with poor visual
effects in the reconstruction process are shown in Figure 14. After investigating those
cases, we found that our method cannot achieve good visual effects in two main situations.
Firstly, our method could not handle the reconstruction task when the character’s clothing
color was very similar to the background color, as shown in Figure 14a. In this case, the
color information of the target character in the reconstructed frame mixed with the color
information of the background. Secondly, our method could not handle the situation
when the source frame was lacking some information. As shown in Figure 14b, the target
character in the source frame stands on the side and the facial information is occluded by
one of arms, so the facial information was deficient and could not be accurately generated
in the reconstructed frame. In these types of special cases, our method still faced great
challenges in the TaiChiHD dataset.
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4. Conclusions and Future Work

In this paper, an improved framework for image animation generation has been
proposed based on the FOMM method. Specifically, the two novel modules have been
proposed and applied to solve the problems of inaccurate reconstruction and low quality
of visual effects in video frame generation.

Firstly, we proposed to use an attention module to optimize the generation of the
optical flow field. The attention module can further enhance feature expression by recon-
structing the feature information on the channel and space, so as to predict the more precise
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optical flow field. Secondly, we proposed the multi-scale occlusion restoration module to
obtain an occlusion map, with resolutions of (64, 64), (128, 128) and (256, 256), to repair
the feature representation of the network at different resolutions and to enhance the repair
ability of the network. With this proposed module, the generated frames can contain the
correct and complete visual information and be of better visual quality in the case of large
posture changes of the animated object. In addition, our model can be trained effectively in
an unsupervised manner. Based on the above two modules, we proposed our improved
framework. In order to verify the performance of our method, we conducted extensive
experiments on three benchmark datasets, TaiChiHD, VoxCeleb1 and MGif. The experimen-
tal results showed that our method outperformed the FOMM in both the reconstruction
quality and the animation quality.

Although our proposed framework has achieved apparent improvement for image
animation, there are still some limitations. As one of the limitations, the inter-frame
correlation was not considered. In future work, we plan to utilize neural networks, such
as LSTM [25], to save the generation results of the previous frame, and then the saved
information can be used enhance the generation of the current frame. Given the correlation
between the two consecutive frames, some generated content from the previous frame
will help to improve the reconstruction quality of the current frame. Additionally, we
also plan to explore the use of multiple source frame images from various angles to build
potential source frames. We will automatically adjust the contribution of source frames
from different angles through neural networks to generate more accurate and realistic
reconstructed frames in our future work.
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