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Featured Application: We believe that this research will be helpful for the detection of Cetacean
acoustic signals for research purposes or dataset building for the purpose of more accurate artificial
neural network training.

Abstract: Cetaceans are an important part of the ocean ecosystem and are widely distributed in seas
across the world. Cetaceans are heavily reliant on acoustic signals for communication. Some Odontoceti
can perceive their environments using their sonar system, including the detection, localization,
discrimination, and recognition of objects. Acoustic signals are one of the most commonly used
types of data for Cetacean research, and it is necessary to develop Cetacean acoustic signal detection
methods. This study compared the performance of a manual method, short-time Fourier transform
(STFT), and wavelet transform (WT) in Cetacean acoustic signal detection. The results showed
that WT performs better in click detection. According to this research, we propose using STFT for
whistle and burst-pulse marking and WT for click marking in dataset building. This research will be
helpful in facilitating research on the habits and behaviors of groups and individuals, thus providing
information to develop methods for protecting species and developing biological resources.

Keywords: wavelet transform; short-time Fourier transform; hydrophone; Cetacean; acoustic signal;
signal detection; click; whistle; burst pulse

1. Introduction

Cetaceans belong to Whippomorpha, including Mysticeti and Odontoceti. Acoustic signals
are the most important way in which Cetaceans perceive their environment and communi-
cate, especially active acoustic signals generated by Cetaceans [1,2]. Odontoceti can use their
sonar systems for echolocation through wide-frequency band signals [3,4]. Since the 20th
century, due to excessive whaling, these animals’ habitats have been reduced in size, and
some species are now endangered [5–8]. To protect Cetaceans, the International Whaling
Commission (IWC) devised the International Convention for the Regulation of Whaling [9].
In recent years, studies have shown that in addition to human hunting, the noise generated
by human activities also has a greatly negative impact on Cetaceans [1,10–15]. Odontoceti,
especially Delphinidae and Phocaenidae, are highly dependent on their sonar systems for en-
vironmental perception and predation [1–3,16,17]. Human activities are frequent in rivers,
estuaries, and coastal areas, and the noise produced results in serious interference with,
and even damage to the auditory systems of Odontoceti [10–13,15]. Taking Sousa chinensis
as an example, we can observe that their click signal is a broadband signal with a short
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duration [18], which is easily masked by impact or knocking noises [13]. Young individuals
can distinguish artificial knocking sounds and click signals from their own. However, the
hearing capacity of elder individuals gradually becomes worse with increased age [19,20],
resulting in the confusion of knocking sounds and clicking signals and causing them to
enter rivers by mistake. Some aged Sousa chinensis have been killed due to grounding
or fungal infection based on these mistakes. The study of Cetaceans’ acoustic signals is
important for species protection measures and biological resource development.

Hydrophone data are the most widely used type of information in Cetacean research
because sound travels much further than light in water and is more easily recorded. The
acoustic research on hydrophone data of Cetaceans began in the 1940s, given that hy-
drophone technology was developed in World War II. William E. Schevill et al. researched
the acoustic signals of the White porpoise (Delphinapterus leucas) by a hydrophone working
at 0.5 kHz~10 kHz in 1949 [21]. Since then, many researchers have used hydrophones to
study the characteristics of the acoustic signals of Cetaceans. In 1993, Whitlow W.L. Au
summarized the results of acoustic research on a variety of Cetaceans and compiled a book
entitled The Sonar of Dolphins [3]. After determining the characteristics of Cetaceans’ acous-
tic signals, researchers began to study the relationship between Cetaceans’ acoustic signals,
environment, and behaviors based on these characteristics. Therefore, the detection and
analysis of acoustics became increasingly important. Tursiops truncatus are known to avoid
obstacles in their paths while swimming and to locate fishes for food by sound reflection
or by echolocation [4,22]. Johnson et al. found that the upper limit of hearing of Tursiops
truncatus can reach 120~140 kHz. Liang Fang et al. studied the high-frequency echolocation
signals of Sousa chinensis in Sanniang Bay, Guangxi Province, China, and found that the
mean peak frequency was 109 kHz [18]. Liang Fang et al. researched the echolocation
signals of captive and free-ranging Neophocaena asiaeorientalis and found that the main
center frequency of clicks from individuals in the Baiji aquarium was 133 kHz, while that
of individuals at the Shishou Tian-e-zhou Reserve was 128 kHz, and that of individuals at
Tianxingzhou was 129 kHz [23]. In most studies, the researchers released the hydrophone
into the water to collect acoustic signals. Some pressed the hydrophone against the skin of
dolphins, as in T.H. Bullock et al.’s research [24]. Cetacean acoustic signals can be separated
into whistle, burst-pulse, and click signals based on their time–frequency characteristics.
The click signal is a broadband signal with an upper limit of frequency up to 150 kHz, with
some reaching even more than 200 kHz. It is still difficult to identify the click signals of
Odontoceti in large quantities for research purposes. On the one hand, marine environment
noise leads to some interference with the sound signals. On the other hand, knocks and
sounds of non-target marine animals may be misidentified [25]. Abbas et al. designed an
FChOA-MLPNN for the automatic detection of marine mammal sounds [26]. However,
the manual labeling of the dataset consumed a great deal of labor and could lead to the
mislabeling of knock signals as click signals. Yang et al. transformed hydrophone data from
the time domain into the time–frequency domain using a short-time Fourier transform
(STFT). The acoustic signals of dolphins can be marked according to their duration, short
energy, and spectral centroid. Due to the uncertainty principle, the time–frequency spec-
trum calculated using STFT cannot maintain a high temporal resolution and high-frequency
resolution at the same time. Yang’s method can mark whistle and burst pulses accurately,
but there are some mismarks of clicks [27].

Since the development of the digital signal processing (DSP) method, a new signal
analysis method has been produced, i.e., the wavelet transform (WT), where the resolution
can be dynamically changed in accordance with the frequency. Although WT still cannot
ensure both a high temporal resolution and high-frequency resolution in a window at the
same time based on the uncertainty principle, the dynamic resolution captures greater
details of wide-frequency band signals [28]. Thus far, WT has been applied to seismic signal
recognition, part flaw detection, image processing, and other fields [29–31].

In this research, we studied the usage of WT for Cetacean acoustic signal detection;
recognized whistle, burst-pulse, and click signals with WT; and compared these data with
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the results obtained using traditional STFT and manual methods. This research lays the
groundwork for the detection of many Cetaceans’ acoustic signals and can support species
protection efforts and the study of Cetaceans’ habits.

2. Materials and Methods

Single-scalar hydrophones or scalar hydrophone arrays are the most widely used
equipment for Cetacean acoustic research. Therefore, the currently known characteristics of
Cetaceans’ acoustic signals are based on the physical quantities that can be output using
scalar hydrophones or gained by processing the output using scalar hydrophones, i.e., the
duration, strength, and frequency, derived after time–frequency analysis. We designed
a target signal detection procedure considering these three quantities (Figure 1). The
procedure can be divided into three steps. Step 1, signal analysis, involves the collection
and transfer of the time domain analog signal data into digital data using the hydrophone.
Then, the background noise is flitted out as much as possible, and the time domain data
are transformed into time–frequency domain data using a mathematical analysis method.
Here, we chose two different methods: STFT and WT. The details of step 1 are shown in
Section 2.2. Step 2, target signal detection, mainly serves to identify signals of a certain
strength within the specified frequency range. These signals are strongly suspected to
be target signals. Step 3, target signal marking, aims to determine the duration of each
signal and mark the signals within the specified duration range. It should be noted that the
strength, frequency range, and duration range should be set according to the target species.
The details of step 2 and step 3 are shown in Section 2.3.
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Figure 1. Flow chart of the target signal detection procedure.

2.1. Hydrophone Data

The dataset for the experiment was recorded by the South China Sea Fisheries Research
Institute, Chinese Academy of Fisheries Science, at Guishan Offshore Wind Farm, Zhuhai,
Guangdong Province, China (N22.142817, E133.7238333). Located at the site of an estuary
of the Pearl River, Guishan is one of the habitats of the Indo-Pacific humpback dolphin (Sousa
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chinensis). A hydrophone was fixed on the pile of a wind power generator for data collection.
The parameters and settings of the hydrophone are shown in Table 1.

Table 1. Parameters of the hydrophone for data collection.

Parameters Value

Type Sound Trap ST300 HF, Ocean Instruments
Memory 256 GB

Frequency band 20~144 kHz
Sampling rate 288 kHz

Resolution 16-bit
Minimum self-noise 37 dB

2.2. Methods of Signal Analysis

The original hydrophone data include time information and signal strength informa-
tion, but the most notable feature of Cetaceans’ acoustic signals is their frequency informa-
tion. Therefore, we must transform the original time domain data into time–frequency
domain data. In this research, we chose three different methods to process the data, in-
cluding one manual method and two digital methods, STFT and WT. The manual method
and STFT are commonly used for Cetacean acoustic signal detection. WT is a new method
that has been applied for the processing of non-stationary signals or filters. We aimed to
determine whether WT was valuable for Cetacean acoustic research by comparing these
three methods.

2.2.1. Manual Method

Human sense is widely used in the field investigation of marine mammals. Both
whistle and burst pulses are on the threshold of audibility, being easily identified by
experienced fishers, trainers, and researchers. The frequency can also be roughly estimated
using human sense, as a higher sound means a higher frequency. However, most of
the frequency bands of clicks are higher than the human hearing range. Although the
low-frequency part of the click range can be heard by trained persons, we believe that
the characteristics of this part are not sufficient to judge whether the signal is a click. It
is necessary to enable hearing of the higher-frequency band of clicks, which includes a
much greater number of characteristics. In this research, the sampling rate of the original
signal was 288 kHz, and we played the audio 20 times slower at 14.4 kHz. According to
sampling theory, the upper limit of the frequency band was reduced to 7.2 kHz, enabling
the inaudible high-frequency band of signals to be heard by humans. Clicks sound similar
to firecracker explosions, making them more easily to distinguish.

2.2.2. STFT

STFT is a time–frequency transform method based on the Fourier transform (FT).
At present, STFT is the most widely used method of marine mammal acoustic signal
time–frequency analysis. Much commercial audio software and hydrophone software use
STFT for visualization and data analysis, e.g., the commercial audio edit software Adobe
Audition and the professional hydrophone data software Marco, Lucy, and Sound Trap
Host. The principle of STFT is to divide the signal according to a certain window length
and overlap. Then, one can analyze the signals in each window with FT and sort the results
into chronological order. The function of STFT can be written as

XSTFT(t, f ) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2πfτdτ, (1)

where x(τ) is the input signal at the moment of τ, h(τ − t) is the window function, and t is
the position of the window on the time axis. The settings of STFT in this research can be
seen in Table 2.
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Table 2. Parameters of STFT.

Parameters Setting

Software SciPy 1.7.1 1

Window Hamming
Window length 500 sampling points

Overlap 250 sampling points
1 A collection of mathematical algorithms (Software SciPy v1.7.1) [32]. Here, we used Python 3.9.7.

2.2.3. WT

Since the development of signal processing technology, many new methods have been
developed for single- or two-dimension signal analysis [33–36]. Among these methods, WT
is a widely used one [37]. WT appeared in the 1970s, and in recent years, it has been used for
various types of signal analysis, such as signal and image processing [38,39]. The principle
of WT is to use a scalable and displaceable finite-length base wavelet inner-product time
domain data. The function of WT can be written as

XWT(a, τ) =
1√
a

∫ ∞

−∞
x(t)ϕ*

(
n− τ

a

)
dn, (2)

where x(t) is the value of the time domain data at the moment of t; ϕ(t) is a scalable and
displaceable finite-length base wavelet; the positive coefficient a controls the scaling of ϕ(t);
and coefficient τ controls the displacement of ϕ(t). The settings of WT in this research can
be seen in Table 3.

Table 3. Parameters of WT.

Parameters Setting

Software PyWavelets v1.1.1 1

Base wavelet Cmor100-100
Total scale 1000

Sampling period Decided by sample rate of original signal
Scales Calculated by Function (3)

1 An open-source wavelet transform software (Software PyWavelets v1.1.1) [40]. Here, we used Python 3.9.7.

The scales controlling the window sizes can be calculated as

S =
2 f T

A
, A = [T, T − 1, T − 2, . . . , 2, 1], (3)

where S is the scale, f is the sample rate of the original signal, and T is the total scale.
Vicente J. Bolós et al. introduced a wavelet tool and windowed scale index to solve a

particular case of Haar wavelet [41]. Magdalena Łepicka et al. also introduced a scale index
in their research [42]. The scale index is necessary for orthogonal decomposition. The Cmor
wavelet is a Gaussian envelope function and is related to non-orthogonal decomposition
without a scale index. Both WT and STFT use the infinitesimal element method, in which the
original data are divided into successive windows, while each window is transformed into
the time–frequency domain, and the results are sorted in chronological order. Obviously,
the shorter the window length is, the higher the temporal resolution will be. This is the
uncertainty principle. We chose an original whistle signal without a filter and processed it
using different window lengths to demonstrate the uncertainty principle (Figure 2). It can
be seen that when the window length was short, the temporal resolution was high, with a
low-frequency resolution. When the window length was longer, the temporal resolution
became lower, with a higher frequency resolution. In essence, temporal resolution and
frequency resolution are negatively correlated.
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As Figure 3 shows, the window length and overlap of STFT are constant values,
i.e., they uniformly divide the entire signal into several parts and can be employed to
calculate each part using FT. This data division method determines that STFT cannot
increase the temporal resolution and frequency resolution at the same time, being affected
by the uncertainty principle. In WT, each window is obtained by scaling and displacing
the base wavelet. This data division method determines that WT has a higher temporal
resolution with a lower frequency resolution for the high-frequency band and a lower
temporal resolution with a higher frequency resolution for the low-frequency band.

The click signals have a short duration, high upper-frequency limit, and wide fre-
quency band. Therefore, the detection of clicks requires a relatively high temporal resolu-
tion. The frequency resolutions of STFT are exactly the same in any frequency band. It is
difficult for STFT to detect catastrophe signals (e.g., clicks). The temporal resolutions of
WT can be dynamically adjusted according to the frequency band, thus realizing a higher
temporal resolution at the high-frequency band and a higher frequency resolution at the
low-frequency band. Furthermore, the base wavelet of WT can be modified, whereas the
STFT wavelet type can only be a sinusoidal wave. Therefore, the modified WT, using the
appropriate wavelet, performs better than STFT in aperiodic catastrophe signal detection.
Capture audio randomly, and transform it into the time–frequency spectrum using STFT
and WT, respectively. Figure 4a shows the time–frequency spectrum provided by STFT,
and Figure 4b shows that provided by WT. It can be seen that WT retains more details
of the signal, and the spectrum is clearer. For example, in Figure 4, the signals at around
50 ms, 200 ms, and 250 ms are so weak that they cannot be heard by humans and are not
clear enough for STFT to detect them. However, in the case of WT, it is clear that there were
some short-duration signals.
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2.3. Target Signal Detection and Marking Experiment

Marine background noise is generated by geological activities, engineering machinery
activities, sea surface winds and waves, biological activities, etc. After long-distance
propagation through the seawater, these components overlap with each other, forming a
complex high-intensity noise with a wide frequency band. It is necessary to denoise the
original data before detection and marking. The loss function of sound propagation in the
sea can be written as

PL = 20lgr + ar× 10−3, (4)

where PL is the loss of the sound; r is the propagation distance; and a is the sound loss
coefficient in the sea, which has a positive correlation with the frequency. In accordance
with this function, the loss of sound has a positive correlation with the frequency and
propagation distance. Although marine background noise is distributed throughout the
whole frequency band, the energy is concentrated in the low-frequency band.
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Low-frequency noise can be filtered out using a high-pass filter or band-pass filter. A
high-pass filter can filter out signals lower than the cut-off frequency. A band-pass filter can
filter out non-specified frequency-band signals. Since the high-frequency characteristic is
sufficient for detection, it is not necessary to retain the low-frequency band. Therefore, the
Butterworth high-pass filter was selected to filter out all the signals lower than the cut-off
frequency. This filter can ensure that the frequency response curve for the passband is as
flat as possible so that the frequency response curve for the stop band gradually drops to
zero. The function of the Butterworth high-pass filter can be written as

|H(ω)|2 =
1

1 +
(ωC

ω

)2n , (5)
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where n is the order of the filter, and ωC is the cut-off frequency. The filter H(ω) is
approximately equal to 1, preserving the signal when the frequency ω is higher than ωC.
The cut-off frequency was set to 1 kHz for click detection and 0.1 kHz for whistle and burst
pulse detection. The hydrophone, after filter application, was input into the procedure
shown in Figure 1.

The time–frequency data obtained with STFT or WT represent a three-dimensional
matrix Et× f , where t represents the position on the time axis, and f represents the position
on the frequency axis. The set signal strength parameter Me, Me can be calculated with

Me =
fmax

∑
fmin

f e(t, f ), (6)

Next, we set a lower threshold Te. The signal at t can be considered as part of the
target signal when Me > Te. As shown in Figure 1, we obtain Me at the moment t. It is
considered that the data at moment t do not belong to the target signal if Me < Te, setting
the non-signal mark at = t, while the signal mark bt remains unchanged. It is considered
that the data at moment t belong to the target signal if Me > Te, setting the signal mark
bt = t. If at = t− 1, the current moment is the starting point of the suspected signal, setting
the signal starting mark u = t. If at 6= t− 1, bt = t− 1. The current moment is the end
point of the suspected signal, setting the signal ending mark as v = t. Setting the duration
mark Mt, Mt can be calculated as:

Mt = v− u, (7)

where v is the end moment of a signal, and u is the starting moment of a signal. Then, we
set an upper limit of duration Mtmax and lower limit of Mtmin. If Mt ∈ (Mtmin, Mtmax), it is
determined that the signal belongs to the target signal.

3. Results

We analyzed the hydrophone data and marked the whistle, burst pulse, and click
using the manual, STFT, and WT methods, respectively. Since the target species was the
Indo-Pacific humpback dolphin (Sousa chinensis), the parameters for detection were set, as
shown in Table 4. The results are shown in Table 5.

Table 4. Parameters for detection.

Target Signal Parameters Value

Whistle

Te 50,000
fmin 15 kHz
fmax 40 kHz

Mtmin 0.5 s
Mtmax 3 s

Burst pulse

Te 50,000
fmin 10 Hz
fmax 15 kHz

Mtmin 0.2 s
Mtmax 1 s

Click

Te 40,000
fmin 40 kHz
fmax 144 kHz

Mtmin 15 µs
Mtmax 35 µs
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Table 5. Results of target signal detection obtained using different methods.

Type of Signal Manual STFT WT

Whistle 1062 1062 1059
Burst pulse 1361 1361 1352

Click 2501 2382 3057

Whistle and burst pulses are audible to humans. Therefore, the results of the manual
method can be used as the standard. It can be seen that SFTF performed relatively well;
it marked all the signals, whereas WT left several signals unmarked. As for clicks, it was
not easy for us to judge directly whether the marked signals were target signals. Although
WT marked more signals than the other methods in click detection, we could not directly
assess its performance, as discussed in Section 4.

4. Discussion

Whistle and burst pulses are within the human hearing range, and the duration of the
signal is long enough for our sense of hearing to recognize them. However, it is not easy
for humans to recognize clicks, as they are too short for us to hear their features clearly. It is
also difficult to distinguish clicks from other impulse signals, such as the knocking sounds
of crustacean activity and offshore piling. Therefore, we believe that the results of manual
methods for whistle and burst pulse are reliable and that these methods can be used as a
standard, but we do not have a reliable standard for clicks.

It should be noticed that the frequency band of click is far beyond the upper limit of
the human auditory threshold, and there is no clear standard that can be used to judge
the recognition results. Although we increased the sampling time by 20 to render the
click audible, the duration was still too short (approximately 440 µs). It is difficult to
distinguish a click signal from other broadband pulse signals. For example, knocking
sounds of objects impacting each other are so similar to clicks that some aged dolphins
with hearing loss may misjudge them [19]. Therefore, it is reasonable to assume that there
were several misjudgments in the experiment. WT reduced the influence of the uncertainty
principle and had advantages in terms of non-stationary signal detection. Although WT
detected more click signals in the experiment, it is uncertain whether WT performed better
or, instead, marked interference signals. Is it possible for WT to distinguish clicks from
other interference knocks by analyzing the duration of the signal? To determine this, some
knocking sound samples were collected for an experiment. In this experiment, the data
were pure interference knocks without Cetacean acoustic signals. We used the manual, STFT,
and WT methods mentioned in Section 2 to process these data separately. Subsequently, all
the detected signals were misdetections. These results indirectly reflect the anti-interference
ability of the methods. The fewer misdetections there were, the better the anti-interference
performance of the method in question was.

As shown in Figure 5, a hydrophone was tied to an unmovable cantilever with soft
nylon string and released into a barrel filled with water. The parameters and settings of
the hydrophone are shown in Table 6. Knocking sounds were made in the air (point A), on
the barrel wall (point B), and in the water (point C), respectively (50 times each, totaling
150 times). The time–frequency spectrum of the clicks and knocking sounds at points A,
B, and C are shown in Figure 6. Being affected by the air–water interface, the knocking
sounds at point A were greatly weakened and could easily be eliminated using STFT and
WT. The knocking sounds at points B and C were extremely similar to clicks and were
difficult for the manual method and STFT to distinguish. WT had a better time resolution
and could distinguish the knocking sounds through their duration. Based on analysis of the
data obtained by the manual, STFT, and WT methods, respectively, the results are shown
in Table 7. It can be seen that WT had fewer misdetections of knocking sounds than the
other methods.
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Table 6. Parameters of the hydrophone for data collection.

Parameters Value

Type SC2-ETH, Ocean Sonics
Memory 256 GB

Frequency band 10~128 kHz
Sampling rate 256 kHz

Resolution 16-bit
Minimum self-noise 27 dB
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Table 7. The misdetection numbers of the different methods.

Type of Signal Knock Number Manual STFT WT

A 50 32 15 11
B 50 50 50 4
C 50 50 43 7

5. Conclusions

In this study, we compared WT with two other widely used methods for the detection
of Cetacean acoustic signals. The results of the experiments showed that WT has certain
advantages in the detection of Cetacean click signals. It seems that WT can detect more clicks
for further research on aspects such as the regularity of click signals over a long timescale,
which reflects the biological clock of Odontoceti or their territories. It is still difficult for
us to verify the accuracy of signal detection. Therefore, we conducted a misdetection test
to indirectly verify the accuracy. WT had the fewest misdetections, indicating that its
anti-interference ability is better than that of the manual method and STFT in the detection
of clicks. As for whistle and burst pulse, STFT performed better. Theoretically, the accuracy
of time–frequency analysis depends on how similar the signal and the base wavelet are.
Therefore, if we were to choose a suitable wavelet for WT, it might perform better. However,
since STFT is sufficient for whistle and burst-pulse detection, it is not necessary to modify
WT. In conclusion, in Cetacean acoustic signal detection, traditional STFT is better for
whistles and burst pulses, and WT is better for clicks.

We believe that Odontoceti can distinguish the click signals emitted by themselves,
avoiding interference from other individuals in the group. More precise click-detection
methods will aid in the study of how these animals identify individuals. The existing
studies have shown that the duration and interval of click signals are related to the distance
and purpose of Odontoceti’s detection targets. The high time resolution of WT is very useful
in this research. By combining hydrophone data and video monitoring data, we can expect
that we will be able to determine the relationship between Odontoceti acoustic signals and
some of their behaviors in the future. This study also offers suggestions on how to build
more accurate datasets for different acoustic signals. It will be useful for the training of
more accurate artificial neural networks for edge-computing signal-detecting devices.
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