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Abstract: In this study, a kinematic calibration method is proposed. The method selects the optimal
measurement poses based on the observability index O1, and is used for six-hardpoint positioning
mechanisms, which can identify and compensate for kinematic parameter errors of the mechanism.
The calibration method is based on the derived error model. In order to improve the problem that
measurement noise affects calibration accuracy, the proposed calibration method selects specific poses
for calibration based on the observability index O1, effectively improving the calibration accuracy.
The reason for using O1 is that we compared the performance of the five observability indices
through simulation, and the results show that the calibration based on O1 has the highest accuracy.
In order to achieve pose selection based on observability indices, the DETMAX algorithm has been
improved to achieve better performance of selection. Finally, an overall evaluation of the proposed
calibration method is conducted, and the results show that the method can accurately identify
kinematic parameter errors, with a fast error convergence speed. Compared with the traditional
method, the proposed method has higher accuracy, reducing the mean position error by 78.4% and
the mean attitude error by 70.6%. The proposed method is instrumental in the accurate kinematic
calibration of six-hardpoint positioning mechanisms, and can effectively improve the accuracy of
the mechanism, thus improving the pose accuracy of the primary mirror of the ground-based large
aperture telescope.

Keywords: six-hardpoint positioning mechanism; parallel mechanism; kinematic calibration; observability
index; optimal measurement pose

1. Introduction

The six-hardpoint positioning mechanism is applied to the active support system
of ground-based large aperture telescopes, which is used for primary mirror positioning
and pose adjustment. It has been applied to some large aperture telescopes, such as the
Large Binocular Telescope [1,2], Vera C. Rubin Observatory (formerly known as the Large
Synoptic Survey Telescope) [3,4], and the Giant Magellan Telescope [5,6]. Ensuring the
accuracy of the pose of the primary mirror is very important for telescopes, which directly
affects the imaging quality of telescopes. Once the pose error of the primary mirror exceeds
the error range, it will not only lead to various aberrations, but also cause misalignment
of the optical and mechanical axes, leading to the instability of the imaging position,
which has a disastrous impact on the performance of the telescope [7,8]. Therefore, the
six-hardpoint positioning mechanism must have very high kinematic accuracy, so as to
ensure that the primary mirror can be accurately positioned in a predetermined pose during
telescope observation.

However, in practice, the accuracy of six-hardpoint positioning mechanisms can
significantly deteriorate due to the existence of kinematic parameter errors. Due to the
complex structure of the six-hardpoint positioning mechanism, it is inevitable to introduce
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kinematic parameter errors during the manufacturing and assembly process. Kinematic
parameter errors lead to deviations between the actual and theoretical kinematic models of
the mechanism, which then leads to the pose error of the primary mirror, and reduces the
imaging quality of the telescope. Therefore, measures must be taken to correct the kinematic
parameter errors or compensate the kinematic parameter errors in the kinematic model.
There are up to 42 kinematic parameter errors in the six-hardpoint positioning mechanism,
which are difficult to measure directly, and therefore difficult to achieve direct correction.

This paper attempts to solve this problem via the proposed calibration method for
the six-hardpoint positioning mechanism. Generally, kinematic calibration includes four
steps: (i) error modeling, (ii) pose measurement, (iii) error identification, and (iv) error
compensation [9,10]. Kinematic calibration is widely used for various robots, which can
effectively and economically improve the kinematic accuracy of robots without changing
hardware. Firstly, the relationship between the kinematic parameter errors of the robot
and the pose errors of the robot end effector is established through an error model, so the
kinematic parameter errors can be solved and identified by measuring the actual poses of
the end effector. Then, the theoretical kinematic parameters are corrected using kinematic
parameter errors. Finally, a new kinematic model is established based on the corrected
kinematic parameters. The new kinematic model is closer to the actual kinematic model
and achieves error compensation. Kinematic calibration solves the problem of kinematic
parameter errors and improves the accuracy of the robot. Calibration is applied to various
robots, including tri-pyramid parallel robot [11], industrial robot [12], airborne heavy-duty
mechanical arm [13], Stewart platform [14,15], hybrid manipulators [16], 7-DoF hybrid
robots, etc. [17].

To perform kinematic calibration of six-hardpoint positioning mechanisms, the mea-
surement of the poses of the primary mirror is an important step. The accuracy of calibration
can only be guaranteed by obtaining accurate poses of the primary mirror. However, the
measurement values of the pose always contain some measurement noise. The causes of
the noise include not only errors in the measurement equipment, but also errors in the
process of pose resolving. The inevitable measurement noise will reduce the accuracy of
calibration. In response to the problem of measurement noise, five observability indices
have been proposed in succession, namely O1, O2, O3, O4, and O5 [18–23]. Research has
shown that if the measurement poses for kinematic calibration are selected based on the
criteria for maximizing the observability index, the impact of measurement noise can be
reduced and the accuracy of calibration can be improved [24].

However, there are as many as five commonly used observability indices, so which one
to choose for calibration of six-hardpoint positioning mechanisms has become another issue
that needs to be addressed. Saputra et al. [25] proposed a method to calibrate a parallel
robot by using a measurement system specially installed on the external fixed frame, and
then compared the performance of the first four observability indices. The results show
that O4 has relatively good performance. Sun et al. [23] studied the physical meaning and
properties of observability indices and carried out mathematical analysis. O1 and O3 were
described as relatively good choices. Horne and Notash [26] investigated the performances
of the observability indices through the simulation of a 2-DOF planar manipulator. The
simulation results revealed that O5 and O3 had good and bad performances, respectively.
Zhou et al. [27] studied the performances of the observability indices through the calibration
of a 2-link planar robot, and O4 is the best observability index. To sum up, there are different
viewpoints on the performance of the observability indices at present, and further research
is needed.

In order to improve the accuracy of the proposed calibration method for six-hardpoint
positioning mechanisms, this paper attempts to find the most suitable observability index
for this mechanism. Therefore, many simulations of calibration have been conducted for
this mechanism, and the performance of the five observability indices have been compared.
Finally, the best performance observability index O1 has been obtained. Specific algorithms
are required for measurement pose selection based on O1, such as genetic algorithms
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and DETMAX. This paper improves the DETMAX algorithm by setting a tabu list in the
algorithm, which improves the problem that DETMAX is greatly affected by initial values,
and the problem that DETMAX easily converges to the local maximum value.

Finally, in order to validate the proposed kinematic calibration method for six-hardpoint
positioning mechanisms, an overall evaluation of the method was conducted. Comparing
the effectiveness and accuracy of traditional calibration method and the proposed calibra-
tion methods, the results show that the proposed method has higher effectiveness and
accuracy compared to traditional methods.

The main contributions of this paper are as follows: (1) A kinematic calibration method
is proposed which selects the optimal measurement poses based on the observability
index O1. The method can not only identify and compensate for the kinematic errors of
the six-hardpoint positioning mechanism, but can also have higher calibration accuracy
than traditional methods. (2) This paper improves the DETMAX algorithm for selecting
the optimal measurement pose. Based on the DETMAX algorithm, a tabu list is added,
effectively improving its problems of easy convergence to a local optimal solution and
being greatly affected by initial values. (3) Through many simulations of calibration,
this paper compares the performance of observability indices in the calibration of six-
hardpoint positioning mechanisms, and ultimately obtains the best performance indicator.
The proposed calibration method is based on this index. The simulation is equivalent to
2000 calibrations, so the conclusions are universal and statistically significant.

The content of the rest of this article is arranged as follows: Section 2 introduces the
mathematical model and derivation process of the six-hardpoint positioning mechanism.
Section 3 introduces observability indices and the algorithm used to select optimal measure-
ment poses. Section 4 compares the performance of the observability indices, including the
method of numerical simulation of calibration and calibration accuracy evaluation methods.
Section 5 evaluates the proposed calibration method. Finally, the study is concluded in
Section 6.

2. Six-Hardpoint Positioning Mechanism and Its Mathematical Model

The six-hardpoint positioning mechanism is used to adjust and maintain the pose
of the large aperture primary mirror. It forms a primary mirror positioning system with
the primary mirror and mirror cell, and is a subsystem of the pneumatic active support
system for the primary mirror of the large aperture ground-based telescope. As shown
in Figure 1, the six-hardpoint positioning mechanism consists of six identical hardpoints,
one end of the hardpoint is connected to the primary mirror back plate at A1 to A6 through
a flexible hinge, and the other end is connected to the mirror cell at B1 to B6 through a
flexible hinge. The hardpoint can be considered as a displacement actuator with high
axial stiffness, so the kinematic principle of the mechanism is similar to that of a Stewart
platform. Adjusting the lengths of the hardpoints can realize the adjustment of the pose
of the primary mirror relative to the mirror cell. When the lengths of all hardpoints are
maintained, the six-hardpoint positioning mechanism completely limits the degrees of
freedom of the primary mirror to maintain the pose of the primary mirror.

The mathematical model includes kinematic models and an error model. Kinematic
models include forward and inverse kinematic models. The forward kinematic model
refers to obtaining the pose of the primary mirror through the length of the hardpoint, and
the inverse model refers to obtaining the lengths through the pose. Both the forward and
inverse model need to be used in calibration. The error model provides the relationship
between kinematic parameter errors of the mechanism and pose errors of the primary
mirror, which is one of the contents of kinematic calibration.
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Figure 1. Three-dimensional model of the six-hardpoint positioning mechanism and the primary
mirror positioning system. For clarity of expression, the primary mirror has been changed to
translucent, and the structure of the mirror cell has been simplified.

2.1. Kinematic Model of Six-Hardpoint Positioning Mechanisms
2.1.1. Inverse Kinematic Model

The structural diagram of the six-hardpoint positioning mechanism is shown in
Figure 2, which is a simplified version of Figure 1. Figure 2a shows the initial pose state of
the mechanism, and Figure 2b shows the mechanism in the state after a pose adjustment.
When considering the primary mirror as a rigid body, it has 6 degrees of freedom, so the
pose of the primary mirror can be determined through 6 coordinate parameters, using
q = [x y z α β γ]T which represents the pose of the primary mirror. q can be decomposed
into a position vector t = [x y z]T and an attitude vector s = [α β γ]T. According to the geo-
metric relationship in Figure 2, the inverse kinematic model of the six-hardpoint positioning
mechanism can be directly obtained:

li = t + Rai − bi (1)

where i = 1, 2,..., 6, corresponding to the six hardpoints. li is the vector in the direction of
the hardpoint, and the norm of the vector is the length of the hardpoint. t is the position
vector of the primary mirror and the coordinate of the coordinate origin O1 in the O-xyz. ai
is the coordinate of the upper support point Ai in the coordinate system O1-x1y1z1, and bi
is the coordinate of the lower support point Bi in the coordinate system O-xyz (O1 and O2
here refer to the coordinate origins, which are independent of the observability indices O1
and O2). R is the rotation matrix and is represented as follows:

R =

cos γ cos β cos γ sin β sin α− sin γ cos α cos γ sin β cos α + sin γ sin α
sin γ cos β sin γ sin β sin α + cos γ cos α sin γ sin β cos α− cos γ sin α
− sin β cos β sin α cos β cos α

 (2)

where α, β, and γ are the rotation angles of the primary mirror around the coordinate axes x2,
y2, z2, which are elements in the attitude vector s = [α β γ]T. The inverse kinematics model
can calculate the length and direction of each hardpoint through the primary mirror pose.
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Figure 2. Structural diagram of the six-hardpoint positioning mechanism. (a) The mechanism in the
initial pose; (b) The mechanism in the state after a pose adjustment.

2.1.2. Forward Kinematic Model

The forward kinematic model is used to solve the pose of the primary mirror through
the given lengths of the six hardpoints, based on the Gauss–Newton iteration method.
According to the inverse kinematic Equation (1), the length hi of the hardpoint is:

hi = |li|
=
√

li
Tli

=
√
(t + Rai − bi)

T(t + Rai − bi)

(3)

where i = 1, 2,..., 6. Equation (3) is the forward kinematic equation, which is classified as
a nonlinear equation and is difficult to solve directly. Therefore, according to the Gauss–
Newton iteration method, the following function F(q) is constructed:

F(q) =
6

∑
i=1

[
hi −

√
(t + Rai − bi)

T(t + Rai − bi)

]2
(4)

In this way, the problem of solving the nonlinear equation is transformed into the
problem of finding the pose q of the primary mirror that minimizes F(q). It can be solved
by the least squares method. For the convenience of calculation, make:

fi(q) = hi −
√
(t + Rai − bi)

T(t + Rai − bi) (5)

f(q) = [ f1(q), f2(q), f3(q), f4(q), f5(q), f6(q)]
T (6)

Then, substituting Equation (6) into Equation (4) yields:

F(q) = f(q)Tf(q) (7)

The iteration formula according to the Gauss–Newton iteration method is:

qk+1 = qk −
[
(Jk)

TJk

]−1
(Jk)

Trk (8)
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where:

Jk =



∂ f1(q)
∂x

∂ f1(q)
∂y

∂ f1(q)
∂z

∂ f1(q)
∂α

∂ f1(q)
∂β

∂ f1(q)
∂γ

∂ f2(q)
∂x

∂ f2(q)
∂y

∂ f2(q)
∂z

∂ f2(q)
∂α

∂ f2(q)
∂β

∂ f2(q)
∂γ

∂ f3(q)
∂x

∂ f3(q)
∂y

∂ f3(q)
∂z

∂ f3(q)
∂α

∂ f3(q)
∂β

∂ f3(q)
∂γ

∂ f4(q)
∂x

∂ f4(q)
∂y

∂ f4(q)
∂z

∂ f4(q)
∂α

∂ f4(q)
∂β

∂ f4(q)
∂γ

∂ f5(q)
∂x

∂ f5(q)
∂y

∂ f5(q)
∂z

∂ f5(q)
∂α

∂ f5(q)
∂β

∂ f5(q)
∂γ

∂ f6(q)
∂x

∂ f6(q)
∂y

∂ f6(q)
∂z

∂ f6(q)
∂α

∂ f6(q)
∂β

∂ f6(q)
∂γ


(9)

rk = f(q) = [ f1(q), f2(q), f3(q), f4(q), f5(q), f6(q)]
T (10)

Since the Jacobian matrix Jk is a reversible matrix, Equation (8) can be simplified to:

qk+1 = qk − Jk
−1rk (11)

The steps of the iterative method of the forward kinematic model are as follows:
1© Given an initial value q1, and iteration accuracy ε > 0, let k = 1.
2© Substitute qk and the lengths hi of hardpoints into Jk, Jk

−1, and rk, and then calculate
qk+1.

3© If |qk+1 − qk| < ε is satisfied, then terminate the iterations. Otherwise set k = k + 1,
and repeat step 2©.

4© When the iterations are terminated, qk+1 represents the pose of the primary mirror
obtained from the forward kinematic model.

2.2. Error Model of Six-Hardpoint Positioning Mechanism

For any robot, error modeling is an important part of kinematic calibration, which
requires solving the problems of which errors should be modeled and how to model them.
For the six-hardpoint positioning mechanism, factors that affect the pose accuracy of the
primary mirror include both geometric errors (such as kinematic parameter errors) and non-
geometric errors (such as gravitational deformation and thermal expansion of materials).
The kinematic calibration in this study specifically investigates the kinematic parameter
errors. The error model is established based on the inverse kinematic Equation (1), which
can be rewritten as:

|t + Rai − bi|2 − hi
2 = 0 (12)

where ai, bi, and hi are collectively referred to as kinematic parameters. ai and bi can be
defined as follows:

ai =
[
xAi yAi zAi

]T (13)

bi =
[
xBi yBi zBi

]T (14)

where i = 1, 2,..., 6, with each i corresponding to a hardpoint. Additionally, there are 7
kinematic parameters related to each hardpoint, of which 3 represent the position of the
upper support point, 3 represent the position of the lower support point, and 1 represents
the length of the hardpoint. Therefore, the total number of kinematic parameters is 42, and
C represents the vector composed of all kinematic parameters:

C = [xA1 yA1 zA1 h1 xB1 yB1 zB1 · · · xA6 yA6 zA6 h6 xB6 yB6 zB6 ]
T (15)

In addition to the above kinematic parameters, Equation (12) also includes the relevant
parameter q, that is the pose of the primary mirror. Therefore, Equation (12) can be rewritten
in the following form:

fi(x, y, z, α, β, γ, xAi, yAi, zAi, hi, xBi, yBi, zBi) = 0 (16)
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Through complete differentiation, Equation (16) can be transformed into:

∂ fi
∂x dx + ∂ fi

∂y dy + ∂ fi
∂z dz + ∂ fi

∂α dα + ∂ fi
∂β dβ + ∂ fi

∂γ dγ + ∂ fi
∂xAi

dxAi +
∂ fi

∂yAi
dyAi

+ ∂ fi
∂zAi

dzAi +
∂ fi
∂di

dhi +
∂ fi

∂xBi
dxBi +

∂ fi
∂yBi

dyBi +
∂ fi

∂zBi
dzBi = 0

(17)

which can be expressed in matrix form as follows:

J1dq = J2dC (18)

where:

J1 =



∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f1
∂α

∂ f1
∂β

∂ f1
∂γ

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f2
∂α

∂ f2
∂β

∂ f2
∂γ

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

∂ f3
∂α

∂ f3
∂β

∂ f3
∂γ

∂ f4
∂x

∂ f4
∂y

∂ f4
∂z

∂ f4
∂α

∂ f4
∂β

∂ f4
∂γ

∂ f5
∂x

∂ f5
∂y

∂ f5
∂z

∂ f5
∂α

∂ f5
∂β

∂ f5
∂γ

∂ f6
∂x

∂ f6
∂y

∂ f6
∂z

∂ f6
∂α

∂ f6
∂β

∂ f6
∂γ


(19)

dq =
[
dx dy dz dα dβ dγ

]T (20)

J2 =


∂ f1

∂xA1

∂ f1
∂yA1

∂ f1
∂zA1

∂ f1
∂h1

∂ f1
∂xB1

∂ f1
∂yB1

∂ f1
∂zB1

· · · 0
...

. . .
...

0 · · · ∂ f6
∂xA6

∂ f6
∂yA6

∂ f6
∂zA6

∂ f6
∂h6

∂ f6
∂xB6

∂ f6
∂yB6

∂ f6
∂zB6

 (21)

dC = [dxA1 dyA1 dzA1 dh1 dxB1 dyB1 dzB1 · · · dxA6 dyA6 dzA6 dh6 dxB6 dyB6 dzB6 ]
T (22)

where J1 is 6× 6 matrix and J2 is 6× 42 matrix. dq represents the pose errors of the primary
mirror, which is a 6 × 1 vector, and dC represents the errors of kinematic parameters,
which is a 42 × 1 vector. Since J1 is a reversible matrix, Equation (19) can be transformed
as follows:

dq = J1
−1J2dC = JbdC (23)

where Jb is a 6 × 42 matrix, and Jb is a function of q, H, A, B, with H, A, B expressed
as follows:

H =
[
h1 h2 h3 h4 h5 h6

]T (24)

A =
[
a1 a2 a3 a4 a5 a6

]T (25)

B =
[
b1 b2 b3 b4 b5 b6

]T (26)

Equation (23) is the preliminary error model of the six-hardpoint positioning mecha-
nism. The model provides the relationship between the pose error vector dq of the primary
mirror and the kinematic parameter error vector dC of the six-hardpoint positioning mech-
anism. However, Equation (23) cannot be solved directly, because dq contains 6 parameters,
whereas dC contains 42 parameters to be solved. Therefore, at least 7 error equations must
be combined to achieve the solution, so at least 7 poses must be measured. The target
pose of the primary mirror used in the calibration is called the measurement pose. Set the
number of measurement poses as n (where n ≥ 7), and combine n error equations to obtain:

dqB = JBdC (27)
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where:
dqB =

[
dq1 dq2 · · · dqn

]T (28)

JB =
[
Jb1 Jb2 · · · Jbn

]T (29)

where dqB is a 6n × 1 vector, and JB is a 6n × 42 matrix. JB is called identification Jacobian
matrix. Equation (27) is the final error model of the six-hardpoint positioning mechanism.
The kinematic calibration of a six-hardpoint positioning mechanism can be carried out
based on the error model. The n (n ≥ 7) poses of the primary mirror are measured and the
positional errors are calculated, then the least square method is used to solve Equation (27)
to obtain the kinematic parameter error dC.

Although kinematic calibration can achieve the solution and compensation of kine-
matic parameter errors, the accuracy of calibration is affected by measurement noise.
Equipment such as a length gauge, a laser tracker, an LVDT, and a measuring arm can
be used to measure the pose of the primary mirror, all of which have certain errors. In
addition, the process of pose resolving can also cause errors [28–31]. The above factors
cause a certain amount of measurement noise in the pose error dqB, which reduces the
compensation accuracy of the kinematic parameter error dC, and thus affects the accuracy
of calibration.

3. Selecting Optimal Measurement Poses Based on Observability Index
3.1. Introduction to Observability Indices

Observability indices are used to select optimal measurement poses. Using these poses
for calibration can improve the problem of measurement noise reducing calibration accuracy.
When the measurement noise level is maintained, selecting different measurement poses
for robot calibration will result in different calibration accuracies [22]. Theoretically, it is
possible to use multiple sets of poses spread throughout the workspace of the robot for
calibration, and then retain the set with the highest accuracy after calibration. However,
in order to spread throughout the entire workspace, multiple sets of poses have to be
selected, as well as perform many calibrations, which is time-consuming, labor-intensive,
and generally difficult to operate in practice. Therefore, to efficiently select suitable mea-
surement poses for kinematic calibration, five observability indices, O1~O5, have been
proposed [18–23]. For several groups of measurement poses, the group with a larger ob-
servability index is more likely to achieve higher calibration accuracy. In addition, the
calibration based on the observability index can achieve high calibration accuracy and only
requires a limited number of measurement poses.

To calculate observability indices, the singular value decomposition (SVD) of the
identification Jacobian matrix JB is required:

JB = UΣVT (30)

Then, substituting Equation (30) into Equation (27) yields:

dqB = UΣVTdC (31)

where:

Σ =

[
S
O

]
(32)

where S = diag (σ1, σ2, . . . , σL) is a diagonal matrix composed of singular values of JB.
σ1 and σL are the maximum and minimum singular values, respectively. L denotes the
number of kinematic parameters. O is a 0 matrix; the size of O is (6n − 42) × 42. According
to the geometric significance of SVD, as shown in Figure 3, if the kinematic parameter
error vector dC is on the surface of a hypersphere with a unit radius, then the pose error
vector dqB is on the surface of an L-dimensional hyperellipsoid. The semi-axes length of the
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hyperellipsoid is σ1, σ2, . . . , σL, the singular values of the identification Jacobian matrix.
The principles of observability indices can be explained geometrically.
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The properties of SVD also reveal the following relationship between the norms of
dqB and dC:

σL ≤
|dqB|
|dC| ≤ σ1 (33)

The measurement noise is determined by the measurement equipment and pose
resolving method, so the level of the measurement noise remains unchanged during the
calibration process. In addition, the kinematic parameter error vector dC is constant.
Therefore, the larger the value of |dqB|, the smaller the proportion of measurement noise
in dqB. The smaller the proportion, the smaller the negative impact of measurement noise,
and the higher the accuracy of kinematic calibration.

The first observability index O1 is calculated as follows:

O1 =
L
√

σ1σ2 · · · σL√
n

(34)

O1 is the geometric mean of singular values, which is proportional to the volume of
the hyperellipsoid in Figure 3. Maximizing O1 requires the volume of the hyperellipsoid to
be as large as possible, which will increase the pose error dqB in general [18,19]. However,
O1 has some shortcomings: it cannot be guaranteed that the dqB vector will be inevitably
large in a large hyperellipsoid. There is a possibility that the minimum semi-axes of a large
hyperellipsoid is very small, and it is theoretically possible to make dqB as small as the
minimum semi-axes [22].

O2 =
σL
σ1

(35)

O2 is a measure of the eccentricity of the dqB hyperellipsoid [20]. The larger the O2,
the closer the hyperellipsoid is to the hypersphere, which will result in the uniformity of
singular values. This measure does not consider the volume of the hyperellipsoid, but
rather considers its eccentricity.

O3 = σL (36)

Maximizing O3 requires a large minimum semi-axes of the hyperellipsoid [21]. Maxi-
mizing O3 will increase the minimum semi-axes and volume of the hyperellipsoid, making
the selected measurement poses more sensitive to the errors of kinematic parameters.

O4 =
σL

2

σ1
(37)

O4 is the square of the minimum singular value of the identification Jacobian matrix
divided by the maximum singular value, and is the product of O2 and O3. Maximizing O4
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will make the minimum semi-axes of the hyperellipsoid larger, and make the maximum
semi-axes smaller. In addition, it results in a smaller eccentricity [22].

O5 =
1(

1
σ1

+ 1
σ2

+ · · ·+ 1
σL

) (38)

O5 is the reciprocal sum of all singular values, and then takes the reciprocal. It is the
harmonic mean divided by the number of parameters L [23].

In general, the larger the value of observability index, the more sensitive the pose error
dqB is to the variation of the kinematic parameter error dC, and the smaller the impact of
measurement noise. Therefore, a group of poses with larger observability index are more
likely to achieve higher calibration accuracy.

However, there is currently no consensus on the performance of the five observability
indices. In order to determine which index is most advantageous for the kinematic calibra-
tion of the six-hardpoint positioning mechanism, this paper has conducted many numerical
simulations of calibration and compared their performance. Finally, we will use the best
performance observability index for the calibration method.

3.2. Algorithm for Selecting Measurement Pose

In order to select a group of poses that maximize a certain observability index from
many poses, we need a selection algorithm. We considered the DETMAX algorithm [32],
which was proposed and used to maximize the determinant of the covariance matrix. The
algorithm uses the method of exchanging design points in the initial set and candidate
point set multiple times to improve the performance of the initial set, and finally obtains the
best solution. The algorithm is widely used in the design of experiments, and the principle
of this algorithm is as follows:
1© Set the candidate point set to p and select the initial solution s.
2© Select an element from p and add it to s to maximize the performance of s.
3© Remove an element from s and return it to p to maximize the performance of s.
4© Repeat steps 2© and 3©, and the termination condition is that the added element and

the removed element are the same. This algorithm will improve the performance of s.

After applying this algorithm to measurement pose selection, it is found that the
algorithm has extremely fast convergence speed, and the observability index of the selected
poses is indeed higher than the index of the initial poses. However, two problems of this
algorithm were found. The first is that it is easy to converge to a local optimal solution, and
the second is that the obtained results are greatly affected by initial values. Therefore, this
article uses tabu search to improve the DETMAX algorithm, and the improved algorithm
adds a tabu list to store a certain number of poses that have been temporarily eliminated
during the iteration process. The above improvements effectively avoid the two problems
of DETMAX. The process of the improved DETMAX algorithm is as follows:
1© Assume that there are 10,000 primary mirror poses to be selected. Let the set of

10,000 primary mirror poses be Ω0. Extract n poses from Ω0 as the initial pose set ζn,
and extract m poses as the initial tabu list ηm. Then the set Ω0 becomes set Ω, and
there are 10,000-n-m poses in Ω.

2© Extract a pose from Ω and add it to ζn to form ζn+1, and calculate the observability
index of ζn+1. Perform this step for all 10,000-n-m poses in Ω, retain the pose that
maximizes the observability index, and the ζn+1 corresponding to this pose. There are
n + 1 poses in ζn+1. Then the set Ω becomes Ω− and there are 9999-n-m poses in Ω−.

3© Remove a pose from ζn+1, to obtain ζn. Calculate the observability index of ζn. Per-
form this step for all n + 1 poses in ζn+1, retain the ζn that maximizes the observability
index. Record the pose that was removed from ζn+1 in the last position of the tabu list
ηm. Then, remove the first pose of the ηm, and add the pose to Ω− to form Ω. Now,
there are n poses in ζn.
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4© Return to step 2© and continue to execute until the maximum number of iterations is
reached. Finally, the n poses in set ζn are the optimal measurement pose that maximize
the observability index.

In order to compare the performance of the improved DETMAX algorithm with the
traditional DETMAX algorithm, two algorithms were used to select the poses, and the
results are shown in Table 1. The results of observability indices of the selected poses
indicate that the improved DETMAX algorithm has obtained bigger observability indices,
therefore, the improved DETMAX algorithm has better performance.

Table 1. Performance comparison between improved DETMAX algorithm and traditional
DETMAX algorithm.

Algorithm Improved DETMAX Traditional DETMAX

Number of poses 20 30 40 20 30 40

Results

O1 0.0357 0.0361 0.0362 0.0352 0.0355 0.0355
O2 2.459 × 10−4 2.457 × 10−4 2.463 × 10−4 2.432 × 10−4 2.443 × 10−4 2.441 × 10−4

O3 1.395 × 10−3 1.709 × 10−3 1.973 × 10−3 1.393 × 10−3 1.707 × 10−3 1.970 × 10−3

O4 3.413 × 10−7 4.165 × 10−7 4.784 × 10−7 3.337 × 10−7 4.104 × 10−7 4.738 × 10−7

O5 4.361 × 10−4 5.399 × 10−4 6.255 × 10−4 4.314 × 10−4 5.379 × 10−4 6.247 × 10−4

4. Performance Comparison of Observability Indices

In order to improve the accuracy of the proposed calibration method for six-hardpoint
positioning mechanisms, this paper attempts to find the most suitable observability index
for this mechanism. Therefore, many simulations of calibration have been conducted for
this mechanism, and the performance of the five observability indices have been compared.

4.1. The Process of Numerical Simulation of Kinematic Calibration

The error model Equation (27) is accurate only if the kinematic parameter error dC is
minimal. Therefore, if the dC is large, it is necessary to gradually modify the theoretical
kinematic parameters iteratively to make them gradually approach the actual kinematic pa-
rameters, and ultimately complete the calibration. The simulation of kinematic calibration
includes three parts: measurement pose selection, generating measurement value of the
primary mirror poses, and identification and compensation of kinematic parameter errors.
The calibration process is shown in Figure 4 and explained as follows:

1© The initial theoretical kinematic parameter C of the six-hardpoint positioning mecha-
nism is known, and the initial kinematic model K is established based on C. K includes
forward and inverse kinematic models. Then, substitute the initial theoretical pose
set qB obtained using the improved DETMAX algorithm into the inverse kinematic
model. Then, obtain n groups of theoretical lengths of hardpoints H1~Hn. Let k = 1,
∆0 = 0.

2© Superimpose the preset kinematic parameter error C0 onto C to obtain the actual
kinematic parameter C′. Establish the kinematic model K′ based on C′. Substitute
H1~Hn into the forward kinematic model based on K′, then obtain the actual pose qB1
of the primary mirror. Superimpose the measurement noise δqB onto qB1 to obtain the
measured value qB

′ of the pose of the primary mirror. Finally, the pose error dqB of
the primary mirror is calculated.

3© Substitute H1~Hn, qB, dqB, and C into the Equation (27) and solve it using the least
squares method to obtain the identification result of the kinematic parameter error dC.

4© C is modified with dC to obtain the modified theoretical kinematic parameter C”.
5© Using C” to establish a new theoretical kinematic model K”. Substitute H1~Hn into

the forward kinematic model based on K”, and a new primary mirror theoretical pose
qB” is obtained. The deviation between qB” and qB

′ is dqB”. Calculating the sum of
squares of elements in dqB”, record as ∆k. If |∆k−∆k−1| < ε, then the iteration ends,
otherwise continue with step 6©.
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6© Let dqB = dqB”, qB = qB”, C = C”, and k = k + 1. Then, return to step 3© and continue
to execute, until the condition in step 5© is met, then end the iteration.
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After the iteration, calculate the difference between C” and C, then the result ∆C
represents the identification result of the kinematic parameter error of the six-hardpoint
positioning mechanism. C” is the kinematic parameter after calibration and the kinematic
model K” based on C” is the kinematic model after calibration.

4.2. Evaluation Index of Calibration Accuracy

This paper proposes to evaluate the accuracy of a calibration using the integrated error
of the pose of the primary mirror. The integrated error is used to compare the accuracy of
multiple calibrations. Preset the 30 target poses of the primary mirror Xi (i = 1, 2, . . . , 30), Xi
evenly distributed in the workspace of the six-hardpoint positioning mechanism. Compare



Appl. Sci. 2023, 13, 4824 13 of 22

actual pose Xi′ with Xi, the deviation can indicate the calibration accuracy. Calculate the
pose error of the primary mirror dXi:

dXi = Xi′ −Xi (39)

where:
dXi =

[
dxi dyi dzi dαi dβi dγi

]
(40)

dXi is composed of position error vector [dxi dyi dzi] and attitude error vector [dαi
dβi dγi]. Calculate the norms dXtni and dXsni of the two vectors, and then calculate the
sum dXzni (i = 1, 2, . . . , 30) of the two norms:

dXtni =
√

dxi
2 + dyi

2 + dzi
2 (41)

dXsni =
√

dαi
2 + dβi

2 + dγi
2 (42)

dXzni = dXtni + dXsni (43)

Finally, calculate the root mean square of dXzni to obtain the integrated error dXz of
the calibration:

dXz =

√√√√√ 20
∑

i=1
dXzni

2

30
(44)

The accuracy of a calibration can be evaluated with the integrated error dXz, and it is
dimensionless.

4.3. Methods for Performance Comparison of Observability Indices

In order to compare the performance of five observability indices in the kinematic
calibration of six-hardpoint positioning mechanisms, a numerical simulation method for
performance comparison was designed. The method is based on the measurement pose
selection algorithm in Section 3.2, the numerical simulation method in Section 4.1, and the
accuracy evaluation index in Section 4.2. The performance of the observability index is
compared through the accuracy of many simulations of calibration under various condi-
tions. In simulation, the theoretical kinematic parameters of the six-hardpoint positioning
mechanism are shown in Table 2.

Table 2. Theoretical kinematic parameters of the six-hardpoint positioning mechanism (unit: mm).

i xAi yAi zAi xBi yBi zBi hi

1 421.1 −112.8 0 388.9 −388.9 0 388
2 421.1 112.8 0 388.9 388.9 0 388
3 −112.8 421.1 0 142.4 531.3 0 388
4 −308.3 308.3 0 −531.3 142.4 0 388
5 −308.3 −308.3 0 −531.3 −142.4 0 388
6 −112.8 −421.1 0 142.4 −531.3 0 388

In order to make the conclusions more universal, various measurement conditions
were set in the simulation to comprehensively evaluate the performance of observability
indices in the calibration of six-hardpoint positioning mechanisms. The measurement
conditions refer to the number of measurement poses n and the level of measurement noise.
The number of poses should meet the condition of n ≥ 7. In addition, in order to ensure
the efficiency of simulation, n cannot be too large. Finally, the range of n is determined to
be 10 to 30. The level of measurement noise mainly depends on the measurement method.
Length gauges, laser trackers, linear variable differential transformers (LVDT), measuring
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arms, etc., can be used to measure the pose of the primary mirror [29–32], and different
pose resolving methods are required. Different equipment and resolving method can
lead to different measurement noise. The final determination of the measurement noise
range is ±3~±100 µm. In summary, simulations of calibration is performed under the four
measurement conditions shown in Table 3. Compare the performance of five observability
indices by comparing their calibration accuracy under each condition.

Table 3. Four measurement conditions in the numerical simulation of the kinematic calibration.

No. Number of Measurement Poses Measurement Noise (Position, Attitude)

I 10 0.003 mm, 0.0003◦

II 15 0.05 mm, 0.005◦

III 22 0.01 mm, 0.001◦

IV 30 0.1 mm, 0.01◦

In order to make the conclusion more universal, 100 sets of kinematic parameter errors
were randomly set. The parameter errors present a normal distribution with a standard
deviation of 0.5 mm.

The process and method of performance comparison are as follows:

- Generate 100 sets of kinematic parameter errors C0j (j = 1, 2, . . . , 100), with 42 errors
per set. Set 10,000 primary mirror poses evenly distributed in the workspace as the
poses to be selected.

LOOP 1: For each measurement condition, do:

- The measurement noise matrix is generated based on the measurement condition, and
the size of the matrix is n × 6;

LOOP 2: For each observability index, do:

- The improved DETMAX algorithm is used to select n poses that maximize observabil-
ity index, to obtain the optimal measurement poses.

LOOP 3: For each C0j (j = 1, 2, . . . , 100), do:

- Calculate the actual kinematics parameter C′ corresponding to C0j.
- Execute the calibration procedure in Section 4.1 to identify kinematic parameter errors,

to obtain the corrected kinematic parameter C”, and establish the corrected kinematic
model K”.

- Calculate the integrated error dXzj (j = 1, 2,..., 100) for this calibration.

END LOOP 3

- Calculate the mean value dXzmean of the integrated error dXzj (j = 1, 2, . . . , 100).

END LOOP 2

- Produce the histogram superposition probability density function (PDF) curves of the
integrated error dXzj, and compare the performance of observability indices under
the current measurement condition.

END LOOP 1

- Use a table to summarize and record the values of mean integrated error dXzmean of
each of the five observability indices under four measurement conditions.

In order to comprehensively evaluate the performance of the five observability indices,
this paper not only used a table to record the mean integrated errors corresponding to
each observability index, but also used histogram superposition PDF curves for perfor-
mance comparison. The figures and tables represent the comprehensive performance of
each observability index in a large number of calibrations. The above method requires
400 simulations of calibration using each observability index, which is equivalent to a
total of 2000 calibrations. It can ensure that the conclusion has statistical significance and
high reliability.
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4.4. Results of Observability Index Performance Comparison

The results of performance comparison of observability indices are shown in Table 4
and Figure 5. Table 4 lists the mean integrated errors of calibration with different observ-
ability indices. Figure 5a–d show the histogram superimposed PDF curve of integrated
error under each measurement condition. The horizontal coordinate axis in the figure is the
value of the integrated error. The left axis is frequency, which corresponds to the histogram,
and the right axis is the probability density, which corresponds to the PDF curve.

Table 4. Mean integrated error of calibration with five observability indices.

Measurement Condition Observability Index dXzmean

I

O1 0.01050
O2 0.02936
O3 0.03388
O4 0.04805
O5 0.01727

II

O1 0.15785
O2 0.24408
O3 0.15933
O4 0.22564
O5 0.24932

III

O1 0.02415
O2 0.06181
O3 0.04541
O4 0.05333
O5 0.02554

IV

O1 0.21662
O2 0.36087
O3 0.27937
O4 0.32318
O5 0.27659

When analyzing the graphs and tables, taking measurement condition I as an example,
Figure 5a shows that after 100 calibrations with five observability indices, respectively, the
calibration with O1 obtains the smallest integrated error overall. Table 4 records that, in
measurement conditions I, the mean integrated error of 100 calibrations with O1 is 0.01050,
which is smaller than the mean integrated error corresponding to the other 4 observability
indices. Figure 5a also shows that the calibration with O4 has the largest integrated error.
Figure 5b–d show that calibrations with O1 also have the smallest integrated error in
measurement conditions II, III, and IV.

According to the above analysis, the simulations of calibrations of the six-hardpoint
positioning mechanism with O1 obtains the minimum integrated error and the highest accu-
racy. Therefore, we believe that O1 has better performance than the other four observability
indices, and O1 is the most suitable observability index for calibration of six-hardpoint
positioning mechanisms. In the proposed calibration method, the index O1 is used to select
the optimal measurement poses.
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Figure 5. Histogram superimposed PDF curve of integrated error of simulations of calibra-
tion. (a) Measurement condition I; (b) Measurement condition II; (c) Measurement condition III;
(d) Measurement condition IV.

5. Evaluation and Discussion of the Kinematic Calibration Method Using Optimal
Measurement Pose

In order to evaluate the proposed kinematics calibration method of six-hardpoint
positioning mechanisms using optimal measurement pose, the simulations of calibrations
using the proposed method and traditional calibration method were performed under
the same conditions. The same conditions refer to the same kinematic parameter errors
and the same measurement noise. To eliminate chance, a new set of initial configuration
parameters were used, as shown in Table 5. The set kinematic parameter error is shown in
Table 6. The randomly generated parameter error assumes a normal distribution with a
standard deviation of 0.5 mm. The measurement noise of the pose of the primary mirror
is also normally distributed, with a standard deviation of 0.001 mm. The theoretical
kinematic parameters and kinematic parameter errors are superimposed to simulate the
actual kinematic parameters, and the measurement noise is superimposed on the actual
pose of the primary mirror to obtain the measurement value of the pose. The number n of
the measurement poses is 20.

Table 5. New theoretical kinematic parameters (unit: mm).

i xAi yAi zAi xBi yBi zBi hi

1 1299.170 −348.112 0 1164.388 −977.037 0 800
2 1299.170 348.112 0 1164.388 977.037 0 800
3 −348.112 1299.170 0 263.945 1496.908 0 800
4 −951.059 951.059 0 −1428.333 519.871 0 800
5 −951.059 −951.059 0 −1428.333 −519.871 0 800
6 −348.112 −1299.170 0 263.945 −1496.908 0 800
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Table 6. Preset values of kinematic parameter errors (unit: mm).

i dxAi dyAi dzAi dxBi dyBi dzBi dhi

1 −0.5 −0.2 −1 −0.4 0.2 0.6 0.6
2 0.1 −0.3 −0.7 0.4 0.2 −0.3 −0.1
3 0 −0.4 −0.3 −0.1 −0.3 0.7 0.1
4 0.3 1.1 −0.2 −0.1 −0.7 0.2 −0.2
5 −0.4 0.3 −0.7 −1.3 0.8 0.7 0.3
6 −0.9 −0.2 1.1 0.4 −0.4 −0.3 −0.2

The proposed calibration method requires selecting the optimal measurement poses
based on the observability index O1. Therefore, the improved DETMAX algorithm was
used to select 20 poses from 2000 poses to be selected, with the criteria of maximizing O1.
The 2000 poses are evenly distributed in the workspace. In the algorithm, the size of the
tabu list is set to 100, resulting in 20 optimal measurement poses. The observability index
of the optimal measurement poses was O1 = 0.03571. After 219 iterations, the result was
obtained. The variation of O1 during the selection process is shown in Figure 6. When
using the traditional DETMAX algorithm, the result is obtained by only 21 iterations, and
the obtained value of O1 is smaller than the value obtained by the improved DETMAX
algorithm. The improved DETMAX algorithm improves the problem of convergence to the
local optimal solution.
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Figure 6. The process of measurement poses selection using improved DETMAX algorithm and
traditional DETMAX algorithm.

In order to ensure the effectiveness of the improved DETMAX algorithm, 1000 sets of
poses were randomly selected from 2000 poses, and each set has 20 poses. The observability
index O1 corresponding to each set was calculated and the results were plotted as a
histogram, as shown in Figure 7. The maximum value of O1 corresponding to these sets is
0.02199, and the average value is 0.01713. The results show that the value of O1 has been
maximized, and the improved DETMAX algorithm performs well.
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The optimal measurement poses are used for calibration. During the calibration
process, the variation of kinematic parameter errors during the iteration process are shown
in Figure 8. Due to space constraints, only seven kinematic parameter errors related to the
first hardpoint are given in the figure. After three iterations, the error value tends to be
stable and the convergence speed of the calibration is fast. The identification results of all
kinematic parameter errors are shown in Table 7.
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Table 7. Identification results of kinematic parameter errors.

i dxAi dyAi dzAi dxBi dyBi dzBi dhi

1 −0.476 0.134 −0.032 0.275 −0.432 −0.882 −0.476
2 −0.221 −0.275 −0.380 1.121 0.277 −0.232 −0.221
3 −1.012 −0.708 −0.307 −0.200 −0.710 1.104 −1.012
4 −0.381 0.426 −0.162 −0.128 −1.343 0.410 −0.381
5 0.184 0.246 −0.287 −0.686 0.791 −0.430 0.184
6 0.597 −0.324 0.708 0.195 0.678 −0.288 0.597
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After obtaining the identification results of the kinematic parameter errors, the theo-
retical kinematic parameters are modified, and a new kinematic model is established based
on the modified parameters. Then, set 150 primary mirror pose targets, and evaluate the
result of the calibration. The results obtained by using the proposed calibration method and
traditional calibration method were compared. The errors of the 150 poses of the primary
mirror are shown in Figure 9. Figure 9a shows the position error, and Figure 9b shows the
attitude error. The results in Figure 9 show that the proposed calibration method using
the optimal measurement poses achieves significantly higher accuracy than the traditional
calibration method, both in position accuracy and attitude accuracy. The above results
verify the effectiveness of the proposed calibration method.
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Figure 9. Position and attitude errors of 150 primary mirror poses. (a) Position errors;
(b) Attitude errors.

The errors of the proposed calibration method and the traditional calibration method
are listed in Table 8. Compared with the traditional method, the mean position error
obtained by the proposed method decreases by 78.4%, and the mean attitude error decreases
by 70.6%.

Table 8. Position error and attitude error after calibration using two methods.

Position Error/mm Attitude Error/◦

Maximum Mean Maximum Mean

Calibration with O1 0.001498 0.000771 0.000492 0.000262
Traditional calibration 0.006933 0.001424 0.001675 0.000839

The number n of measurement poses in the above calibrations is 20. The number
of measurement poses in calibration has been increased, and the results are shown in
Figure 10. When using traditional methods, the integrated error decreases significantly as
the number of measurement poses increases. When using the proposed calibration method
with O1, there is no significant change in the integrated error by increasing the number
of measurement poses. In addition, the proposed calibration using optimal measurement
pose based on O1 requires only 20 measurement poses, which achieves a calibration
accuracy approximately equal to the accuracy of traditional calibration methods using
50 measurement poses. The above results show that the proposed calibration method is
effective, not only with high accuracy, but also with less measurement poses to achieve
high accuracy.
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6. Conclusions

This paper proposes a kinematic calibration method using optimal measurement
poses based on the observability index O1, which can be used for six-hardpoint positioning
mechanisms to effectively identify and compensate the kinematic parameter errors of the
mechanisms, thereby improving the accuracy of the primary mirror pose. The proposed
method selects specific measurement poses based on the index O1 to reduce the negative
impact of measurement noise, achieving higher calibration accuracy than the traditional
method. Firstly, the error model of the six-hardpoint positioning mechanism is derived.
Then, introduce the observability indices and the algorithm for selecting measurement
poses based on observability indices. We improved the DETMAX algorithm and used it
for measurement poses selection. The performance of the five observability indices was
compared through simulations of calibration, and the best performance observability index
O1 was obtained; 2000 simulation calibrations were conducted under different conditions,
ensuring that the results were statistically significant. Finally, an overall evaluation of the
proposed calibration method was conducted, and the results obtained by the proposed
calibration method and the traditional calibration method were compared. The results show
that the proposed calibration method can accurately identify kinematic parameter errors,
and has higher accuracy compared with the traditional method. The mean position error
decreased by 78.4%, and the mean attitude error decreased by 70.6%. The proposed method
can be used to improve the kinematic accuracy of six-hardpoint positioning mechanisms.
There are two main aspects of future work planning. This paper mainly studies the
kinematics parameter error and measurement noise. We will study other factors that affect
the accuracy of the six-hardpoint positioning mechanism in future work, such as thermal
deformation and gravity deformation. In addition, we will study the observability index
and kinematics calibration on more types of robots.
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