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Abstract: Microvibrations are one of the main factors contributing to platform jitter and a decline in
pointing stability and precision. Among various disturbance sources, reaction wheel assembly (RWA)
is one of the most significant ones and has drawn the interest of numerous scholars. How to evaluate
the influence of the disturbances of RWA on the pointing accuracy of a spacecraft is an arduous task
because it involves multiple disciplines. The acquisition of the frequency response function (FRF)
from the disturbance source to the sensitive payload is one of the most crucial stages in integrated
modeling. Direct measurement of the FRF in the six directions is challenging because of the restricted
room for RWA installation in a spacecraft, particularly in small satellites. In this paper, a general
method based on the Hv algorithm to obtain the FRF is presented. This method only needs the RWA,
itself, as an excitation source. Then, in order to acquire the FRF, we use an optical remote-sensing
satellite as the research object. The peak positions of FRF obtained by different RWAs are basically the
same, while the amplitudes are slightly different, indicating that this method is effective. This method
takes into consideration the coupling between the RWA and the spacecraft, making it possible to
multiply the RWA disturbance measured at a fixed interface with the FRF, to determine the image
motion of the sensitive payload.

Keywords: microvibration; integrated modeling; reaction wheel assembly; frequency response function

1. Introduction

The pointing performance of a spacecraft is continuously advancing due to the quick
developments in space technology. For example, the Earth observation spacecraft [1].
The Seasat/Landsat-1, in the 1970s, had a pointing accuracy of 1◦–0.3◦ and an attitude
stability of 5 × 10−2◦/s–1 × 10−2◦/s. The SPOT/Landsat-2 satellites, in the 1980s, had
a pointing accuracy of 0.3◦–0.03◦ and an attitude stability of 3 × 10−3◦/s–3 × 10−5◦/s.
The ADEOS satellite, in the 1990s, had a pointing accuracy of 0.3◦–0.02◦ and an attitude
stability of 1 × 10−3◦/s–1 × 10−6◦/s. The pointing accuracy of the Hilios/IRS-P satellites
in the new century was 0.1–0.001◦, and the attitude stability was better than 1 × 10−4◦/s.
The same trend holds true for space telescopes and interferometers [2]. The Infrared
Astronomical Satellite (IRAS) had an absolute pointing accuracy of 30 arcseconds with
a pointing stability of 10 arcseconds. The Hubble Space Telescope launched on 24 April
1990, had a radial pointing stability of 0.007 arcseconds RMS over periods between 60 s and
24 h. The Infrared Space Observatory (ISO), launched on 17 November 1995, was required
to achieve 11.7 arcseconds radial absolute accuracy at 2-sigma, 2.7 arcseconds half-cone
stability at 2-sigma over a time period of 30 s and 2.8 arcseconds half-cone drift at 2-sigma
per hour. The James Webb Space Telescope (JWST), launched on 25 December 2021, had a
line-of-sight (LOS) stability that was better than 0.005 arcseconds RMS, a change in mean
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pointing over a timescale of a few seconds less than 0.0035 arcseconds, and a roll stability
below 0.0035 arcseconds.

To satisfy such strict requirements, a wide range of perturbation causes must be
carefully taken into account. Eyerman [3] provided a thorough overview of the different
disturbance sources, including both internal and external disturbance sources, which
caused spacecraft’ platforms to vibrate in 1990. The external disturbance sources mainly
come from the spacecraft’s external space environment and include torques produced from
gravity gradients, atmospheric drag, radiation pressure, magnetic dipoles, particle impacts,
and eclipse transients. The external disturbance sources mainly induce the low-frequency
vibration of the large flexible accessory of the spacecraft platform (<1 Hz). This kind of
vibration can generally be eliminated by compensation of attitude and orbit control systems
(AOCS) [4] or structural vibration control of flexible attachments [5,6]. Internal disturbance
sources mainly come from various moving parts inside the spacecraft, such as reaction
wheel assembly (RWA), control moment gyros (CMGs), cryocoolers, solar wing driving
mechanisms, antenna driving mechanisms, etc. [7]. These moving components and systems
typically have non-ideal characteristics, such as residual unbalance in the rotor of the RWA,
unstable output in the solar wing drive motor, etc., which cause additional disturbance
while in operation. This trait is intrinsic to the moving parts on the spacecraft because these
disturbance factors are essentially unavoidable. The vibration caused by the moving parts
inside the spacecraft is specifically referred to as microvibrations. Although the onboard
microvibration has a very small amplitude, it is one of the major factors contributing to
platform jitter and a decline in pointing stability and precision. The frequency range of a
microvibration is very wide (1 Hz–1000 Hz), among which the most prominent disturbance
is in the range of 10–200 Hz. It goes far beyond AOCS’s range. To prevent its impact on the
spacecraft, it is essential to research and implement practical countermeasures.

One of the most significant sources of disturbance, RWA has drawn the attention
of many academics. Examples include the empirical and analytical models of RWA
disturbances, in references [8–10], parameter estimation, identification of RWA, in refer-
ences [11,12], and nonlinear electromechanical coupling dynamics of RWA, in reference [13].
Evaluating the influence of the disturbance on the pointing accuracy of a spacecraft is an
arduous task because it involves multiple disciplines, such as structural dynamics, control
systems, mechanisms, and system engineering [14]. The integrated modeling is an effi-
cient method, as demonstrated by the development of DOCS (Dynamics–Optics–Controls–
Structures) by SSL (Space System Laboratory, Cambridge, MA, USA) at MIT [15,16], IMOS
(Integrated Modeling of Optical Systems) by Jet Propulsion Laboratory (JPL) (Pasadena,
CA, USA) [17], Integrated Modeling Environment (IME) by Goddard Space Flight Cen-
ter (Greenbelt, MD, USA), Constellation Software Engineering (CSE) (Annapolis, MD,
USA) [18], and Integrated Framework by Korea Advanced Institute of Science and Technol-
ogy (Daejeon, Republic of Korea) [19].

Acquisition of the frequency response function (FRF) from the disturbance source
to the sensitive payload is one of the most crucial stages in integrated modeling, and
many scholars have worked hard on this [20–22]. It is challenging to measure the FRF
directly due to the restricted room for RWA installation in real spacecraft, particularly in
small satellites. The standard procedure is to use a shaker to measure the FRF from the
location of the RWA installation to the sensitive payload. The response of the sensitive
payload derived by multiplying the FRF and the disturbance force and tongue measured
in a hard-mounted boundary condition is quite different from the test result because of
the coupling between the RWA and the support structure. Therefore, additional complex
tests are needed to compensate for the disturbance force of the RWA, such as the static
dynamic mass measurement techniques, for when the RWA is at 0 rpm [23,24], the dynamic
mass measurement method, which includes the gyroscopic effects in its accelerants [25,26],
a combination of the experiments in a static condition, and analysis that includes the
gyroscopic effect through the RWA finite element (FE) model [27].
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There are many various FRF estimation techniques [28–30], yet the most widely used
ones are the H1, H2, and Hv algorithms. The H1 method assumes that there is no error in
the references, while the H2 method assumes that there is no error in the responses. The Hv
method provides the most precise estimate by accounting for the input and output noises.
This paper presents a general approach based on the Hv algorithm to acquire the FRF from
the disturbance source to the sensitive payload, which is excited by the RWA, itself, and
does not need any additional excitation source. The FRF obtained by this method accounts
for the coupling between the RWA and the spacecraft, so the response of the sensitive load
can be obtained by multiplying the RWA disturbance measured at a fixed interface using
the FRF.

The paper is organized as follows: in Section 2, an integrated model of a high-precision
optical remote sensing satellite is developed that consists of the disturbance model, struc-
tural dynamic model, and the optical model. In Section 3, a general method to obtain the
FRF from the disturbance source to the sensitive payload is proposed. In Section 4, we
evaluate the microvibration of the entire satellite using different RWAs as the excitation
source. Finally, conclusions are drawn in Section 5.

2. Integrated Modeling

Considering a pointing scene, the pointing error is described as the difference between
the actual orientation and the desired orientation of the spacecraft’s LOS with respect to
the target plane [31], as shown in Figure 1. It is described by two translations (ex, ey) and
one rotation (ψ) on the target plane or by three rotations (θ, φ, ψ) about the body axes of the
pointing system.
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Figure 1. Schematic diagram of pointing error.

The disturbance force and torque of the RWA can result in the image motion of the
sensitive optical payload. The image motion is decomposed into a sum of displacement,
smear, and jitter [32,33]. The image motion p(t) can be modeled by:

p(t) =
[

x(t)
y(t)

]
. (1)

In this paper, we take an optical remote-sensing satellite as the research object. The
payload of the satellite is a high-resolution optical remote sensing camera with a resolution
greater than 1.1 m. The satellite is in a 535 km sun-synchronous orbit and weighs 65 kg.
Three RWAs were used by the satellite to change its attitude. Figure 2 depicts a 3D model
of the satellite, and Table 1 lists its parameters.
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Table 1. The parameters of the satellite.

Parameter Value

Mass 65 kg
Orbit 535 km@SSO

Image resolution ≤1.1 m
Pointing accuracy ≤0.05◦ (3σ)
Attitude stability ≤0.0005◦/s (3σ)

Swath width >18.5 km
Focal length 1600 mm ± 30 mm

Image element size 3.2 µm
Static MTF ≥0.13 (Nyquist frequency)

Dynamic MTF ≥0.10 (Nyquist frequency)

The integrated model of the satellite consists of three parts, ignoring the effect of AOCS:
disturbance model, structural dynamic model, and optical model. The three parts are
connected to each other through input and output interfaces. The output of the disturbance
model is F, which acts on the structural dynamic model of the satellite and causes the
camera’s optics to shift slightly. This displacement η is used as the input of the optical
model to obtain the final image motion p. The block diagram of the integrated model is
shown in Figure 3.
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2.1. Disturbance Model

RWA is the primary disturbance source in most spacecrafts and the disturbance model
of the RWA has been studied for several decades. There are currently three different types of
disruption disturbance models. They are the empirical model [34], the analytic model [8,9], and
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the semi-analytic model [35]. This paper does not place a strong focus on the disturbance
model, and in order to derive the integrated model, we use the empirical model.

The disturbance of the RWA is modeled as a series of discrete harmonics with ampli-
tudes proportional to the square of the wheel speed and frequencies that change linearly
with wheel speed [9]:

Fj(t) =
n

∑
i=1

CiΩ2 sin(2πhiΩt + αi) (j= 1, 2, · · · , 6), (2)

where, Fj(t) is the jth component of F, F = [Fx, Fy, Fz, Mx, My, Mz]T. n is the number of
harmonics included in the model, Ci is the amplitude coefficient of the ith harmonic, Ω is
the wheel speed, hi = ωi/Ω is the ith harmonic number, equal to the ratio of the frequency
ωi to the wheel speed Ω, and αi is a random phase (assumed to be uniform over (0, 2π)).

The disturbance force and tongue of RWA in the hard-mounted boundary condition
can be obtained using a Kistler table, as shown in Figure 4, while the results are shown in
Figure 5. It can be seen that the main harmonic numbers of Fx, Fy, Mx, and My are 1, 14.19,
and 15.43, respectively, while the main harmonic numbers of Fz are 14.86 and 18.62 and Mz
are 15.96 and 47.86.
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2.2. Structural Dynamic Model

The general equation that governs the structural dynamics of the satellite can be
written as:

M
..
q+C

.
q+Kq=F, (3)

where M is the mass matrix, C is the damping matrix, K is the stiff matrix, F is the
disturbance force or torque, and q is the displacement response. Use the mode shape matrix
to convert the physical coordinates to modal coordinates as follows:

q = Φη, (4)

where Φ is the mode shape matrix and η is the modal coordinates.
Substituting Equation (4) and the second time derivative of Equation (4) into Equation (3),

equates to:
MΦ

..
η+CΦ

.
η+KΦη=F. (5)

The equations forming Equation (5) are coupled. To uncouple the equations, pre-
multiply Equation (5) by the transpose of the mode shape matrix ΦT.

ΦTMΦ
..
η+ΦTCΦ

.
η+ΦTKΦη=ΦTF. (6)
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By doing so, the mass, stiffness, and damping matrices are diagonalized. The modal
(generalized) mass matrix and the modal (generalized) stiffness matrix are simplified to:

¯
M=

1
. . .

1

, (7)

¯
K =

ω2
1

. . .
ω2

n

. (8)
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While the uncoupled form of the dynamic equations can be written as:

..
η+2ζΩ

.
η+Ω2η=ΦTF, (9)

where the modal damping matrix is provided as:

ζ =



ζ1
. . .

ζi
. . .

ζn

. (10)

Generally, the modal damping coefficients are different for every mode and typically
vary between 0.1% and 3% for lightly damped space structures [16].

The normal frequency matrix is denoted as:

Ω2 =

ω2
1

. . .
ω2

n

. (11)

Conversion of Equation (9) to the state space form is as follows:[ .
η
..
η

]
=

[
0 I
−Ω2 −2ζΩ

][
η
.
η

]
+

[
0

ΦT

]
F = As

[
η
.
η

]
+ BsF. (12)

2.3. Optical Model

The payload of the satellite is an optical camera of Cassegrain type. The optical system
is shown in Figure 6. It is made up of a primary mirror (PM), a secondary mirror (SM), a
calibration mirror (CM), and an image plane (IP).
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The disturbance force and tongue will deform the optical component, which are
usually small because it is very small. The deformation of each optical components can be
considered a rigid-body motion. The best-fit rigid-body motion of the ith optical element is
defined as a vector Ti of 6 terms as:

Ti =
[
Tix Tiy Tiz Rix Riy Riz

]T, (13)



Appl. Sci. 2023, 13, 4844 8 of 18

where Tix, Tiy, and Tiz are translations along coordinate axes and Rix, Riy, and Riz are
rotations about coordinate axes. Then, the displacement of the node j due to these motions
is [36] 

uij = Tix + zijRiy − yijRiz
vij = Tiy − zijRix + xijRiz
wij = Tiz + yijRix − xijRiy,

(14)

where xij, yij, and zij are the coordinates of the node j, and uij, vij, and wij are the displace-
ments of the node j. When there are n nodes on each optical component, Equation (14) is
expressed as follows:

AiTi = qi, (15)

where qi = [ui1, vi1, wi1,· · · , uij, vij, wij,· · · , uin, vin, win]T, and matrix Ai is expressed
as follows:

Ai =



1 0 0 0 zi1 −yi1
0 1 0 −zi1 0 xi1
0 0 1 yi1 −xi1 0
...

...
...

...
...

...
1 0 0 0 zij −yij
0 1 0 −zij 0 xij
0 0 1 yij −xij 0
...

...
...

...
...

...
1 0 0 0 zin −yin
0 1 0 −zin 0 xin
0 0 1 yin −xin 0



. (16)

The vector Ti can be obtained from Equation (15) as follows:

Ti = Ciqi, (17)

where Ci = (Ai
TAi)−1Ai

T. The matrix Ci and qi are functions of the coordinates and dis-
placements of node i, respectively. In order to ensure the accuracy of the fitting, n is usually
greater than or equal to 3.

The image motion p(t) can be obtained by summing the product of the rigid-body
motions Ti and the optical sensitivity coefficients Li of the ith optical element.

p(t) =
m

∑
i=1

Li
TTi, (18)

where m is the number of optical components. Li is defined as follows:

Li =

[
LT

ix
LT

iy

]T

=

[
l11 l12 l13 l14 l15 l16
l21 l22 l23 l24 l25 l26

]T

, (19)

where l11, l12, and l13 represent the image motions in the x direction by translating the ith
optical component one unit displacement along the x, y, and z axes, respectively. Further,
l14, l15, and l16 represent the image motions in the x direction by rotating the ith optical
component one unit angle about the x, y, and z axes, respectively. Moreover, l21, l22, and l23
represent the image motions in the y direction by translating the ith optical component one
unit displacement along the x, y, and z axes, respectively. Finally, l24, l25, and l26 represent
the image motions in the y direction by rotating the ith optical component one unit angle
about the x, y, and z axes, respectively. The optical sensitivity coefficients of PM and SM,
obtained by using the optical tracing method are shown in Table 2, ignoring the CM and IP.
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Table 2. The optical sensitivity coefficients.

Parameter
Value

PM SM

l11 5.46 −3.79
l12 0 0
l13 0 0
l14 0 0
l15 −54.46 15.34
l16 0 0
l21 0 0
l22 5.46 −3.79
l23 0 0
l24 54.46 −15.34
l25 0 0
l26 0 0

Substitute Equation (17) into Equation (18) and obtain:

p(t) = Coqo, (20)

where qo = [q1, . . . ,q2, . . . qm]T. Matrix Co is expressed as follows:

Co =

[
LT

1xC1 · · · LT
ixCi · · · LT

mxCm
LT

1yC1 · · · LT
iyCi · · · LT

myCm

]
. (21)

2.4. The Integrated Model

Divide the degrees of freedom of the satellite into the degrees of freedom of the optical
component qo and the rest as qr, as follows:

q =

[
qo
qr

]
=
[
Φ1 Φ2 · · · Φk

]


η1
η2
...

ηk

 =

[
Φo1 Φo2 · · · Φok
Φr1 Φr2 · · · Φrk

]
η1
η2
...

ηk

, (22)

where k is the number of modes.
Equation (23) can be obtained from Equation (22), as follows:

qo =
[
Φo1 Φo1 · · · Φok

]


η1
η2
...

ηk

 = Φoη. (23)

Substitute Equation (23) into Equation (20) and receive:

p(t) = CoΦoη =
[
CoΦo 0

][ η
.
η

]
= Cp

[
η
.
η

]
. (24)

Rewrite Equations (12) and (24), and the integrated model of the satellite is provided,
as follows: 

[ .
η
..
η

]
= As

[
η
.
η

]
+ BsF

p = Cp

[
η
.
η

]
.

(25)
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3. FRF Estimation

Applying the Laplace transform of Equation (25), we acquire the transfer function H(s)
from the disturbance to the image motion, as follows:{

P(s) = H(s)F(s)
H(s) = Cp(sI−As)

−1Bs,
(26)

where P(s) and F(s) are the Laplace transform of p(t) and F(t), respectively.
Let s = jω, then, we obtain the FRF H(ω). The relationship between the disturbance

F(ω) and the image motion P(ω) in the frequency domain is:

P(ω) = H(ω)F(ω), (27)

where F(ω) = [Fx(ω), Fy(ω), Fz(ω), Mx(ω), My(ω), Mz(ω)]T, and H(ω) is a 2 × 6 matrix.
In fact, when an RWA is installed on a flexible supporting structure, its disturbances

excite the modes of the structure, which, in turn, perturb the RWA, itself, thus, creating
coupled dynamics [24]. As a result, the loads that are present at the interface vary from
those that would be found in a hard-mounted boundary condition [25–27]. The forces
and moments f C that are actually transmitted at the interface between the source and the
supporting structure can be described as:

fC = fB −Dwa
..
xC, (28)

where f B is the forces and moments measured in the hard-mounted boundary condition,
Dwa is the dynamic characteristics (inertia, stiffness, and damping) of the source and
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where fB is the forces and moments measured in the hard-mounted boundary condition, 
Dwa is the dynamic characteristics (inertia, stiffness, and damping) of the source and ẍ	 	 C 
is the vector of the coupled acceleration at the interface. The acceleration vector ẍC can be 
determined if the supporting structure response at the interface node point (i.e., the dy-
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1
C ss C.−=x D f  (29) 
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where fB is the forces and moments measured in the hard-mounted boundary condition, 
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is the vector of the coupled acceleration at the interface. The acceleration vector ẍC can be 
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C B wa ss C.−= −f f D D f  (30) 

C can
be determined if the supporting structure response at the interface node point (i.e., the
dynamic mass of the supporting structure Dss) is provided:

..
xC = D−1

ss fC. (29)

Substituting Equation (29) into Equation (28), Equation (28) can be rewritten as:

fC = fB −DwaD−1
ss fC. (30)

Rearrange Equation (30) and obtain f C as:

fC =
(

I + DwaD−1
ss

)−1
fB, (31)

where I is a 6 × 6-unit matrix. Equation (31) can also be reformulated in terms of the Power
Spectral Density (PSD) as:

ΦC =
(

I−DwaD−1
ss

)−1
ΦB

(
I−DwaD−1

ss

)−H
, (32)

where f C and f B become ΦC and ΦB, respectively, and H denotes the Hermitian transpose.
The PSD output of the image motion Φout can be obtained by multiplying the ΦC

by the transfer function matrix, which links the interface node point to the image motion,
TFC−out, to obtain:

Φout = TFC−out

(
I−DwaD−1

ss

)−1
ΦB

(
I−DwaD−1

ss

)−H
TFH

C−out
. (33)

Due to the complexity of Dwa and Dss, many challenging experiments needed to be
planned, similar to reference [25]. The transfer function from ΦB to Φout is defined as:

TFB−out = TFC−out

(
I−DwaD−1

ss

)−1
. (34)
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The PSD output of the image motion Φout can be rewritten as:

Φout = TFB−outΦBTFH
B−out. (35)

TFB-out can be obtained by the Hv algorithm, by taking into account both the input
and output noises [28–30]. The following is a brief introduction to the Hv algorithm. The
augmented characteristic matrix GFFX can be compiled as shown in Equation (34).

GFFX =

[
GFF GFX
GXF GXX

]
, (36)

where GFF and GXX are the auto power matrixes of the input (disturbance force and tongue
of RWA) and output (image motion in X direction), respectively. GFX and GXF are the
cross-power matrixes of input and output. The singular value decomposition of GFFX
results in a diagonal eigenvalue matrix Λ and an eigenvector matrix V .

GFFX = VΛVH. (37)

Choosing the column of V representing the eigenvector, corresponding to the smallest
eigenvalue and normalizing it, such that its last element is −1, the Hv estimate can be
obtained as shown in Equation (38):

Vλmin =


H11
H12

...
H16
−1

 =

[
HT

v
−1

]
, (38)

when the augmented characteristic matrix becomes GFFY, we can obtain [H21, H22, H23,
H24, H25, H26] using the same method.

In order to reduce the estimation error of the FRF, geometrically average the FRF at
different speeds, as follows:

Hij =
21

√√√√k=21

∏
k=1

Hij−k(i = 1, 2, j = 1, 2, · · · , 6), (39)

where Hij−k is the FRF Hij at 100 × (k − 1) rpm.
The coherence function is often introduced to evaluate the reliability of FRF. It is

defined as the measure of the causal relationship between two signals with the presence of
other signals. For the ith output and the jth input, the coherence function is formulated, as
in [28]

γ2
ij =

|GXF(i, j)|2

GFF(j, j)GXX(i, i)
. (40)

When the coherence function is equal to one, the two signals are completely related.
If the coherence function between two input signals is 0, then, the two inputs are com-
pletely unrelated.

4. Experiment and Discussion

RWA is one of the most important disturbance sources on the satellite. We used the
RWA disturbance as the excitation source to acquire the FRF from the disturbance source to
the sensitive payload. The test platform of microvibration was built, as shown in Figure 7,
and mainly composed of the satellite, low-frequency suspension system, RWA controller,
and signal acquisition system. Five acceleration sensors (numbered a1–a5) and three
acceleration sensors (numbered a6–a8) were connected to the PM and the SM, respectively.
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We collected the acceleration information of the 8 sensors, when the RWA increased
from 0 to 2000 rpm, at every 100 rpm. The accelerations of a1 sensor in 3 directions at
2000 rpm are shown in Figure 8. The figure shows that the test’s signal-to-noise ratio was
high and satisfied the test requirements.
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The gathered acceleration signals were transformed into displacement signals by
quadratic integration, in order to fit the rigid-body displacement of each optical element,
using Equation (17). Then, the image motion at each speed can be calculated by Equation
(20). Through Equation (19), it is possible to determine the image motion at each speed,
including the image motion at 0 rpm, 500 rpm, 1000 rpm, and 2000 rpm, as shown in
Figure 9. The waterfall of the image motion is shown in Figure 10. The picture shows that
when the RWA is at 600 rpm, there is a significant amplitude at 159.8 Hz.
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The FRF and coherence function at 600 rpm are shown in Figure 11. For simplicity,
only H16 and H26 are shown. The figure shows that the coherence at 159.5 Hz is roughly
equivalent to 0.8, demonstrating the dependability of the FRF at this frequency.
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As can be seen from Figure 12, the amplitude of the FRF for the low frequency is larger,
especially between 23 Hz–30 Hz, 155 Hz–163 Hz, and 215 Hz–237 Hz. Due to the influence
of noise, the amplitude of the FRF obtained by different RWAs at 23 Hz–30 Hz differs
greatly, while the differences at other frequencies are small. The figure also demonstrates
that, at frequencies around 160 Hz, Fx has the least impact on the image motion in the x
direction compared to Fz and Fy, while Mz has the greatest influence compared with Mx
and My. Further, Mz, Mx, and My have a decreasing impact on the image motion in the y
direction, near 230 Hz, while Fx, Fy, and Fz have the same effect.

5. Conclusions

In this paper, a general method that would obtain the FRF from the disturbance source
to the sensitive payload was proposed. Firstly, the integrated model of a high-precision
optical remote sensing satellite was developed, including the disturbance mode, structural
dynamic mode, and optical mode, while the effect of AOCS was ignored. Secondly, a
general method based on the Hv algorithm was presented to obtain the FRF, which does
not require an additional excitation source, except for the RWA itself. Finally, a microvi-
bration test of the satellite using different RWAs was carried out. The experimental results
demonstrate that the coherence is high, and the peak positions of the FRF obtained by
different RWAs are basically the same, while the amplitudes are slightly different, espe-
cially at 23 Hz–30 Hz, which indicates that the method proposed in this paper is effective.
Therefore, the image motion of the sensitive payload can be obtained by multiplying the
disturbance of the RWA measured at a fixed interface with the FRF, and without extensive
testing when changing different RWAs in the same series.
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