
Citation: Wang, Z.; Dridi, M.;

El Moudni, A. Co-Optimization of

Eco-Driving and Energy

Management for Connected

HEV/PHEVs near Signalized

Intersections: A Review. Appl. Sci.

2023, 13, 5035. https://doi.org/

10.3390/app13085035

Academic Editor: Filipe Soares

Received: 24 February 2023

Revised: 1 April 2023

Accepted: 11 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Co-Optimization of Eco-Driving and Energy Management for
Connected HEV/PHEVs near Signalized Intersections:
A Review
Ziqing Wang 1 , Mahjoub Dridi 2,* and Abdellah El Moudni 1

1 NIT-O2S, UTBM, University Bourgogne Franche-Comté, 90010 Belfort, France; ziqing.wang@utbm.fr (Z.W.)
2 CIAD, UTBM, University Bourgogne Franche-Comté, 90010 Belfort, France
* Correspondence: mahjoub.dridi@utbm.fr

Abstract: Currently, road transport constitutes a considerable proportion of global fossil fuel con-
sumption, as well as CO2 and pollutant emissions. To mitigate transportation energy consumption,
two primary approaches have emerged: the large-scale adoption of Hybrid Electric Vehicles (HEVs)
and Plug-In Electric Vehicles (PHEVs), as well as the implementation of eco-driving strategies, which
present an immediate and low-cost solution. In this context, this paper provides a comprehensive
review of these two technologies and their integration for connected HEV/PHEVs. We summarize
the framework of recent approaches to incorporate fusion road information in single-vehicle and
multi-vehicle scenarios, respectively, wherein we compare their advantages, their disadvantages,
and their effectiveness in reducing energy consumption. Additionally, we reflect on the future de-
velopment directions of cooperative optimization in EMS and eco-driving strategies from various
perspectives. This comprehensive review underscores the importance and potential impact of these
approaches in addressing environmental challenges in transportation systems, thereby offering useful
insights for new researchers and practitioners in this area.

Keywords: cooperative optimization; review; eco-driving; energy management; signalized intersec-
tion; energy consumption; HEV/PHEVs

1. Introduction

Urban cities have been focusing on energy shortages and environmental issues in
recent years. The transportation sector, which accounts for nearly three-quarters of total
petroleum consumption, is the most energy-consuming system. According to reports [1],
energy consumption in the U.S. transportation sector accounted for approximately 28%
of total U.S. energy use in 2021. Moreover, the International Energy Agency (IEA) states
that the transportation sector, which has the highest reliance on fossil fuels, contributed
to 37% of CO2 emissions from end-use sectors during the same year, which caused the
share of transportation in global energy-related carbon dioxide emissions to increase by
two percentage points to reach 26% [2]. It is evident that the majority of our daily energy
consumption is attributed to our movements. In response to reducing energy consumption
and emissions related to transportation, scholars and researchers have proposed many
approaches, which can be summarized based on two technical aspects.

The first aspect is to use alternative energy sources as much as possible to replace
traditional fossil fuels, such as the promotion of new energy taxis, buses, subways, passen-
ger cars, and trains; the so-called new energy sources would be obtained from renewable
resources such as hydrogen, solar, and wind. With these new energy sources, new pow-
ertrain types have been created for the purpose of using electricity that comes from these
renewable energy sources. For instance, Hybrid Electric Vehicles (HEVs) and Pure Electric
Vehicles (PEVs) have been developed, which offer better fuel efficiency compared to tradi-
tional Internal Combustion Engine (ICE) vehicles. However, even though we surmise that
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the widespread adoption of PEVs and HEVs could alleviate energy shortages, charging
infrastructure limitations and range anxiety are major obstacles to their large-scale rollout,
while, unlike PEVs, HEVs are formed by adding additional energy sources and storage
systems, which offer a temporary solution to the above two issues under existing condi-
tions. Therefore, they are a suitable choice during the transition period before moving to
large-scale PEVs. Such a trend is also reflected in the market share performance, as Figure 1
shows. The market share of HEVs has increased significantly, capturing 3.2% of the light
vehicle market in 2013 and 5.5% in 2021. PHEVs sales began in 2011, and their market share
has grown every year. As of 2021, PEVs accounted for 3.2% of the light vehicle market.
Consequently, the Energy Management System (EMS) of these vehicles has become an
increasingly important issue.

Figure 1. Sales illustration of HEV/PHEV/PEV on the US market [1].

In order to better understand the following reviewed EMS solutions, Figure 2 illustrates
the structural differences between the three types of Electrical Vehicles (EVs). In the case of
a Hybrid Electrical Vehicle (HEV), both an engine (ICE) and an electric drive power the
drivetrain. The electric motor’s battery is charged by regenerative braking and a generator
connected to the ICE, allowing for the use of smaller engines and improved fuel efficiency.
Furthermore, for a Plug-In HEV (PHEV), the battery is charged not only by regenerative
braking and the generator, but also by an external electric power source. Finally, a Pure
EV (PEV) is solely powered by its battery, which is charged using an outside electric
power source.

Figure 2. Basic structure of different EV types. (a) HEV. (b) PHEV. (c) PEV.

Meanwhile, the second aspect focuses on improving efficiency of transportation sys-
tems and encouraging fuel-efficient driving, such as Ecological Driving (eco-driving) strate-
gies. The concept of eco-driving involves optimizing and regulating the speed of vehicles
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based on various factors such as the route information and surrounding environment,
which include speed limits, locations of stop signs, and Signal Phase and Timing (SPaT)
information provided by Intelligent Transportation System (ITS) technology. More details,
such as the use of Connected Vehicles (CVs), can lead to enhanced road safety, smoother
traffic flow, and energy conservation through Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication. V2V communication enables vehicles equipped with
communication technology to exchange information, thereby preventing collisions and
enabling coordinated movement. On the other hand, V2I communication enables vehicles
to communicate with roadside units and infrastructure, such as traffic signals, which allows
for better coordination between them. The transportation system has evolved with the
integration of smart and connected technologies, as shown in Figure 3, not only for vehicles,
but also for the road network, which has become smarter with the deployment of intelligent
traffic infrastructures and sensors.

Figure 3. Schematic of ITS technology.

Therefore, with the rapid development of Intelligent Transportation Systems (ITS)
and the increasing emphasis on sustainable mobility, connected Hybrid Electric Vehicles
(HEVs) and Plug-In Hybrid Electric Vehicles (PHEVs) have emerged as crucial components
in the global effort to reduce emissions, improve energy efficiency, and achieve sustainable
transportation. The integration of advanced Energy Management Systems (EMS) and
eco-driving strategies in connected HEV/PHEVs has the potential to address these chal-
lenges by optimizing single-vehicle and transportation system performance. The choice
of this topic is motivated by the growing demand for effective solutions that can harness
the benefits of connected vehicle technologies and cooperative systems to enhance the
performance of HEV/PHEVs in diverse traffic conditions. The importance of this topic lies
in its potential to provide valuable insights for researchers, policymakers, and practitioners,
thereby guiding the development of innovative EMS and eco-driving strategies that can
maximize fuel economy, reduce emissions, and improve traffic flow.

This review paper aims to provide a comprehensive overview of recent advances and
challenges in the development and implementation of EMS and eco-driving strategies for
connected HEV/PHEVs. We will analyze the current state of research, identify critical
research gaps, and propose potential directions for future studies in this field. By doing
so, we hope to contribute to the ongoing efforts toward achieving more sustainable and
efficient transportation systems. In order to review these two aspects comprehensively, this
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report is organized as follows: Section 2 introduces the basic architectures of HEV/PHEV.
Section 3 outlines the types of EMS as the basics of cooperative optimization approaches.
Section 4 defines eco-driving in the context of cooperative optimization with EMS and
systematically reviews its research methods. Section 5 summarizes the framework of newer
approaches to cooperative optimization in single-vehicle and multi-vehicle scenarios for
HEV/PHEVs, respectively, discussing their optimization objectives, constraints, control
logic, and effectiveness in reducing energy consumption. Finally, future studies and
conclusions are presented in Sections 6 and 7.

2. Architecture of HEVs/PHEVs

To fully understand the potential of HEV/PHEVs as an approach for sustainable
transportation, it is important to examine the architecture of HEV/PHEVs and the EMS
that govern their performance. EMS are the core determinant of HEV/PHEV performance
and are closely linked to the vehicles’ architecture. Thus, we will provide a comprehensive
overview highlighting the key components that make up these vehicles and their respective
roles in the energy management process.

Generally, the structure of HEVs/PHEVs offers additional flexibility to optimize their
engine operation regions compared with ICE vehicles, as the latter can only adjust their
engine speed to regulate their torque in response to a driver’s power demand. The key
characteristics of HEV/PHEVs which are different from the ICE vehicles, are listed as
follows [3]:

• Recover the regenerative braking energy as much as possible;
• Reduce the idling energy cost by turning off the engine;
• Achieve an optimal distribution of power among various power sources;
• Reduce the size of the ICE while ensuring that the vehicle’s maximum requirements

are still met;
• Tend to be more complex and costly, as they necessitate additional controllers;
• Have a weight that is 10–30% greater than that of ICE vehicles.

As depicted in Figure 2, a motor assists the engine to operate in a higher efficiency area
in an HEV/PHEV, which is able to achieve better fuel efficiency. To accomplish this,
HEVs/PHEVs need to distribute power among various power sources (e.g., the engine
and battery) in response to varying driving conditions. Typically, there are three types of
HEV powertrains, which are also utilized in PHEVs, except that PHEVs have a charging
port that allows the battery to be charged directly from the grid. The three types are series
hybrid, parallel hybrid, and combined(series–parallel) hybrid, respectively, [4]. In a series
hybrid powertrain system, a motor/generator set is powered by the engine to drive the
vehicle; in a parallel hybrid system, either the battery with a motor/generator set is used
or the engine is used to drive the vehicle according to the torque demand; In a combined
hybrid system, vehicles have the ability to operate as a series or parallel hybridization.

2.1. Series Hybrid System

In a series hybrid drive system, as depicted in Figure 4, the IC Engine serves as an
Auxiliary Power Unit (APU), thereby effectively increasing the distance range of a purely
electric vehicle. One of the advantages of this configuration is that the IC Engine can be
employed at a point where the efficiency and emissions are at their highest levels, because
it is not dependent on the mechanical requirements of the vehicle in this form. Furthermore,
the loss brought on by the gears or clutch is reduced by the lack of a mechanical connection
between the vehicle and the IC Engine, and using the Electric Motor enables the continued
use of regenerative braking. Nevertheless, this configuration requires an IC Engine, Electric
Generator, and Electric Motor, and the added weight could offset the benefits described
earlier. Based on these characteristics, series HEV/PHEVs are more suitable for low-speed
operating conditions in urban areas and not for highway driving conditions.
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Figure 4. Series hybrid configuration.

2.2. Parallel Hybrid System

In a parallel hybrid drive system, both the IC Engine and Electric Motor operate
simultaneously. As illustrated in Figure 5, compared to the series hybrid system, the parallel
configuration only requires the IC Engine and Electric Motor, thereby eliminating the
Electric Generator and reducing the total weight and complexity. Furthermore, the auxiliary
power effect of the Electric Motor enables a reduction in the power of the IC Engine and
battery capacity. Additionally, because the IC Engine remains mechanically connected
to the drive system, the energy utilization of the engine in the parallel hybrid system is
relatively high, which results in higher fuel efficiency than in the series hybrid drive system.
However, the IC Engine’s operating conditions are influenced by the driving conditions,
and frequent changes in driving conditions can cause the engine to operate inefficiently,
which results in increased emissions compared with the series type. Therefore, the parallel
hybrid system is better matched with the operating conditions where the car is driven
steadily at medium and high speeds and is most suitable for driving on intercity roads
and highways.

Figure 5. Parallel hybrid configuration.

2.3. Combined Hybrid System

The combined hybrid system (Figure 6) combines the characteristics of the series and
parallel hybrid systems; compared to the series hybrid system, it incorporates additional
transmission routes for mechanical power, while, compared to the parallel hybrid system,
it introduces more transmission routes for electric power. The combined hybrid system
gains flexibility by dividing the power between the motor and the generator, and this
complex configuration generally makes it more costly and difficult to control. However,
the advantages of this combined hybrid system are also obvious: on the one hand, it can
be applied to a variety of vehicle operating conditions, and the vehicle’s economy and
emissions can be guaranteed, whether on the inter-city arterial road or on the highway;
on the other hand, this system is suitable for all sizes of vehicles.
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Figure 6. Combined hybrid configuration.

After having examined the architecture of HEV/PHEVs, we can now turn our atten-
tion to the Energy Management Strategies (EMSs) that are commonly used in HEV/PHEVs,
as well as the key factors that influence their design and optimization. By examining
the EMSs in detail, we can gain a deeper understanding of how these strategies are
developed and optimized to ensure maximum efficiency and performance in various
driving conditions.

3. Energy Management Strategy for HEV/PHEVs

EMSs are critical, as they determine the allocation and flow of energy between the
powertrain components and energy storage system. By optimizing the EMSs, HEV/PHEVs
can achieve higher efficiency and better performance in a wide range of driving conditions.
In this section, we will examine the different types of EMSs that are commonly used for
HEV/PHEVs. Through a detailed analysis of EMSs, we aim to provide a comprehensive
understanding of the key principles and strategies that underlie the design and optimization
of HEV/PHEVs.

Normally, the energy management problem for a HEV/PEHV is formulated as the
following [5]:

min
x,u

J(x, u)

s.t. G(x) ≤ 0
(1)

where x ∈ X denotes the state variables of the hybrid system, such as vehicle distance,
speed, State of Charge (SOC), fuel consumption, etc. The control variable u ∈ U is usually
defined as the ratio of power or torque demand. The constraint conditions G(x) represent
limitations on power or velocity, torque, and the final SOC. The objective function J can
be defined to minimize energy consumption, exhaust emissions, delay battery aging,
or maintain vehicle mobility, or it may define combinations of these objectives.

Given the aforementioned formulation, significant efforts have been directed towards
the development of more efficient powertrain systems and EMSs for HEV/PHEVs. The clas-
sification of these strategies is illustrated in Figure 7.
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Figure 7. Classification of HEV/PHEV control strategies [6].

3.1. Rule-Based EMS

Rule-based control strategies are usually extracted from the existing control experience
to meet the characteristics of each component, which belong to the class of real-time strategy.
The main research directions can be divided into two categories. The first category is based
on a deterministic logic threshold, such as [7]. The researchers divided the operation of
PHEVs into Charging Depleting (CD) and Charging Sustaining (CS) mode by setting the
SOC threshold value. The other category is using fuzzy logic, such as the works of [8,9].
Rule-based EMSs have shown promising results since the early 2000s, but they are not
guaranteed to be optimal, since they are based only on instantaneous outputs. In fact, these
rules are determined by the car manufacturer using standard speed profiles that do not
always accurately represent real-world conditions.

3.2. Optimization-Based EMS

The optimization-based strategies are often derived from optimization theory, specifi-
cally optimal control theory. Furthermore, the solution to this Optimal Control Problem
(OCP) can be divided into two main classes: those that attempt to compute a local so-
lution in real-time, usually online, and those that compute a global solution, typically
offline [10,11].

3.2.1. Real-Time Optimization Methods

Real-time strategies aim to determine the allocation of power sources at each time
step while simultaneously minimizing the cost function (e.g., fuel economy, power, and
emissions). This class of strategy has been widely developed in recent years due to its
relative ease of implementation. It can be subdivided as follows:

• Pontryagin’s Maximum Principle (PMP), which is the main method in optimal control
theory, obtains the optimal control variable by solving the extreme values of the
Hamilton function at each moment. It is easily implemented in order to find the
optimal control; see [12,13].

• Equivalent Consumption Minimization (ECM) is an approach that calculates the total
fuel consumption by combining the fuel used by an ICE and the equivalent fuel
consumption of the electric motor. This unifies the calculation of power from both
sources [14]. It is also a form of PMP that has been proven to yield a maximum fuel
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economy under certain conditions [15]. An adaptive method [16] has been developed
based on ECM. This method continually updates the equivalent factor by taking into
account changing driving conditions, and it calculates the equivalent consumption in
real-time as a function of the current system output. This allows the system to operate
without future driving condition information [17].

• Model Predictive Control (MPC) is an advanced process control method that adheres
to a set of constraints. In the context of EMSs for HEV/PHEVs, it is a strategy that
combines online system parameter updates with optimal control to predict future
velocities and optimize fuel consumption based on them. A typical example can
be found in [18], where the authors formulated the energy management problem
of a combined HEV as a nonlinear Optimal Control Problem with constraints. Two
different cost functions were defined, and the MPC strategy was used to determine
the power split between the IC Engine and electrical machines at each sample time.
The results demonstrated a significant improvement in fuel economy compared to a
commercially available controller in the Powertrain System Analysis Toolkit (PSAT)
software. For more reviews of MPC-based EMS, please refer to [19].

• Machine learning, in recent years, has become a popular and useful technique for
addressing various problems in many research fields, including as an EMSs method
for HEV/PHEVs. It has great potential to improve the computation process and
adaptability. The applications of machine learning to energy management can be
generally classified into two categories [20]. The first involves using a single algorithm,
such as reinforcement learning algorithms [21,22], to derive the energy management
policy. The second category involves combining other information or algorithms
with machine learning methods, such as predictive algorithms, trip information,
and MPC [23–26].

• Metaheuristic algorithms are a type of computational intelligence paradigm that are
especially useful for solving complex optimization problems with a vast search space
of potential solutions [27]. They use general methods that can be applied to different
types of optimization problems, without relying on specific knowledge, and aim to
find near-optimal solutions within a reasonable amount of computation time. They
are widely used in engineering, science, and business to tackle a range of optimization
problems, including those encountered in HEV/PHEV EMSs. The most commonly
used metaheuristic algorithms in HEV/PHEVs EMSs are Simulated Annealing(SA),
the Genetic Algorithm(GA), and Particle Swarm Optimization (PSO) [28–30]. These
algorithms do not require the calculation of derivatives, but instead use alternative
methods to identify candidates for the optimal solution. This search for the opti-
mal solution is guided by certain parameters that help to overcome local minima,
although convergence to global optima cannot be generally guaranteed [11].

3.2.2. Global Optimization Methods

The concept of Dynamic Programming (DP) is essential for developing strategies to
find an optimal global solution. DP utilizes Bellman’s optimality principle and decom-
poses complex problems into simpler subproblems. Normally, Deterministic Dynamic
Programming (DDP) has been used to calculate a theoretical lower bound for consumption
on specific speed profiles [31]. However, DDP has a curse of dimensionality, meaning that
the computational cost increases exponentially with the number of state and control vari-
ables, thereby making it impractical for use in real-time applications, particularly for large
systems. Some works have proposed techniques for reducing the dimension of the state or
control space to overcome this limitation [32,33]. Additionally, future trips information can
be considered in the EMS formulation in order to minimize the total trip fuel consumption,
either through a mixed-integer linear programming problem [34], or through a Stochastic
Dynamic Programming (SDP) framework [35,36].

In conclusion, EMSs are a crucial aspect for HEV/PHEVs, and they play a vital role in
achieving their energy efficiency and reducing their environmental impact. The various
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optimization techniques offer a range of options for designing EMSs that meet the specific
requirements of different HEV/PHEV applications. Furthermore, the integration of eco-
driving strategies with EMSs can result in improvement in more aspects, such as significant
fuel savings, increased safety, and driving comfort. In order to fully understand the complex
integration technique, we will explore the various eco-driving strategies that are not limited
by HEV/PHEV first in the next section.

4. Eco-Driving Strategy for Connected Vehicles

As mentioned before, eco-driving is a cost-effective and immediate approach to re-
duce fuel consumption and emissions [37], as the driver plays a major role in determining
vehicle performance. Meanwhile, the concept of eco-driving has various definitions and
scopes in the literature; for example, the authors in [38] defined it as vehicle purchase
and post-purchase decisions, and in [39], the authors pointed out that, for eco-driving
behavior, including driving, cabin comfort, trip planning, load management, fuelling,
and six maintenance classes, wherein the driving behavior is further divided into accel-
eration/deceleration, cruise, idling and driving mode selection, and parking. However,
In the following context, eco-driving will be limited to the driving behaviors or driver
control of the vehicle during a journey that can influence fuel consumption and emissions.
The typical research methods used to study eco-driving technology include laboratory
testing, on-road experiments, and numerical modeling. We will explain these methods in
detail to aid the reader’s understanding.

4.1. Laboratory Testing

There are various methods to measure different driving styles, including the use of a
chassis dynamometer, engine dynamometer, or driving simulator. Engine dynamometer
testing requires following specific procedures set out in regulations for the testing of the
engine and exhaust after-treatment system [40]. Similarly, a chassis dynamometer requires
standard operation by the operator. These kinds of dynamometers generally need to be
located in the laboratory and designed to meet regulatory standards. The results from the
laboratory dynamometer are highly precise and reliable, and influencing factors (e.g., test
cycles, road resistance, and climate conditions) can always be fully controlled. In addition,
a driving simulator is also commonly used to study driving behaviors; it comprises a
fixed-base car mock-up equipped with a steering wheel, acceleration pedal, and brake
pedal indicators that display the road scenario. The driver operates the driving simulator
according to the virtual traffic environment. The primary advantage of driving simulators
is that they offer a safe and effective way to examine various factors that impact driver
performance [41].

4.2. On-Road Experiments

On-road experiments offer valuable data for evaluating actual driver performance.
They are generally less accurate and repeatable than laboratory testing. The commonly
used on-road research methods for eco-driving include Portable Emissions Measurement
Systems (PEMS), data loggers, odometer reading, fuel use, and surveys [37].

4.3. Numerical Modelling

Numerical modeling is a commonly used tool for evaluating the performance of new
eco-driving and eco-routing algorithms. The reason why it has become popular is that
it allows researchers to assess the efficacy of these strategies or algorithms without the
need for actual field experiments, which result in great savings of both study time and cost.
However, its results are typically less precise and dependable than those obtained through
laboratory testing or on-road experiments.

However, when novel eco-driving strategies are proposed in any case, two significant
scenarios are typically considered: freeways [42,43], and signalized intersections on urban
roads [44–47]. Since the first scenario is beyond the scope of this thesis, we will focus on
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investigating the literature that covers the second scenario. There are numerous dynamic
eco-driving models currently available, which vary in their design, formulation of the
problem solution (including mathematical formulation, interacting modules, input space,
and others), and the energy and traffic models used to connect the eco-driving service to
energy and dynamics [48]. In the early models of dynamic eco-driving, the fuel-optimal
speed trajectory was estimated and advised using the equipped vehicle’s dynamic status,
location information, and SPaT data. For instance, Mandava et al. [49] proposed arterial
velocity planning, which aimed to maximize the probability of encountering a green light
when approaching a signalized intersection. Building on this concept, Barth et al. [44]
expanded on the model to determine energy-efficient (de)acceleration profiles based on
remaining green/red time and distance from the vehicle to the intersection. Despite the
aforementioned models considering similar inputs for fuel-optimal velocity estimation,
they employ varying methodologies to process the inputs, and all of their assumptions are
based on the assumption of no interference from other surrounding vehicles.

Therefore, to account for the impact of other surrounding traffic factors, the concept
design of the eco-driving strategy was adjusted to consider queue discharge information
and the status of the preceding vehicle. Therefore, in order to implement the advice speed
in actual complex traffic conditions, the authors [50] proposed the Predictive Cruise Control
(PCC) model, which minimized travel time under both free-flow and stop-and-go traffic
conditions while providing energy-efficient (de)acceleration strategies. In addition to traffic
signal and preceding vehicle factors, Queue Length Estimation (QLE) techniques, which
are based on commonly installed induction loop sensor systems, helped the predictive
speed assistance system, which showed fuel savings of 8–11% [51]. Similar research can be
found in [52–54].

Although V2I technology has simplified the process of acquiring real-time SPaT infor-
mation on signalized intersections with pre-timed signal control, obtaining precise future
SPaT data remains challenging due to variations in pre-timed traffic signals and traffic
environment fluctuations. To tackle this issue, the probabilistic signal timing approach
has been developed, which utilizes real-time SPaT data and historical average timing
data for each signal status [55]. For example, the Green Light Optimized Speed Advisory
(GLOSA) has been implemented for fully and semi-adaptive traffic lights, thereby leverag-
ing empirical signal and detector data as a solution [56], while, from the vehicle control
perspective within the transportation system, the eco-driving problem for Connected and
Autonomous Vehicles (CAVs) has been formulated as a data-driven, chance-constrained
robust optimization problem. DP has been applied to solve this optimization problem to
enhance the controller’s robustness when dealing with uncertain signal timing, regardless
of random variable distribution [57,58]. Despite these developments, obtaining precise
and accurate future SPaT information remains challenging due to technological barriers
and the dynamic operation of actuated, coordinated, and adaptive traffic signals. As ITS
technology advances, new possibilities may open up to address this challenge.

Last but not least, regarding the dynamic eco-driving control for platoons of vehicles
at signalized intersections, the concept has attracted the interest of some researchers.
A primary approach to address the impacts of platooning involves precise identification
of the leading vehicles for each phase and providing slightly varied guidance to each
vehicle within the platoon. For example, in [59], an algorithm was designed to account for
real-time signal information and traffic conditions, as well as group vehicles into platoons
based on their permutations, and the simulation results showed significantly reduced
fuel consumption and emissions while also minimizing travel time and improving traffic
flow. Similarly, Ref. [60] developed algorithms by characterizing the optimal speed profiles
for platoon-based optimization and highlighted the importance of accurately estimating
the vehicle’s position and speed again, especially for platooning scenarios. In addition
to the homogeneous CAV fleet, the heterogeneous traffic flow, including both CAVs and
Human-Driven Vehicles (HDVs), is also a hot issue that needs to be addressed urgently.
In [61], a suggestion-based control framework based on MPC was proposed to optimize fuel
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efficiency in heterogeneous urban traffic. The authors considered that the recommended
velocity from CAVs are non-binding with HDVs, which means that the driver of an HDV can
choose to follow or not to follow the suggested velocity. In the simulation, this assumption
was expressed as a certain probability β. At last, the simulation results showed the proposed
control strategy’s efficacy. Even though research on dynamic eco-driving for platoons has
received limited attention so far, it provides a basis for significantly improving the energy-
saving and emission-reduction potential of existing models.

Here, we conclude the main elements for developing eco-driving models near signal-
ized intersections:

• Optimization problem formulation and methods:
Most proposed eco-driving systems employ mathematical programming to estimate
optimal speed profiles for energy and/or traffic efficiency objectives. These objectives
include improving energy efficiency (minimizing vehicle tractive force/fuel consump-
tion [52,54,62]), traffic efficiency (minimize idling time [44,50,63]), or a combination of
safety, energy consumption, emissions, and traffic flow efficiency objectives [47,58,61].
Generally speaking, for models that incorporate a fuel consumption model, energy
efficiency calculations are integrated with optimal problem solutions, while for others,
speed trajectories are derived from simulation tools and input into fuel consumption
and emissions models. Simultaneously, various optimization frameworks have been
proposed for different objectives. These include Model Predictive Control (MPC) ap-
proaches focused on trip time and kinetic energy loss [50], fuel–optimal speed profile
estimations based on a linear blend of traffic efficiency and emissions [53], and optimal
controllers based on the formation of tight and fast-moving platoons for fuel efficiency
optimization [62].

• Analysis boundary:
The analysis boundary for a dynamic eco-driving system typically includes the area
of the road network where the system can affect CAVs. This area comprises both
the upstream road section leading to the signalized intersection and the downstream
section where the benefits of eco-driving strategies are realized [48].

• Vehicle dynamic model and energy model:
In many research works, constant acceleration [49,52,53] and non-linear acceleration
models [47,64] were taken into account to connect with eco-driving services and were
adopted to estimate optimal velocity. In addition to these traditional vehicle dynamics
models, trigonometric functions were developed to replicate the increase/decrease
of an equipped vehicle speed profile while considering the comfortable objective
in [44]. These vehicle models were employed to depict the progression of a vehicle’s
speed from the current speed to the target speed and eventually to the desired speed.
Regarding the energy models, according to [65], they can be classified based on their
transparency into white-box, grey-box, and black-box models. White-box models
are constructed based on the physical or chemical processes of the engine, black-box
models treat the entire vehicle or the engine alone as a black box, and grey-box models
are the most suitable energy models for evaluating eco-driving systems because of
their balance between accuracy and simplicity.

Furthermore, the efficiency of CAV operation depends heavily on the drivers’compliance:
if drivers do not follow the recommended speed advice provided by CAV technology, the ben-
efits of the system will reduce a lot. However, the human-related factor is so unpredictable
in reality, as the human can be influenced by so many factors, such as personal traits, cog-
nitive and psychomotor functions, situational factors, acceptance, and trust [66], which is
now gradually becoming an important topic that will get more attention. In the following
section, we will more deeply analyze the integration of eco-driving strategies with energy
management systems for Hybrid and Plug-In Hybrid Vehicles. By doing so, we aim to
explore the potential synergies and opportunities for improvement in both environmental
sustainability and energy efficiency.
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5. Co-Optimization of Eco-Driving Strategy and EMSs for HEV/PHEVs

As previously mentioned, the integration of eco-driving and EMSs of HEV/PHEVs
are essential for enhancing the energy-saving and environmentally friendly potential of
vehicular traffic. The effectiveness of EMSs depend on predicting future states of vehicular
traffic, such as velocity and surrounding traffic information. These data can be partially
obtained through ITS technology. As a result, the co-optimization of eco-driving strategies
and EMSs for HEV/PHEVs become further developed. The current literature can be
classified into two categories based on different scenarios, namely, single-vehicle and
double/multi-vehicle scenarios.

5.1. Single-Vehicle Scenarios

In the past decade, most research literature in the cooperative optimization of eco-
driving and Energy Management Systems (EMS) for HEV/PHEVs has focused on the
single-vehicle scenario, where the most valued target is to optimize the power split consid-
ering traffic or road information and progressively taking safety constraints into account,
but rarely considering other vehicle interactions, such as overtaking and lane-changing.

• Cooperative Optimization for HEVs:
In most situations, the cooperative optimization framework for HEVs has been de-
signed to minimize energy consumption by first optimizing the speed profile. Next,
the power distribution is optimized by following the ideal speed suggested by the
eco-velocity planning system. As Figure 8 shows, this concept relies on a two-level
optimization framework, which includes both the vehicle and powertrain levels. How-
ever, the complex nature of driving in real-world scenarios makes it impractical to
optimize the entire velocity trajectory. Therefore, the analysis boundary is typically
restricted near to the intersection, thus allowing better integration of EMS with the
traffic and road conditions, such as SPAT information and speed limits. Numerous
methods have been proposed to tackle the two-layer problem. For instance, for only
considering one signalized intersection, Ref. [67] decomposed the hybrid optimal
problem into two subproblems. First, the optimal speed profile was computed by
solving a nonlinear time-varying optimal problem. Then, the Krylov subspace method
was employed to improve computational efficiency. After that, the optimal torque
split ratio and gear shift schedule were determined by combining PMP and numerical
methods in the bi-level MPC framework. For considering continuous intersections,
Ref. [68] introduced a novel cooperative optimization framework for HEVs, which
was similarly designed to minimize energy consumption by optimizing velocity tra-
jectories first, then optimizing the power split based on a genetic algorithm to solve
the complex fuel consumption model of HEVs. The simulation results of the pro-
posed optimal speed algorithm were compared to the results of a real driving test
and a single-intersection optimization algorithm. These comparisons showed that the
proposed strategy was more effective in reducing fuel consumption and intersection
passing time. Finally, as an example for considering as many real traffic scenarios as
possible, Ref. [69] developed an MPC-based strategy that fully considered the three
main objectives: safe driving, energy management, and exhaust emission reduction.
To address these objectives, the study designed a driving scenario classifier to deter-
mine the corresponding vehicle mode. Furthermore, the simulation was conducted
in a realistic urban traffic environment using Simulation of Urban MObility (SUMO),
and the results demonstrated that the proposed strategy guaranteed safe driving
throughout the entire trip, reduced fuel consumption and exhaust emissions, and kept
the battery in a healthy SOC range. The study showed the effectiveness and robustness
of the proposed strategy for potential online applications. Moreover, more specific
HEV-related references can be seen in Table 1.
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Table 1. Summary of exemplary works on co-optimization of eco-driving and energy management for HEV/PHEVs near signalized intersections.

Classification Reference Modelling Approach Application Verification Achievements

Single-Vehicle Scenario

[67]
– Bi-level MPC
– C/GMRES
– PMP

HEV Simulation
– Improve energy efficacy and

computational speed

[68]
– GLOSA
– Genetic Algorithm HEV Simulation

– Reduce fuel consumption and passing
time

[70]
– Co-optimization
– Trigonometric speed profile
– MILP

PHEV Simulation
– Average 24% fuel savings in urban

driving conditions

[71]
– Trigonometric speed profile
– Queuing Profile Prediction
– Rule-based power-split controller

HEV(Toyota Hybrid
System) Simulation

– Average energy saving was about 8.7%
while maintaining mobility
performance

[72,73]

– Two-level receding-horizon control
framework

– Ecological Adaptive Cruise
Controller (ECO-ACC)

PHEV Hardware-in-the-loop(HIL)
simulation

– Reduced energy consumption while
avoiding collisions and complying
with traffic signals

[69]
– Bi-level MPC
– Driving scenario classifier
– Electric-Assist Control

HEV Simulation

– Reduced the fuel consumption by
34.10% while keeping the battery
healthy

– Reduced the exhaust emissions (HC,
CO, NOx) by 25.36%, 72.30%, and
30.39%

[74]
– Deep-learning-based queue-aware
– Trigonometric speed profile PHEB Simulation

– 18.7–24.0% energy efficiency
improvements on various traffic
congestion levels

[75]

– Multi-objective hierarchical optimal
strategy

– MPC-based speed planning strategy
– A-ECMS-based EMS

HEV Simulation
– Improved riding comfort and fuel

economy by avoiding stopping at the
signalized intersection
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Table 1. Cont.

Classification Reference Modelling Approach Application Verification Achievements

Double/Multi-Vehicle Scenario

[76]
– Hierarchical control architecture
– MPC
– ECMS

Connected HEVs Simulation
– Improved fuel efficiency and mobility

of the transportation system, reduced
CO2 emissions

[77]
– Hierarchical control architecture
– MPC
– DP

Connected HEVs Simulation
– Better fuel economy and better control

performance compared to [76]

[78]
– Closed-loop hierarchical control

architecture
– MPC

Connected HEVs Simulation
– Improved average fuel economy with

periodically updated efficiencies from
the lower level controller

[79]
– Two-level cooperative control scheme
– Adaptive cruise control strategy
– SQP

Connected HEVs Simulation

– Confirmed the string stability of
cooperative control system

– Real-time optimization performance of
energy consumption

[80]
– Multi-objective optimization
– MPC
– Simulated annealing algorithm

Connected HEVs Simulation

– Superior performance in reducing the
fuel consumption and exhaust
emissions of the hybrid electric vehicle
queue, as well as in improving traffic
smoothness

[81]
– Hierarchical framework
– Resistance network generation
– ADMM algorithm

PHEVs HIL simulation

– Improved the energy saving and
real-time performances of the torque
distribution issue, and significant
reduction in computational burden

[82]
– Gaussian process (GP) model
– Double Delayed Q-learning (DDQL)

algorithm
PHEVs Simulation

– Reached 97.31% energy economy
compared to DP strategy

– Highlighted its huge potential for
online implementation
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Figure 8. The Scenario of single-vehicle cooperative optimization logic based on V2I information.

The studies mentioned above focus on the intersection as a specific scenario and
determine the constraints based on the real-time state of the signalized intersection.
However, there is another way of considering the signalized intersection scenario that
includes their possible encounters in the uncertainty of future traffic information. One
such approach was proposed by [83], who used a novel statistical traffic model to
generate stochastic driving behavior and formulate the EMS of HEVs as a bi-level
hierarchical optimization problem. This formulation led to an effective upper-level
problem that could be solved online as a global optimization using a low-dimension
deterministic DP and could be optimized offline using Stochastic Dynamic Program-
ming (SDP), which is embedded with stochastic traffic behavior in the lower level.
Simulation results showed reasonable over-consumption compared to deterministic
optimization and manageable computational times for both offline and online parts.
Another recent work by [84] proposed an adaptive co-optimization method of speed
planning and EMS with dynamic probabilistic constraints. The proposed composite
sequence generation model enabled dynamic probabilistic constraints by forecasting
the upcoming speed distribution of the preceding vehicle. This was based on the
probability relationship among future speed sequence, historical speed sequence,
and macroscopic traffic state of downstream road segments. By accounting for both
large-scale and small-scale traffic disruptions, this method enhanced prediction accu-
racy by around 10% when compared to purely sequence-based models. Additionally,
the distribution divergence was reduced by over 57%. Simulation results indicated a
14.81% increase in driving safety and relatively high energy efficiency compared to
existing co-optimization methods under the same car-following conditions.

• Cooperative Optimization for PHEVs:
Compared to the cooperative optimization of hybrid electric vehicles (HEVs), PHEVs
have an additional feature, which allows for the depletion of the battery for electric
propulsion and recharging of the battery pack. This makes the Energy Management
Systems (EMS) for PHEVs more complex, since the State of Charge (SOC) planning
aims for battery depletion during a trip [85]. To tackle this challenge, typical work
such as [70] integrated an eco-driving assistance system with the co-optimization of
vehicle dynamics and powertrain operations. In this approach, the vehicle dynamic
optimization was approximated using the trigonometric speed profile, and the power-
train operation optimization was formulated as a nonlinear constrained optimization
problem, which was solved using Mixed-Integer Nonlinear Programming (MINP).
The performance of the proposed system was evaluated at different automation levels
and achieved an average of 24% fuel savings under typical urban driving condi-
tions. Refs. [72,73] developed an ecological adaptive cruise controller (ECO-ACC) for
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PHEVs by considering deterministic traffic SPaT information over the entire route.
The energy-saving potential of this receding-horizon control framework was finally
validated by hardware-in-the-loop (HIL) simulation results across a range of traffic
situations. Regarding machine learning methods, Ref. [74] proposed an innovative
Deep-Learning-Based Queue-Aware Ecological Approach and Departure (DLQ-EAD)
system for a Plug-In Hybrid Electric Bus (PHEB) that provided an online optimal
trajectory for the vehicle that considered both the downstream traffic conditions (i.e.,
traffic lights, queues) and the vehicle powertrain efficiency. The simulation showed
that the proposed DLQ-EAD can achieve 18.7–24.0% energy efficiency improvements
for a single PHEB on various traffic congestion levels. In addition, with regard to
the traditional optimization methods, such as those mentioned in the previous HEV
part, many studies [86–89] did not deal with the signalized intersection as a special
scenario. Instead, they proposed an eco-driving base EMS for PHEVs based on a
velocity optimization algorithm by utilizing the velocity bounds via V2V and V2I
communication, wherein the power split of connected PHEVs and fuel economy could
be optimized over a given prediction horizon. Generally, the first step is to plan a
global optimal SOC trajectory with the available traffic information. Then, fuel econ-
omy is further improved by optimizing the velocity and power split at different levels.
However, the driver’s behavior with respect to this type of method is often ignored
in the simulation results; the performance is dependent on the driver’s behavior in
real conditions.

The analysis of single-vehicle scenarios in HEVs and PHEVs has demonstrated that
cooperative optimization strategies can play a crucial role in shaping future green trans-
portation. As we continue to advance our understanding of double/multi-vehicle scenarios,
the lessons we will learn from these optimization strategies will pave the way for a more
sustainable, efficient, and environmentally friendly transportation ecosystem.

5.2. Double/Multi-Vehicle Scenarios

The previous subsections covered the integration of ITS information and EMS for
single-vehicle scenarios. These ideas can also be applied to double/multi HEV/PHEVs
to further enhance overall performance or for a fleet with regards to fuel economy and
traffic efficiency.

• Double-Vehicle Scenarios:
The advent of ITS technology has made it more convenient to acquire V2I/V2V
information about the surrounding traffic. In the double-vehicle scenario, cooperative
optimization is typically carried out using a car-following model that takes into
account the interaction between the two vehicles in order to balance fuel economy
and safety. According to [3], two categories of strategies can be distinguished for
double-vehicle scenario optimization. The first category is mainly based on Adaptive
Cruise Control (ACC) systems, which aim to reduce traffic accidents, increase driving
comfort, and improve traffic flow throughput [90]. Instead of the safety and traffic
efficiency objectives, the integration of ACC and EMS means the optimization of them
simultaneously, thereby adding another target that aims to improve fuel economy.
In the car-following scenarios, the velocity of the preceding vehicle has a great impact
on the following vehicle as an input for devising the following vehicle’s EMS. A typical
example is [91]; the authors developed an ACC system based on a nonlinear MPC for
intelligent HEVs. This system took into account traffic safety, fuel economy, and ride
comfort, therby ultimately improving energy efficiency and the integration of the
control system. However, this integration of the ACC and EMS is usually carried out
by predefining the preceding vehicle’s velocity, which can be done by following certain
rules. A similar work is [92]; an adaptive tube-based nonlinear model predictive
control (AT-NMPC) approach was introduced for designing autonomous cruise control
systems, which guaranteed robust satisfaction of the specified constraints, even in
uncertain conditions, and enhanced the system’s performance by adapting to changes
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in the vehicle control-oriented model. Using a different approach in [93], an ecological
ACC based on motion-dependent heuristic dynamic programming was developed
to achieve multi-objective optimization. As Figure 9 illustrates, the aforementioned
point about the pre-defining velocity of the preceding vehicle based on traffic light
time when a signalized intersection is taken into account and the second category
are based on Predictive Cruise Control (PCC). EMSs utilizing PCC are designed to
make the most of future information by predicting the velocity of the preceding
vehicle and using a predictive control algorithm to determine the optimal velocity
and power split for the subject vehicle while considering the traffic disturbances [94].
Specifically, PCC-based EMSs are designed with the goal of maximizing the use
of future information, which is achieved through the prediction of the preceding
vehicle’s velocity. An example is [95]; the work suggested an estimation method
based on actual and past inter-vehicle distance data, as well as information on traffic
and upcoming traffic lights, by employing a set of nonlinear, autoregressive (NARX)
models to predict traffic behavior using a cooperative adaptive cruise controller
(CACC) to achieve better fuel economy because of the advantages of information
prediction. Moreover, some machine learning methods were introduced to the part
of the preceding vehicle’s prediction due to the complexity and stochastic nature
of dynamic traffic, such as the Bayes network model used in [96], which showed a
better prediction performance than the “constant acceleration” and “constant velocity”
methods. The Gaussian process model was used in [97], which predicts leading vehicle
velocity based on time series data and mean traffic flow speed drawn from cloud
data. By the way, these machine-learning methods can also be leveraged to optimize
complex systems with inconsistent objectives and stringent constraints. For example,
Ref. [98] integrated a complete ACC and EMS through a proposed Deep Deterministic
Policy Gradient-Based ECOlogical driving strategy (DDPG-ECO) that was based on
deep reinforcement learning. The weights of multiple objectives were analyzed to
optimize the training results. The simulation results showed that the DDPG-ECO
approach achieved over 90% of the performance of DP-based methods while also
ensuring good car-following performance. In conclusion, the integration of ACC and
EMS aims to reduce fuel consumption by using specific driving cycles to approximate
the velocity of the preceding vehicle without taking into account dynamic driving
conditions. On the other hand, the integration of PCC and EMS focus more on
predicting a preceding vehicles’ state through dynamic traffic information, thereby
further improving fuel economy. Both approaches prioritize safety and fuel economy
when optimizing controls.

Figure 9. The scenario of double-vehicle considering the safety constraints with preceding vehicle.

• Multi-Vehicle Scenarios:
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The multi-vehicle scenario has the potential to reduce air resistance for each vehicle,
which can, in turn, increase road capacity, reduce fuel consumption, and improve
road safety [99]. Therefore, there has been increased attention on the cooperative
optimization of EMSs and eco-driving for HEV/PHEV platoons, and great efforts
are being made towards proposing holistic approaches in this area. The most classic
framework, as shown in Figure 10 and presented in [76,77], is a hierarchical energy
management control strategy for a group of connected HEVs. At the higher level, MPC
is used to incorporate SPaT information to predict the optimal velocity profile over a
finite time horizon. At the lower level, the adaptive ECMS and DP are used separately
as controllers to achieve power distribution by tracking the optimal speed of each
HEV’s higher-level controller. The effectiveness of the proposed control strategy has
been validated through simulation results. However, it should be noted that the
propulsion and recuperation efficiencies of HEVs were considered to be constant
in this work. To reflect operating characteristics precisely, Ref. [78] considered the
efficiency feedback of the two characters based on the above hierarchical energy
management control strategy. The fuel economy of the system could be improved,
and additional benefits could be achieved by synergizing the reduction of red light
stopping, collision avoidance, and cooperative platoon information. Around the
same time, Ref. [100] proposed a real-time MPC scheme for connected HEVs that
relied on look-ahead traffic information, as well as a chain GP-based predictor to
obtain the preceding vehicle’s speed, assuming that the vehicle aimed to maintain an
average speed that was reflected through the traffic density. The simulation results
showed that the proposed method could avoid violations of the spacing corridor to
ensure traffic safety and reduce energy consumption without requiring significant
emergency acceleration or braking behavior. Moreover, several related works, such
as [79,101,102], have confirmed the fuel-saving potential in platoons of HEV/PHEVs.
However, optimizing the control strategy for a platoon and the EMS of each HEV
simultaneously can be challenging due to the highly coupled nature of the nonlinear
augmented system. Most of the current literature assumes a perfectly homogeneous
traffic flow, which overlooks human-related factors. As heterogeneous traffic flow
becomes more prevalent in multi-vehicle scenarios in the near future, it will further
increase the complexity of traffic conditions, thus posing a more significant challenge
to improving both the mobility of the traffic system and fuel economy.

Figure 10. The hierarchical control framework of multi-vehicle scenario.
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Finally, by integrating EMS and eco-driving strategies techniques, we can better
address the challenges posed by human behavior and technological advancements in the
context of ITS technology. In the next section, we will examine emerging developments
in the field and discuss how these advances might shape the future. Through identifying
potential research directions and opportunities, the development of the integration of these
two techniques will enhance the performance of energy efficiency, environmental impact,
and contribute to the global push towards a more sustainable transportation landscape.

6. Prospects and Future Trends
6.1. Exploring Lateral Vehicular Interactions and Heterogeneous Traffic for Enhanced EMS and
Eco-Driving Strategies

The above literature analysis highlights that the integration of various data sources,
such as traffic data, routes, and vehicle information, presents opportunities for the coopera-
tive optimization of vehicle dynamics and powertrain systems with a considerable potential
to reduce emissions and energy consumption. However, despite the wealth of research
on this topic, there is a notable gap in the literature regarding the rigorous mathematical
treatment of lateral vehicular interactions and their implications for trajectory planning
along multi-lane road segments near signalized intersections. In realistic traffic conditions,
lane-changing and merging maneuvers occur frequently. To address these challenges,
several methods [103–105] have been proposed for legacy vehicles, which adopt stochastic
controls to minimize the risk of collisions. The focus on safety can also be extended to
connected HEV/PHEVs. As a result, the management of the single/double-vehicle or
platoon while considering the lateral vehicular interaction behaviors in the future ITS
environment, as well as simultaneously ensuring safety and achieving better fuel economy,
will be one of the future research trends.

In addition, the heterogeneous traffic environment will become another interesting
subject to explore in the future. According to [106], the full market penetration of CAV
technologies is not expected until the 2060s. Consequently, mixed traffic streams consisting
of Human-Driven Vehicles (HDVs) and connected PEV/HEV/PHEVs will face heteroge-
neous dynamics and stability. Recent studies have made progress for the platoon with
the consideration of lateral vehicular interactions. For example, Ref. [107] proposed a
distributed MPC method for a heterogeneous platoon, and [108] addressed control prob-
lems for heterogeneous vehicle platoons that were subject to disturbances and modeling
errors. Nevertheless, it is crucial to develop a controller that can respond effectively to
real-world traffic conditions while maintaining string stability to ensure safe transitional
platoon maneuvers. This has been the main goal of the control algorithms proposed in
most research to date and into the future.

6.2. Harnessing Machine Learning and Edge Computing for Advanced EMS and
Eco-Driving Solutions

The previous literature analysis indicated that the level of sophistication for the
cooperative optimization of EMS and eco-driving is gradually advancing. To address many
human-factor-related issues, machine learning methods have become popular. These data-
driven models integrate predictive models that utilize the driver’s compliance with speed
advice systems or other interactions with V2I and V2V services. By doing so, these models
provide a more realistic representation of how these services may affect systems. In addition,
leveraging empirical observations that encompass different driver types, vehicle types,
and traffic conditions can enable accurate predictions regarding the performance of co-
optimization applications. An example is [74], where deep learning was used to model
state transitions based on an offline-trained graphical model, which significantly reduced
the time complexity. Furthermore, two or more hybrid learning algorithms will be the
direction of approaches for solving the cooperative optimization problem with more and
more data sources. One of the application direction of the learning algorithm is to extract
useful traffic information and perceive the behavioral characteristics of human-related
factors from huge amounts of data, which makes the “brain” of connected HEV/PHEVs
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smarter, and another is application is the onboard implementation of the EMS, which makes
its “behavior” more reliable.

In addition, online control requirements need more powerful calculation and pro-
cessing capacity. To improve working efficiency, cooperative optimization frameworks
must be able to allocate computing resources reasonably according to different calculation
tasks. With the advent of the Internet of Things and 5G communications, centralized
mobile cloud computing has given way to Mobile Edge Computing (MEC) in recent years.
The primary feature of MEC is to push mobile computing, network control, and storage to
network edges, thereby enabling computation-intensive and latency-critical applications
on resource-limited mobile devices [109]. Therefore, the analysis and study of cooperative
optimization under the Mobile Edge Computing architecture represent another important
research direction.

6.3. Assessing the Real-World Impact of EMS and Eco-Driving Strategies

Ultimately, experimental validation of any proposed controllers is essential for evalu-
ating its efficacy in real-life scenarios. While simulation tests are the primary validation
tool in most reviewed works, they may not provide a precise approach that can be imple-
mented and improved upon in a real-life environment. Although simulation tests satisfy
the essential requirement of initial evaluation, several testing-related elements, including
communication devices (sensors, V2V/V2I equipment), trajectory planning algorithms,
and the EMS for determining the optimal power split for HEVs/PHEVs, pose a challenge
to evaluating the real performance of proposed methods. To address this challenge, some
researchers have developed HIL testing for relatively simple traffic conditions [110–112].
Therefore, there is a need to systematically investigate efficient approaches (such as those
that are low-cost and easy to implement) to validate co-optimization performance.

7. Conclusions

This paper attempted to present an in-depth analysis of the cooperative optimization
framework of EMS and eco-driving strategies for HEV/PHEVs, thus emphasizing the need
for an integrated approach to promote energy efficiency and environmental sustainability.
By clarifying the architectural differences between different hybrid types of HEV/PHEVs,
we lay the groundwork for understanding the energy management strategies unique to
each vehicle type. Our review of eco-driving strategies for connected vehicles further places
these approaches in a broader traffic context. We have identified intersection scenarios as
crucial moments for implementing co-optimization strategies and for categorizing them
into single-vehicle and double/multi-vehicle cases. By examining the diverse methodolo-
gies in the literature, we highlight the strengths and limitations of each approach, thus
fostering a deeper understanding of their practical implications. This comprehensive re-
view underscores the potential for advancements in cooperative optimization techniques
to facilitate more sustainable and efficient transportation systems. As the field continues
to evolve, the need for novel strategies and interdisciplinary research will be critical in
addressing future challenges and realizing the full potential of HEV/PHEVs in the global
push toward a greener future.
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