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Featured Application: The developed topology optimization approach may give a potential de-
sign idea for body shape drag reduction of micro underwater vehicles and other underwater
equipment worked in low speed.

Abstract: This paper presents a variable density topology optimization method to numerically
investigate the optimal drag-reduction shape of objects in the two-dimensional and three-dimensional
flows with steady incompressible external flow conditions, taking into account material volume
constraints. By introducing the porous media model, the artificial Darcy friction is added to the
Navier-Stokes equation to characterize the influence of materials on the fluid. Material density is
applied to implement material interpolation. By transforming the boundary integral form of viscous
dissipative expression of drag into the volume integral of artificial Darcy friction and convection term,
we solve the problem of drag expression on the implicit interface corresponding to the structure. The
continuous adjoint method is used to analyze gradient information for iteratively solving topology
optimization problems. We obtain the relevant topology optimization structures of the minimum
drag shapes, investigate the effect of the low Reynolds number on the drag force corresponding to two
objective functions and discuss the mechanism of drag reduction by a hydrodynamic body shape.

Keywords: variable density method; topology optimization; drag reduction; porous medium model;
adjoint analysis

1. Introduction

Drag reduction has long been noticed and studied as an important way to achieve
long voyage goals and energy-saving requirements in marine strategies [1]. Especially for
micro underwater vehicles with small size and less power sources, it is more important to
reduce energy consumption. There are active methods for drag reduction, which require
additional energy consumption, such as reverse jet [2] and cavitation [3], and passive
methods such as groove structures [4] and hydrophobic surfaces [5]. At the beginning of
the above optimization methods, the optimal design of a hydrodynamic body shape is a
rather important antecedent in the drag-reduction step of underwater vehicles, and a good
streamlined body shape contributes a large percentage to the drag reduction.

Current research on underwater body shape for drag reduction mainly focuses on the
parametric optimization using simplified models or constructing alternative models [6–12].
The vast majority of them are shape optimization of existing models, which are empirical,
intuitive and not optimal results in a certain range of operating conditions. In order to
obtain the optimal flexible choice for different design objectives in different flow field
conditions, we introduce the variable density method to realize the topology optimization
of the body shape.
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Topology optimization is a powerful method for the structural inverse design, which
generates structures that meet the optimization objectives directly in the design domain
through a holistic mathematical approach [13]. Compared with the shape optimization and
the dimensional optimization, topology optimization has a greater design freedom and
requires low priori for defining the initial structure. In addition, topology optimization
can also ensure the manufacturability of the generated structures by using additional
constraints [14,15]. Its concept originates in the field of solid mechanics and first appeared
in the design of truss structures [16]. Since Bendsøe and Kikuchi [17] pioneered the ho-
mogenization method to describe structural topology in terms of material distribution in
1988, various topology optimization methods, such as the asymptotic structure optimiza-
tion method [18], the variable density methods [19] and the level set method [20], have
been widely used in multiple research fields, such as acoustics, optics, electronics, heat
conduction, fluid flow and combined applications of multiphysics disciplines [21–26].

The problem of the optimal body shape can be traced back to Pironeau’s research [27]
on the minimum drag in Stokes flow. Later on, some problems on drag and lift were
studied [28–32]. Reference [29] studies the drag and lift of the 2D time-dependent flow
around a cylinder. As the fluid stream passes the topmost part of the cylinder, it tends to
separate from the top surface and peel off in a clockwise motion as it approaches the rear
end of the cylinder, ending up as a shed vortex which can be quantified [33] and represents
a dangerous structural problem [34]. In relevant fluid dynamics problems, uncertainty
quantification is often used to introduce the uncertainty into a mathematical and physical
model to make it more realistic [35,36]. In the topology optimization of fluid, Borrvall
and Peterson [37] develop a porous media model for the Stokes flow, which was soon
extended to the Navier-Stokes flow [38,39]. In this model, porous media is filled in the
two-dimensional(2D) or three-dimensional(3D) design domain, and the artificial Darcy
friction is added to the Stokes equation and the Navier-Stokes equation to characterize
the effect of the material on the fluid. [40] gives a detailed introduction to density-based
topology optimization of fluid flow problems with implementation in MATLAB. Compared
with [38,39], we extend topology optimization to 3D external flow problems. In this paper,
porous media is filled in a steady incompressible fluid, and material density is applied
for implementing material interpolation. Meanwhile, the finite element method is used
to solve the governing equations; the adjoint sensitivity is analyzed by the continuous
adjoint method to update the design variable and iteratively evolve the fluid structure. The
objective function takes the volume integral form of the drag expression to solve external
flow problems. The variable density topology optimization model of Navier-Stokes flow is
established to study the 2D and 3D body shape for drag reduction.

The rest of the article is as follows. The second section presents the overall description
of the topology optimization problem using the variable density method for the steady
incompressible flows. The third section covers specific operational details of the numer-
ical solution. The fourth section presents specific numerical examples in two and three
dimensions. The fifth section provides the relevant conclusions.

2. Methodology

In this section, we use the material distribution method to construct the topology
optimization model for steady incompressible fluids.

2.1. Governing Equations

We seek the optimum body shapes in the flow. To achieve that, we first introduce
γ ∈ {0, 1} as the design variable, which is a binary distribution defined in the design domain.
Respectively, 0 and 1 represent the solid phase and liquid phase, corresponding to the
presence or absence of material at an arbitrary point within the design domain. In this
problem, the distribution of the solid material is the optimal body structure we expect to
obtain within the flow field, so the essence of the topology optimization is an optimization
problem with 0–1 discrete variables. In order to adopt an optimization algorithm based on



Appl. Sci. 2023, 13, 5461 3 of 23

continuous variables and avoid the difficulties of solving binary optimization problems, we
can relax γ to [0, 1] to achieve continuous variation. Figure 1 is a schematic representation
of the fluid topology optimization problem. The shape optimization problem is defined in
a bounded domain Ω. Ω is the fluid domain and ΩS is the design domain; both of them
are separated by the boundary ΓS.
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The above model in a steady incompressible laminar flow (ignoring gravity effect)
can be described by the stationary incompressible Navier-Stokes equation with boundary
conditions as: 

ρu · ∇u +∇ ·
[
−µ(∇u +∇Tu) + pI

]
= f in Ω

−∇ · u = 0 in Ω

u = u0 on ∂Ωin[
−µ(∇u +∇Tu) + pI

]
· n = 0 on ∂Ωout

u = 0 on Γs

u · n = 0 on Γ

(1)

where ρ is the fluid density, µ is the viscosity, I is the unit tensor, f is the body force vector
(source term), and n is the unit outward normal vector on the boundary of flow domain.
The fluid velocity vector u and pressure p, which characterize the fundamental motion of
the particles in the flow field, are the only solutions to the system (1).

In order to solve the Navier-Stokes equation, boundary conditions are necessary to
set in Equation (1), where the normal stress at the outlet boundary ∂Ωout is zero; initial
velocity at the inlet boundary ∂Ωin is a constant u0; the velocity at the fluid-solid interface
Γs is zero; and Γ = ∂Ω\

(
∂Ωin ∪ ∂Ωout

)
denotes the free-slip boundaries.

To facilitate the calculation, we introduce the reference length L and the reference
velocity U to make all variables in a dimensionless form as:

u =
u
U

, p =
pL
µU

, f =
fL2

µU
, ∇ = L∇ Re ≡ ρLU

µ
(2)

where Re is the Reynolds number defined as the ratio of the inertial force to the viscous
force. The dimensionless momentum equation is as follows:

Reu · ∇u +∇ ·
[
−(∇u +∇Tu) + pI

]
= f in Ω (3)

For using adjoint analysis later, we give a variational description of Navier-Stokes
equations as follows:
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Find

 u ∈ L2(Ω) with
{

u = u0 on ∂Ωin

u · n = 0 on Γ
p ∈ L2(Ω) with p = p0 on ∂Ωout∫

Ω Re(u · ∇u) · ~
u + (∇u +∇Tu) : (∇~

u +∇T ~
u)− p∇ · ~

u + u · ∇ p̃− f · ~
u dΩ = 0

for ∀~
u ∈ H(Ω) and p̃ ∈ H(Ω)

(4)

whereH(Ω) represents the first order Hilbert spaces defined in Ω, and L2(Ω) represents
the second order Lebesgue spaces defined in Ω.

2.2. Material Interpolation

The governing equations for nonhomogeneous materials can be obtained by introduc-
ing a source term to the Navier-Stokes equation. The effect of the material distribution
on the fluid motion is modeled with the penalty parameter [37]. Here, we use a porous
medium model and introduce a dimensionless artificial Darcy friction force in the momen-
tum equation to act as a source term, which is assumed to be proportional to the velocity
defined as:

f = −αu in Ωs (5)

where α is the material impermeability which represents the ability to transport liquid. It
can be expressed as:

α =

{
+∞ for γp = 0
0 for γp = 1

(6)

where γp is the material density obtained by successively implementing filtering and
thresholding projection operations on the design variable γ taking consecutive values in
[0, 1]. For avoiding problems such as gray scale, the design variable is regularized by
Helmholtz filters in variable density topology optimization problems [41] as follows:

∇ · (−r2
f∇γ f ) + γ f = γ in Ωs

r2
f∇γ f · n = 0 on Γs

(7)

where γ f is the filtered design variable and r f is the filter radius. The variational formula-
tion of the PDE filter defined in Ωs can be derived as:

Find γ f ∈ H(Ω) f or γ ∈ L2(Ω)∫
Ω r2

f∇γ f · ∇γ̃ f + γ f γ̃ f − γγ̃ f dΩ = 0

for ∀γ̃ f ∈ H(Ω)

(8)

where γ̃ f is the test function of γ f . Filtering produces a significant gray scale, which can be
reduced by imposing a smooth step function called projection in topology optimization.
The threshold projection of the filtered design variable based on the hyperbolic tangent
function is [42]:

γp =
tanh(βξ) + tanh

(
β
(

γ f − ξ
))

tanh(βξ) + tanh(β(1− ξ))
(9)

where β and ξ are the parameters of projection slope and projection point, respectively [43].
In order to distinguish the solid phase from the liquid phase, the material interpolation of
impermeability can be implemented as:

α = αmin + (αmax − αmin)q
1− γp

q + γp
(10)

where q is the parameter for adjusting projection convexity and αmax and αmin are the
impermeability of the solid and fluid phases, respectively. In theory, αmax is the infinite
value while αmin is the infinitesimal value or zero, which is to ensure the stability of the
numerical implementation and approximate the solid phase with enough accuracy [44].
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2.3. Topology Optimization Problem

For the optimal drag reduction problem of body shape in the design domain, we have
introduced the Naver-Stokes equation and the porous media model, and implement the
material interpolation by the material density. Furthermore, to ensure the uniqueness of
the solution, we add material volume and fixed-point constraints. Thus, the fluid topology
optimization problem is described as:

Find γ : Ωs → [0, 1] to minimize J
J0

with

J =
∫

Ω A(u,∇u, p; γp)dΩ +
∫

∂Ω B(u,∇u, p; γp)dΓ

constrained by :




Reu · ∇u +∇ ·

[
−(∇u +∇Tu) + pI

]
= f

−∇ · u = 0
u · n = 0

 in Ω

α = αmin + (αmax − αmin)q
1−γp
q+γp{

∇ · (−r2
f∇γ f ) + γ f = γ in Ωs

r2
f∇γ f · n = 0 on Γs

γp =
tanh(βξ)+tanh(β(γ f−ξ))

tanh(βξ)+tanh(β(1−ξ))

|v− v0| ≤ 10−5 with v = 1
|Ω|
∫

Ω γpdΩ

(11)

where J represents the design objective and J0 represents its value of the first iterative
solution. v is the area fraction which represents the proportion of fluid in the design
domain and v0 ∈ (0, 1) is its set value; |Ω| =

∫
Ω 1 dΩ is the volume of Ωs.

2.4. Adjoint Analysis

Previously, we have mentioned the control equations describing the physical field dis-
tribution and the constraint equations on the variables. To avoid the use of direct solutions,
this topology optimization problem, which is a nonlinear set of partial differential equa-
tions, can be solved by using an iterative process based on gradient information determined
by the adjoint sensitivity. The sensitivity of J is obtained by adjoint analysis [45] below:

δJ = −
∫

Ω
γ f a δγdΩ (12)

where δ is the operator for the first order variational of a variable; δγ ∈ L2(Ω) is the first
order variational of γ; and γ f a is the adjoint variable of the filtered design variable γ f . The
adjoint form of Naiver-Stokes equations is as:∫

Ω
∂A
∂u ·

~
ua +

∂A
∂∇u : ∇~

ua +
∂A
∂p p̃a − Re(−u · ∇ua + ua · ∇Tu) · ~

ua+

(∇ua +∇Tua) : (∇~
ua +∇T ~

ua) + ua · ∇ p̃a − pa∇ ·
~
ua + αua ·

~
ua dΩ = 0

(13)

where ua ∈ H(Ω) and pa ∈ L2(Ω) are the adjoint variables of u and p, respectively; and
~
ua ∈ H(Ω) and p̃a ∈ L2(Ω) are the test functions of ua and pa, respectively. The adjoint
form of the filter is: ∫

Ω
r2

f∇γ f a · ∇γ̃ f a + γ f aγ̃ f a dΩ = 0 (14)

where γ̃ f a ∈ H(Ω) is the test function of γ f a ∈ H(Ω). The adjoint sensitivity of v is
obtained as:
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δv = − 1
|v|

∫
Ω

γ f aδγ dΩ (15)

where γ f a can be derived from the following variational formulation for the adjoint equation
of the PDE filter:∫

Ω

∂γp

∂γ f
γ̃ f a + r2

f∇γ f a · ∇γ̃ f a + γ f aγ̃ f adΩ = 0, f or ∀γ̃ f a ∈ H(Ω) (16)

2.5. Solution Procedures

The topology optimization problem for steady incompressible fluids has been outlined.
After giving the initial conditions and the expression of the objective function for the specific
drag force problem, it can be solved according to the following steps.

1. Assume an initial guess of the distribution of the design variable γ in ΩS as the initial
structure determined by the constraint of fixed point.

2. Solve the partial differential equations constraint with the current design variable.
3. Solve the adjoint equations based on the solution of the partial differential equations

constraint.
4. Calculate the adjoint derivatives of the optimized objective function and update

the distribution of γ by the method of moving asymptotes (MMA) according to
the sensitivity.

5. Check the convergence criterion. If it is satisfied, the procedure is terminated; if not,
the procedure will return to 2.

All the above procedures, including sensitivity analysis based on adjoint method and
update iteration based on the method of moving asymptotic, were implemented through
the secondary development of MATLAB code. Linear solutions were implemented on
the finite element solver PARDISO based on COMSOL Multiphysics, while the Newton
iteration method was used for nonlinear solutions.

3. Numerical Implementation

We have presented the problem of topology optimization in Equation (11). The
pseudocode in Algorithm 1 shows the iterative solving process and contains a loop for
the solution. The variational formulations of the partial differential equations and adjoint
equations [45,46] are solved by finite element method [47]. The distribution of γ is updated
by MMA [48].

The values of each parameter in topology optimization are set at the beginning of
the procedure. In the process of solving, r f is kept as 0.1; β with the initial value of 1
is doubled after every 30 iterations [49]. The maximum number of iterations is 315 and
the corresponding value of β is 210. The greater the value of β is, the clearer the material
interface is.

In the iterative solving loop, ni and nmax are the loop index and its maximal value,
respectively. Jni is the specific value of J in the ni-th iteration, and mod is an operator
for taking the remainder. The loop will stop at the maximal number of iterations. It also
will terminate when both the average variation of J for five consecutive iterations and the
residual of v are less than the tolerance of 10−5.
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Algorithm 1: Iterative solution of Equation (11). Pseudocode used to solve the topology
optimization problem for the Navier-Stokes flows.

Set u0 v0 Re h η,

Set


γ← v0
ni ← 1
nmax ← 315
q← 1


αmin ← 0
αmax ← 104ρ

ξ ← 0.5
β← 1

loop
Solve Equation (8) to derive γ f by filtering γ;
Project γ f to derive γp and compute v;
Solve u and p from Equation (4), and evaluate J/J0;
Solve ua, pa and γ f a from Equations (13) and (14);
Evaluate δJ from Equation (12);
Solve γ f a from Equation (16);
Evaluate δv from Equation (15);
Update γ based on δJ and δv;

if mod (ni, 30) == 0
β← 2β

end if

if (ni == nmax) or


β= 210

1/5∑4
m=0|Jni − Jni−m|/J0 ≤ 10−5

|v− v0| ≤ 10−5

break;
end if

ni ← ni + 1
end loop

4. Results and Discussion

In this section, we give numerical examples of 2D and 3D body shape topology
optimization for drag reduction and the related results are obtained and discussed.

4.1. Two-Dimensional Examples

In the 2D drag minimization problem, the model is set up as shown in Figure 2, which
is the visualization of the schematic Figure 1. The length and width of the flow domain
Ω are 10L and 7L, respectively, and the length and width of the design domain Ωs are 2L
and L, respectively, with L = 1 (dimensionless). The fixed-point C is used to constrain the
generation of solid material, and the structure generated in the first step of optimization
is assumed to be the initial body shape. In order to solve the Navier-Stokes equation, the
initial values of the boundaries are also needed as definite solution conditions. The far-field
condition at the inlet ∂Ωin and the boundary Γ is a uniform velocity in the X-direction
of u0 = U = 1 (dimensionless), and the constraint at the outlet ∂Ωout is a normal stress
p = 0 (dimensionless).

We consider the external flow with uniform velocity flowing around the isolated body.
In this case, the fluidic drag is usually expressed as the boundary integral of the stress
vector on the body surface, that is, the integral of the compressive stress and the viscous
stress. However, because the shape of the topology optimization structure is unknown
in advance, it is not applicable to this problem. In 2012, Kondoh put forward various
objective function formulas for drag minimization and lift maximization, including the
volume integral and area integral [50], through approximate transformation. In addition,
the volume integration formula provides a better estimation of lift and drag coefficients
than the conventional line integration along the streamline body; The volume integral
formula is not sensitive to small changes in the mesh generated around the object [51].
Therefore, the objective function we use is in the form of the volume integral.
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In the porous media model, the effect of solid material on the fluid is expressed as an
artificial Darcy friction in the momentum equation, so the force F on the solid exerted by
the fluid should be expressed as the volume integral of—f due to the action-reaction law.
The expression of F can be defined as:

F = −
∫

Ω
f dΩ =

∫
Ω

αu dΩ (17)

Thus, fluid dynamic drag D can be expressed as the X-axis component of Equation (17) as:

J1 = D =
∫

Ω
αu dΩ (18)

where u is the X-axis component of velocity vector u and J1 is the objective function 1.
Meanwhile, the existing drag formula through surface-stress integration is transformed by
the Gaussian formula to the volume integral form as:∫

Γ

[
(∇u +∇uT)− pI

]
n dΓ =

∫
Ω∇·

[
(∇u +∇uT)− pI

]
dΩ

=
∫

Ω (Reu · ∇u− f)dΩ =
∫

Ω (Reu · ∇u + αu)dΩ
(19)

and the convection term is retained. Therefore, objective function 2 can be described as:

J2 =
∫

Ω
(Reu · ∇u + αu)e dΩ (20)

where e is the unit vector in X-direction. Therefore, J1 and J2 are just different expressions
of drag, with difference is with or without a convective term. J2 is to characterize drag by
adding the convective term on the basis of J1.

4.1.1. Effect of Area Fractions for Design

In 2D problems of drag reduction, area fraction is an important constraint for structure
solving, which represents the proportion of fluid structure in the design domain. Figure 3
shows that with the decrease of area fraction, the proportion of solid structure increases.
Obviously, with the decrease of the proportion of solid materials, the resulting structures
tend to be flat and slender. As a result, there is a problem with obtaining an incomplete
structure within the design domain. Therefore, we can basically obtain the complete
structure in the above 2D model with the area fraction of 0.8, when the Reynolds numbers
are within 0–500. Of course, it is recommended to take a larger value.



Appl. Sci. 2023, 13, 5461 9 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 25 
 

integral formula is not sensitive to small changes in the mesh generated around the object 

[51]. Therefore, the objective function we use is in the form of the volume integral. 

In the porous media model, the effect of solid material on the fluid is expressed as an 

artificial Darcy friction in the momentum equation, so the force F on the solid exerted by 

the fluid should be expressed as the volume integral of—f due to the action-reaction law. 

The expression of F can be defined as: 

 =  d
 

= −   F f ud α  (17) 

Thus, fluid dynamic drag D can be expressed as the X-axis component of Equation 

(17) as: 


= = 1

u dD αJ  (18) 

where u is the X-axis component of velocity vector u and 
1

J  is the objective function 1. 

Meanwhile, the existing drag formula through surface-stress integration is transformed 

by the Gaussian formula to the volume integral form as: 

  d d

d d

 

 

    + −  =   + −    

=  −  =  + 

 

 

u u I n u u I

u u f u u u

( ) ( )

(Re ) (Re )

T Tp p
 (19) 

and the convection term is retained. Therefore, objective function 2 can be described as: 

2 (Re )  d


=  +  u u u eJ   (20) 

where e is the unit vector in X-direction. Therefore, 
1

J and 
2

J are just different expres-

sions of drag, with difference is with or without a convective term. 
2

J is to characterize 

drag by adding the convective term on the basis of 
1

J . 

4.1.1. Effect of Area Fractions for Design 

In 2D problems of drag reduction, area fraction is an important constraint for struc-

ture solving, which represents the proportion of fluid structure in the design domain. Fig-

ure 3 shows that with the decrease of area fraction, the proportion of solid structure in-

creases. Obviously, with the decrease of the proportion of solid materials, the resulting 

structures tend to be flat and slender. As a result, there is a problem with obtaining an 

incomplete structure within the design domain. Therefore, we can basically obtain the 

complete structure in the above 2D model with the area fraction of 0.8, when the Reynolds 

numbers are within 0–500. Of course, it is recommended to take a larger value. 

 

Figure 3. Structures of the different area fractions for Reynolds numbers (Re) of 200 and 250. 

At the same time, drag values increase with the proportion of solid materials and the 

Reynolds number increases from Figure 4. 

Figure 3. Structures of the different area fractions for Reynolds numbers (Re) of 200 and 250.

At the same time, drag values increase with the proportion of solid materials and the
Reynolds number increases from Figure 4.
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4.1.2. The Verification of Iterative Convergence

In addition to the value of area fraction, we also investigate the convergence of objec-
tive value and area constraint during the numerical computation to ensure the robustness
and uniqueness of the solution. The accuracy of the area fraction is set to 10−5 and conver-
gence performances of topology optimization for 2D drag reduction problem in laminar
flow conditions are good. Figure 5 shows the convergence history and evolution curve
of the iterative solution of the 2D model obtained by numerical computation with the
Reynolds number of 200, the mesh density of 30, and the area fraction of 0.8. It can be
observed that the initial topology is generated from the set central fixed point, and as the
number of optimization iterations grows, the density projection gradually converges to 0
and 1 and the topology is gradually clear and complete. In fact, after the 180th iteration
equivalent to β ≥ 26, the objective value (0.3014) is basically unchanged and does not differ
much from the result (0.2997) of the 315th iteration, but the density projection of the latter
is closer to the 0–1 binary distribution and the results are clearer. Furthermore, the results
show a convergence history with overall monotonicity and basically no local jumps caused
by the projection operation. Therefore, the robustness of the numerical iterative solution
can be confirmed and the structure is stable in the current setup conditions.
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4.1.3. The Verification of Mesh Irrelevance

The calculation results rely on the custom filter radius and mesh density, and their
relationship is defined as r f = hη, where h is the mesh size as the reciprocal of the mesh
density, and η is the length ratio parameter of the filter radius that we introduce. To
maintain r f unchanged, η changes with the variation of h. After numerical verification, η of
2–3 is appropriate for this problem. In order to verify the correlation between the obtained
results and the mesh density, the mesh densities of 10, 30 and 60 are taken to calculate the
drag values corresponding to different Reynolds numbers with the same other influencing
factors. Table 1 shows the drag values of the 2D problem for each Reynolds number at
different mesh densities when the area fraction is 0.8. The unit of drag is N. Although the
mesh density has an effect on the flatness of the edges of the generated shape, it can be
known that the effect error on the final drag value is less than 1%, which verifies that the
result has very little dependence on mesh density within the appropriate range.

Table 1. Table of drag values for different mesh densities corresponding to various Reynolds numbers.

Re = 300 Mesh Size Re = 0 Re = 1 Re = 20 Re = 50 Re = 100 Re = 150 Re = 200 Re = 250

h = 1/10 17.5045 17.5594 26.5496 36.7503 48.5749 57.7612 65.4489 72.4931 78.7289
h = 1/30 17.4802 17.4931 26.5447 36.8043 48.5007 57.6024 65.3731 72.2651 78.6652
h = 1/60 17.4328 17.4908 26.5356 36.7716 48.5069 57.5899 65.3632 72.2081 78.6638

4.1.4. Effect of Reynolds Numbers on Body Shapes and Drag Values

For 2D objects placed in uniform flow with velocity u0 = 1 in X-direction, we inves-
tigate the profiles of objects with minimum drag. We employ the objective function J1
and J2, and apply the constraint that the area fraction of an object is a lower bound on
the fluid structure in a 2D model. We also apply the constraint that the initial structure of
the object is fixed at the origin so that the body location is anchored during the process
of optimization.

The results of two different objective functions for drag minimization at various
Reynolds numbers are presented in Figures 6 and 7. The overall optimized shape of the 2D
model is nearly centered in the design domain with a shuttle shape. When the Reynolds
number tends to zero, we express it as Re = 0 for convenience. Therefore, Re = 0 is the ideal
state, which is an approximate simulation that expresses the ignorance of inertial forces.
For the results with Re close to 1, they have basically the same shape profile. When the



Appl. Sci. 2023, 13, 5461 11 of 23

Re is less than 200, the structure is nearly symmetrical up and down and the two sides
of the mid-section are smooth. As the Reynolds number continues to increase, the profile
grows laterally, the body shape gradually flattens, and the cone angles at both ends become
smaller, while the lower edge changes more than the upper edge and the trailing section
are relatively slender. The generated structures become so-called streamlined and have
the tendency to go beyond the design domain. The above results are approximate to those
obtained by Garcke using the phase field method with the different objective function [52].
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Figure 6. 2D optimal body shapes for drag reduction corresponding to two different objective
functions at various Reynolds numbers. In the above illustrations from (a–i), the upper graph
corresponds to J1 and the lower one corresponds to J2. The area fraction v0 is set to 0.9 in both cases.
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Figure 7. Comparison of the drag values for two objective functions at different Reynolds numbers
in 2D problem. When the Reynolds number is less than 25, the red line partly overlaps and covers
the black line.

Comparing the optimization results corresponding to objective functions 1 and 2 with
the same area fraction of 0.9 in terms of the shape shown in Figure 6, the latter have a
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smaller aspect ratio and the structures are all centered in the design domain; in terms of
drag values shown from Figure 7, at Reynolds numbers less than 25, the drag values of
both are approximate, and when greater than 50, the objective function with convection
term corresponds to a smaller value. It means that as the Reynolds number increases, the
effect of convection term on the drag values is also greater and should not be ignored.

Therefore, the results of J1 and J2 are not same. The reason for the difference is also
caused by adding the convection term. Compared with J1, J2 corresponds to a result that is
wider in shape and smaller in drag value. It is not that the smaller drag is necessarily better,
but rather that the measurement criteria are different under different objective functions.

This paper uses the fixed mesh achieved by mapping and sweeping operations. The
number of the mesh in the computational domain of the 2D problem is 63,000. We give
an example of the mesh representation of the result of Figure 6i in Figure 8. At the
same time, the difference of shapes corresponding to different objective functions can be
clearly seen from the mesh representation. Figure 8a,b correspond to objective functions J1
and J2, respectively.
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representation and local enlarged view of the structures corresponding to J1 and J2 when the Reynolds
number is 500.

4.2. Three-Dimensional Examples

We also study the 3D topology optimization problem of an axisymmetric object
with minimum drag in a uniform flow, which takes longer to solve compared with the
2D problem.

Figure 9 shows the modeling and definitive solution conditions of the 3D problem.
The pink area is the design domain, and the gray area is the flow domain. The purple one
is the structure that we solved. The boundary and initial value conditions of 3D model
are similar to the setting of the 2D problem. The length, width, and height of flow domain
and design domain are 5L, 2L, 2L, and 3L, 1L, 1L, respectively. The pressure on the outlet
surface is zero, and the velocity of the remaining surfaces is U = 1 in the X-direction. Except
where noted, the resulting 3D topology optimizations are the same modeling and the same
meshing. Of course, other factors such as boundary conditions and initial conditions are
the same. Therefore, the settings of each topology structure are not explained one by one.
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Figure 9. Schematic of the 3D modelling for drag reduction problem.

The optimization body shapes at various Reynolds numbers are governed by objective
function J1 shown in Figure 10. The 3D topology optimization is a standard ellipsoid with
Re = 0. When Reynolds number tends to zero, it expresses a state that the inertia force
is infinitesimal and can be ignored and there is hardly any memory of the flow state of
the previous moment. We express it as Re = 0 for convenience. The structures are similar
for Re of 1 and 25, whose shapes are pointed cone-shaped at the head, with a gradually
narrowing column from the middle section to the tail section, and a concave area at the
tail. As the Reynolds number continues to increase from 50 to 500, the 3D body shapes
present a change approximated with the 2D results, with the body shape growing laterally
and narrowing, and the head and the tail parts becoming pointed. The overall shape
appears to be a spindle-shaped column with the wide middle and narrow ends. This kind
of rotating body with a nearly circular cross-section conforms to a streamlined body shape.
The standard rotation body obtained is related to the implemented condition with velocity
only in the X-direction.
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The convergence history on the result in Figure 10a is given in Figure 11 including the
evolution of the material density. Similarly, the convergence history for the result in the
Figure 10f is given in Figure 12.
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Figure 12. Convergence performance of topology optimization for drag reduction on the body
structure in Figure 10f.

It is worth mentioning that the surface smoothness of the body shape is correlated
with the mesh density. The surface of the structure generated by the finite element method
presents a sawtooth or stepped shape, but with the gradual increase of the mesh density, the
surface of the structure will become smooth. As the number of iterations increases, there
will also be more details such as the undulations and textures presented on the structural
surface. Of course, these are the characteristics of the structure itself, independent of
smoothness or roughness. When the mesh density is sufficiently fine, we can clearly see
the changes of the entire surface. As shown in Table 1, the mesh density in the appropriate
range does not affect the drag results. At the same time, the higher the mesh density, the
longer the calculation time. In order to give consideration to the accuracy of results and
computational efficiency, the mesh density of the 3D model is selected as 10. The number
of the mesh in the computational domain of the 3D problem is 36,000. Therefore, the results
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we have obtained so far do not affect the exploration of the relevant regularity. We give an
example of the mesh representation of the result of Figure 10a in Figure 13.
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regarded as a standard rotating body because the cross-section of the structure contains 
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Figure 13. The mesh representation of the result in Figure 10a. (a–c) show the mesh representation of
the structures corresponding to J1 when Reynolds number is 0 from different perspectives.

In addition, we also investigated the 3D body shape governed by J2, whose integrand
contains a convection term. Because the body shape corresponding to the larger Reynolds
number has the solid material close to the design domain during the iterative evolution
process, we set the area fraction to 0.98 to ensure that the complete body shape is obtained.
Shown in Figure 14, the overall structure is a similar cylinder with a diameter change in
the cross-section from head to tail. For this group of structures, the front section is conical,
and the mid-section cylinder gradually thickens until the tail rapidly narrows, with the
Reynolds numbers from 0 to 500. When Reynolds number is below 300, the front sections
are similar, and up to 300 the head regions become blunt. In fact, the structure cannot be
regarded as a standard rotating body because the cross-section of the structure contains
ellipse and circle shapes with different Reynolds numbers, as shown in Figure 15.
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Figure 15. Rear view of some structures in Figure 14.

It is not difficult to see that there is a big difference in the structure of objective
function J1 and J2 in three-dimensional problems. Compared with the body shapes in
Figure 10, this group of structures seems to be covered with a thick shell in the middle
of the spindle cylinder, which is particularly evident from the structure corresponding to
Re = 1 in Figure 14b. We guess that the effect of convection term may widen the middle of
the structure in this problem. In order to verify this idea and make the result more obvious,
we purposely remove the Z-axis component of the convection term in J2 and obtain the
following results in Figure 16. It is obvious from Figure 16b,c that with Y-axis component
of the convection term, the Y-direction of body is wider. Without Z-axis component of the
convection term, there is no material growth in the central main part in the Z- direction.
In addition, the convection effect enhances with the increase of the Reynolds number.
Therefore, when the Reynolds number is less than 200, the shape changes little, while when
it is greater than 300, the effect is obvious.
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Figure 16. New body shapes correspond to some structures in Figure 14 after removing the Z-axis
component of the convection term.

Compared with the structures of Figure 10, the structures in Figure 14 have more
obvious oscillating in the convergence history with the appearance of sharp corners. The
convergence performance corresponding to Reynolds numbers 0 and 200 is shown in
Figures 17 and 18, respectively.
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Figure 18. Convergence performance of topology optimization for drag reduction on the body
structure in Figure 10f.

In addition, the mesh representation of the result in Figure 14a is shown in Figure 19.
We can intuitively see the characteristics of the structure surface from the mesh represen-
tation. Like the curvature variation of the surface, it is a property of the structure itself,
independent of the mesh density. However, the mesh density affects the smoothness or
roughness of the structure surface using the finite method. The higher the mesh density,
or the smaller the filtering radius, the smoother the jagged and stepped shapes in the
structure surface. We use the fixed mesh achieved by mapping and sweeping operations.
The number of the mesh in the computational domain of the 3D problem is 63,000.
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Figure 19. The mesh representation of the result in Figure 14a. (a–c) show the mesh representation of
the structures corresponding to J2 when Reynolds number is 0 from different perspectives.

Next, we compare the change of drag value with Reynolds number between the two
objective functions J1 and J2. Since the results obtained from the two objective functions
are using different area fractions, in order to compare at the same conditions and take into
account the rapidity of calculation, we reduce the design domain and flow domain of the
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3D model by 5 times; set the area fraction to 0.9; and obtain the change of the drag values
with the Reynolds number corresponding to the two objective functions, as shown in the
Figure 20.
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Figure 20. Comparison of the drag values for two objective functions at different Reynolds numbers
in 3D problem.

In the 2D problems, the drag values corresponding to the two objective functions
are positively correlated with the Reynolds number. Obviously, the law of variation of
drag with the Reynolds number corresponding to objective function 2 in 3D problem is
unexpected, but the law obtained after changing the size of the design domain and the area
fraction is consistent with this. The only difference between the two results is the existence
or not of a convection term in the objective function. Therefore, it can be inferred that with
the increase of Reynolds number, the drag reduction effect of convection term will increase
in the currently set model. As for the reason, although it has not been confirmed, we guess
it is because considering the convection term, the pressure difference near the structure
surface leads to the change of velocity, and finally affects the drag.

4.3. Field Characteristics

Here, we will discuss the effect of body shape on the drag reduction from the distribu-
tion of pressure and the change of flow field.

The pressure contour distribution on the surfaces of the 2D body shapes are shown in
Figure 21. At ultra-low Reynolds numbers such as Re = 1, the pressure distribution along
the structure is as follows: the maximum positive value appears near the tip of the head;
gradually the pressure value decreases toward the direction of the tail until a certain point,
then becomes negative increasing in the opposite direction; and the maximum negative
pressure appears in the tail. With the increase of the Reynolds number, the pressure on
the structure increases, the position of the maximum positive pressure contour changes
little, and the maximum negative pressure contour gradually extends from the tail forward.
In other words, the position of the point experiencing the shift from positive to negative
pressure value gradually moves toward the front of the structure with the increase of the
Reynolds number.
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Figure 21. Velocity field and pressure contours in the flow domain for 2D structures of objective
function J1. In the above illustrations from (a–d), the upper legend corresponds to fluid velocity and
the lower one corresponds to fluid pressure contours.

Regarding the change of pressure with the Reynolds number, it is more intuitive to
observe from the pressure iso-surface of the 3D body shapes, in Figure 22. At the same time,
it is observed that the pressure gradient on the 3D structural surface has the alternating
change process of the positive gradient and negative gradient along the direction of fluid
travel (X-direction). In addition, at each interval of the favorable or adverse pressure
gradient, the pressure gradient decreases follow the direction of the outer normal of the
wall. The largest and second largest positive pressure gradients occur in the flow field near
the head and tail of the structure, while the maximum value section of the negative pressure
gradient gradually moves from the tail cusp along the X-axis direction to the shoulder of
the structure as the Reynolds number increases from 0 to 500.
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Figure 22. Isobaric surfaces and isobaric gradient surfaces for X–axis direction in the flow domain
containing 3D structures of objective function J1.

However, there are some differences of pressure field distribution between objective
function 1 and 2. As shown in Figure 23, with the increase of the Reynolds number, the
pressure position corresponding to the maximum negative value changes little; at the
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same time, the alternating frequency of positive and negative pressure gradient along the
direction of fluid travel is not high.
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Figure 23. Isobaric surfaces and isobaric gradient surfaces for X–axis direction in the flow domain
containing 3D structures of objective function J2.

The boundary layer and its interaction with nearby pressure gradients play a major
role in influencing body surface flow. We can know that when the fluid just touches the
curve surface of the structure, the fluid velocity increases, and the fluid pressure decreases
accompanied by a favorable pressure gradient (negative); beyond a certain point, near the
shoulder at Re = 500, however, the force due to pressure differences changes sign from
being an accelerating force to being a retarding force. In response, the velocity begins to
decrease, and the pressure increases with an adverse pressure gradient (positive). Although
flow near the wall of the structure slows down approaching stopping, with frictional drag
approaching zero and the pressure drag still existing, there is no boundary layer separation,
which proves that the structures obtained by topology optimization methods are well
streamlined. The obvious evidence that no flow separation occurs is that the velocity
around the structure, although reduced, is positive from Figure 17. In fact, this can be seen
more intuitively in the velocity field of the flow field in Figure 23a,d.

Although we use the integral method to find drag through the momentum equation
without distinguishing frictional drag and pressure drag, it is necessary to distinguish the
two forms of drag in order to explore the mechanism of drag for different flow phenomena.
The magnitude of frictional drag and pressure drag depends on the geometry of the object
relative to the flow direction. When drag is dominated by frictional drag in the absence of
an angle of attack, we say the body is streamlined, and when it is dominated by pressure
drag, we say the body is bluff. When streamlining an object, in order to reduce the total
drag, it needs to be balanced in these two aspects. With the increase of the Reynolds number
and enhancement of the effect of convection term, the shape with the minimal total drag is
not necessarily the most streamlined shape.

5. Conclusions

This article has developed a topology optimization approach of variable density for
shape design in steady incompressible fluid. We also give the two expressions of the
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drag force on the implicit interface of the structure and compare them through numerical
examples. The presented topology optimization approach is used to study the optimal
shape of drag reduction at the low Reynolds numbers. We have obtained the topology
optimization structure with minimum drag as the objective function in 2D and 3D cases.
In general, the drag is positively correlated with Reynolds number and the proportion
of solid materials; in the 2D cases, the aspect ratio of the structure corresponding to the
objective function with convection term is smaller, and the drag value is also relatively
small; in the 3D cases, there is an unexpected law of variation of drag with the Reynolds
number due to the effect of convection term and we give some conjectures. In addition,
we analyze the distribution and the change of velocity, pressure, and pressure gradient
on the surface of the structures to explore the law of fluid motion, and thus obtain some
conclusions about the drag. At the same time, we prove that the 3D structures we obtained
are well streamlined.

The method we outline may give a potential design idea for body shape drag reduction
of micro underwater vehicles and other underwater equipment worked in low speed. In the
future, we will consider the drag reduction configurations in more conditions, including
the attack angle and lift constraints, and may also conduct research in a larger range
of Reynolds numbers. Meanwhile, we will process and fabricate the topological results
obtained so that the calculated values can be compared with the experimental ones.
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