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Abstract: Air pollution has been a global issue that solicits proposals for sustainable development
of social economics. Though the sources emitting pollutants are thoroughly investigated, the trans-
portation, dispersion, scattering, and diminishing of pollutants in the spatiotemporal domain are
underexplored, and the relationship between these activities and atmospheric and anthropogenic
conditions is hardly known. This paper proposes machine learning approaches for the spatiotempo-
ral analysis of air pollution episode associations. We deployed an internet of low-cost sensors for
acquiring the hourly time series data of PM2.5 concentrations in Puli, Taiwan. The region is resolved
into 10 × 10 grids, and each grid has an area size of 400 × 400 m2. We consider the monitored PM2.5

concentration at a grid as its gray intensity, such that a 10 × 10 PM2.5 image is obtained every hour
or a PM2.5 video is obtained for a time span. We developed shot boundary detection methods for
segmenting the time series into pollution episodes. Each episode corresponds to particular activities,
such as pollution concentration, transportation, scattering, and diminishing, in different spatiotem-
poral ways. By accumulating the concentrations within the episode, we generate a condensed but
effective representation for episode clustering. Three clustering approaches are proposed, ranging
from histogram-, edge-, and deep-learning-based. The experimental results manifest that the episodes
contained in the same cluster have homogeneous patterns but appear at different times in a year.
This means that some particular patterns of pollution activities appear many times in this region that
may have relations with local weather, terrain, and anthropogenic activities. Our clustering results
are helpful in future research for causal analysis of regional pollution.

Keywords: PM2.5; pollution episode; shot boundary detection; clustering

1. Introduction

The economic development of human society has improved our living convenience;
however, it has inevitably contributed devastating pollutants to our natural environment,
such as in the air, soils, and water. There is a global consensus to set goals and take actions
to prevent the environmental situation from worsening. In light of this, the United Nations
(UN) has set up 17 Sustainable Development Goals (SDGs) [1] in 2015 to urge all the nations
on the globe to take actions for reaching prosperous human well-being and performance
into the future. Environmental protection is the core notion because it coincides with many
of the SDGs, including good health and well-being (Goal 3), clean water and sanitation
(Goal 6), affordable and clean energy (Goal 7), decent work and economic growth (Goal 8),
sustainable cities and communities (Goal 11), responsible consumption and production
(Goal 12), and climate action (Goal 13). Air is the most primitive element for living, and we
inhale the air into our lungs every minute for respiration. It is significant that the World
Health Organization (WHO) reported that more than 3 million premature deaths are caused
by air pollutants every year [2].

Due to the extremely small volume size, the ambient PM2.5 aerosols (particulate matter
with an aerodynamic diameter ≤ 2.5 µm) could be inhaled into the human respiratory
system and cause diseases. PM2.5 aerosols could be generated in three ways: by natural
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phenomena, anthropogenic activities, and precursor emissions [3]. Natural phenomena
such as soiling, crustal elements, volcanic eruptions, and sea salt drifting, result in coarser
particles [4]. Anthropogenic activities ranging from vehicle exhaust, biomass burning,
coal, and gasoline combustion to petrochemical production and steel refineries generate
finer-sized particles. The last source is contributed by the photochemical transformation of
precursor emissions such as sulfur dioxide (SO2) and nitrogen oxides (NOx).

Most of the existing research on air pollution places its focus on source apportionment,
PM2.5 concentration prediction, and spatiotemporal analysis [5,6]. The source apportion-
ment research intends to identify the chemical compositions of the captured pollutants so
that the suspicious emitting site may be detected. The receptor model, source model, and
tracer model are the most prevalent apportionment methodologies [5]. The research for
PM2.5 concentration prediction is categorized into short-term (in hours or days), middle-
term (in months or seasons), and longer-term (in years). The most commonly applied
methodologies are mathematical regression, machine learning, and meta-evolution [7].
As compared to source apportionment and concentration prediction, the research for spa-
tiotemporal analysis is less contemplated. This is mainly because of the high computational
effort incurred by combining spatial and temporal data for pattern discovery. Most re-
searchers applied classic statistical approaches to describe the general properties of the
data, and they conducted regression separately on spatial and temporal axes to save com-
putational time [8,9]. Only a few studies [10,11] employed machine learning techniques to
identify spatiotemporal clusters of similar PM2.5 dispersion patterns, leaving a large room
for deeper exploitation.

This paper proposes an innovative spatiotemporal analysis framework for air pollution
episode association. Our methodology is unique in the sense that we develop the air
pollution spatiotemporal analysis from the perspective of video analysis. The crossover
between the two fields creates new and innovative techniques that bring many insights
unseen before. If we take a bird’s-eye view of the land from above and monitor the hourly
PM2.5 concentrations, the geography becomes an image map if we consider the quantity of
PM2.5 concentrations as the gray value of pixels. The air pollution time series then becomes
a video that can be analyzed using novel video processing techniques. We developed the
shot boundary detection algorithms to separate the air pollution time series into meaningful
shots (video clips). Each shot implicitly corresponds to an air pollution episode that may
contain patterns of pollution accumulation, transportation, and dispersion. To represent
the pollution episode efficiently and effectively, the gait energy image (GEI) scheme is
adopted to digest the shot characteristics into a single image. We then applied the clustering
algorithms to partition the GEIs produced from the air pollution time series into insightful
groups that reveal that the main pollution episodes are related to the local terrain, climate,
and anthropogenic activities. With the results, effective strategies for reducing air pollutants
can be managed.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
research on air-pollution spatiotemporal analysis and the video analysis techniques that are
relevant to our proposed methodology. Section 3 elucidates the proposed spatiotemporal
analysis framework and the developed algorithms. Section 4 presents the experimental
results and comparative performances. Finally, Section 5 concludes this work.

2. Literature Review
2.1. Air-Pollution Spatiotemporal Analysis

The classic approaches for air-pollution spatiotemporal analysis fall into four categories.
(1) Correlation and variance. The basic spatiotemporal relationship between PM2.5

concentrations monitored at different sites along a time span can be realized by calculating
the correlation coefficient (CC) and coefficient of variance (CV). Song et al. [12] profiled
the spatiotemporal distribution of air pollution characteristics in Jiangsu Province, China,
by investigating correlation and variance statistics such as the temporal and spatial air
quality index (AQI) variations, the temporal correlation between AQI and meteorology,
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and the correlation between major pollutants. Lung et al. [6] calculated CV among different
sites within a city. A higher CV indicates a greater fluctuation in PM2.5 concentrations
in a city. The distribution of CV among ten community locations was analyzed. It is
seen that more than one-fifth of the time in July and December, the CV exceeds 20%. The
majority of cases appear on weekends, mainly due to traffic, restaurants, and temples. It
conforms to the activities attended by the inbound tourists. The CC between microsites
and the nearest supersite was evaluated in [6] to validate the consistency of pollution
patterns at highly correlated sites. Yang et al. [13] investigated the CC between PM2.5
concentrations/variations and the urbanization level of the city. Their result manifests a
positive/negative correlation between urbanization and PM2.5 concentrations/variations.

(2) Spatiotemporal regression. Regression has been widely applied to find the rela-
tionship between the response variable and independent variables. Several studies have
attempted to find the regression expression between PM2.5 concentrations and multiple
independent variables (such as meteorological or socioeconomic data). To reduce the model
computations, Lung et al. [8] and Liu et al. [9] applied spatial regression to neighboring
monitoring sites and economic variables at a particular time period. Yang et al. [13] ap-
plied quadratic spatial regression to disclose the contribution to PM2.5 concentrations by
urbanization, industrialization, and green land area.

(3) Probabilistic approaches. To model the spatiotemporal variations of PM2.5 concen-
trations, both parametric and non-parametric probability distributions have been employed.
Jiang et al. [14] used a two-parameter gamma distribution to describe the probability den-
sity functions (PDFs) of the hourly surface PM2.5 concentrations in each city over seasonal
time frames. The two parameters are referred to as the shape parameter and the scale
parameter, whose optimal values are determined by fitting the historical data. Yu and
Wang [15] assumed a yearly-invariant spatiotemporal distribution of the PM2.5/PM10 ra-
tio at the same location during the same period of a year. Hence, the historical data of
PM2.5/PM10 ratios can be used to construct a non-parametric distribution for predicting
PM2.5 if the PM10 observation is available.

(4) Machine learning. Compared to the references using previously noted spatiotem-
poral analysis methods, the adoption of machine learning approaches has received more
attention recently. Cao et al. [11] considered the hourly PM2.5 concentrations in each day as
a 24-dimension vector and applied the agglomerative hierarchical clustering approach to
partition the PM2.5 time series into four groups. They identified that the first group contains
those days with severe pollution, the second group corresponds to the dispersion period,
the third group coincides with the pollution accumulation period, and the air is relatively
clean during the days included in the last group. Cao et al. [11] further applied the entropy
weight method (EWM) to calculate the weighted mean PM2.5 of the four clusters for each
monitoring site in the city, where the cluster weight is given by the reciprocal entropy. The
weighted mean PM2.5 can be used to identify the PM2.5 hotspots in the city. Yan et al. [10]
used a spatially adjacent matrix and the PM2.5 concentrations tallied by all the monitoring
sites in 13 cities in the Beijing-Tianjin-Hebei (BTH) region to conduct a spatial clustering
analysis. Their study showed that the PM2.5 spatial homogeneity is highest in winter and
lowest in summer, and for the same time period, the PM2.5 spatial variations increase from
southeast to northwest of the BTH region. Lyu et al. [16] systematically examined the
spatiotemporal variations of air pollutants in the BTH region and then applied the random
forest model and the decision tree regression for predicting spatiotemporal variations of
pollution concentrations. It is found that the importance of factors influencing prediction
performance depends on the spatial trend of variations.

In addition to the four categories of spatiotemporal analysis approaches, it is worth
noting that hybrid methods exist in order to synergize the benefits gained by different
approaches. For example, Chicas et al. [17] proposed a hybrid method that combines differ-
ent spatiotemporal analysis approaches to make the interpretation of pollution dynamics
more complete. The method analyzes the spatiotemporal distribution, trend, forecast,
and factors about the air pollutants in Nagasaki Prefecture, Japan, by using correlation,
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auto-regressive, and machine learning techniques to offer a holistic perspective about the
pollution dynamics.

There are several drawbacks to the existing PM2.5 spatiotemporal methods. (1) Due
to the high complexity of computation, traditional methods conduct spatial and temporal
analysis separately. However, the higher-level correlation existing in the intertwined
spatiotemporal domain is neglected in such separate analyses. (2) Existing methods design
PM2.5 spatiotemporal analysis on a piece-by-piece basis, lacking a comprehensive view to
elucidate the linkage between different spatiotemporal analysis functions. (3) Most existing
methods employ statistical approaches; only a small number of works have attempted
machine learning techniques to group PM2.5 time series into typical variation patterns,
overlooking the benefits that may be contributed by abundant machine learning techniques.
In this paper, we propose a novel design for comprehensive PM2.5 spatiotemporal analytics
that automatically cuts the PM2.5 spatiotemporal time series maps into pollution episodes
and then clusters those episodes into groups based on pollution spatiotemporal patterns.
The analyzed result discloses that similar pollution episode patterns appear in different
time periods of the year. They can be used further to explain the relationship between air
pollution patterns and local meteorological and anthropogenic factors. Our design is based
on video analysis techniques described as follows.

2.2. Video Analysis

Video is a time series of image frames, and it is by nature a spatiotemporal stream of
data. The existing techniques for video processing have many analogies with the methods
for air-pollution spatiotemporal analysis. In particular, the shot boundary detection (SBD)
techniques, the gait energy image (GEI) representation scheme, the image retrieval algo-
rithms, and the convolutional neural networks (CNN) are most relevant to our proposed
methods, and they are reviewed as follows:

(1) Shot boundary detection (SBD). Video is a stream of image frames. To deliver
situated semantics, a video is composed of a sequence of scenes, and each scene may have
one or more shots. Each shot contains contiguous image frames that are uninterruptedly
shot by a camera to represent continuous actions in time and space. Video SBD is the
temporal segmentation of a video into consecutive shots that are primitive elements for
video indexing and retrieval [18–20]. The video shot boundary appears in the frame(s)
transiting from one shot to another shot. The transition between two consecutive shots
usually appears in two types. The abrupt transition (hard cut) is a significant and sudden
change from one shot to the next. The soft transition (soft cut) is a gradual change between
the adjacent shots by applying spatial, chromatic, or spatial-chromatic effects, resulting in
several stylish transitions such as dissolve, wipe, and fade in/out. Clearly, soft-cut detection
is more challenging than hard-cut detection. Most existing SBD techniques proceed as
follows: A score function is defined for estimating the probability of a frame being the true
cut separating two consecutive shots. Then an appropriate threshold is used to classify the
frames into cuts and non-cuts based on their scores.

Several score functions were developed [19,20]. (1) Sum of absolute differences (SAD).
The score function sums up the absolute difference between corresponding pixels at the
same location in the two consecutive image frames. This is the earliest SBD approach, which
is simple but sensitive to object movement and may produce many false cuts. (2) Histogram
differences (HD). Instead of computing the difference at the pixel level, the difference
between the histograms of consecutive frames for each color channel is calculated. The
HD is less sensitive to object movement. However, it loses the spatial information, i.e., the
histogram of two completely different images can be exactly the same. (3) Edge change ratio
(ECR). Since the cut appears at the frame(s) where the old edge pixels disappear and the
new edge pixels emerge, the cut score can be estimated by calculating the difference at the
edge locations. (4) Transform correlation (TC). The image frames are transformed into the
frequency domain, and the correlation between the transformed images is evaluated. The
cut frame is identified at the local minimum of the correlation. (5) Hybrid score functions



Appl. Sci. 2023, 13, 5808 5 of 19

(HSF) have been proposed by combing two or more of the above-mentioned approaches to
enhance the robustness of the score function for different video contexts.

(2) Gait Energy Image (GEI). Human individual recognition in a natural scene is a very
challenging problem because the image/video capturing the individual may just capture
some parts of the individual (e.g., face, shoulder, waist, and legs) or from any viewing
angle (front, side, bird’s-eye, and back). Therefore, various biometrics (face, fingerprint,
and palm print) and context (posture, gait, and silhouette) were investigated to enhance
the accuracy of human individual recognition. One of the novel context-based techniques
for human individual recognition is the GEI technique proposed by Han and Bhanu [21].
GEI is a spatiotemporal representation to analyze human walking properties for individual
recognition by gait. GEI represents human gait motion in a single image while preserving
spatiotemporal information. The sequence of binary silhouettes of humans walking in the
video was extracted from the original video. The GEI is the image obtained by calculating
the mean gray image over all silhouettes in the time sequence. The GEI can be used to
estimate the gait frequency and phase of a person for individual recognition.

(3) Image retrieval. The Bag-of-Words (BoW) model was originally proposed for the
information retrieval of documents. The keywords contained in the documents are used to
create a dictionary. Each document is represented by a vector describing the occurrence of
each keyword in the document. As such, the document retrieval task can be transformed
into similarity matching between vectors. Lee et al. [22] extended this idea to image retrieval
by replacing the keywords with visual words that are the local visual features extracted
from the images. The BoW model recognizes image categories by using a histogram of
visual words to record the multiplicity of salient features. As there are many visual words,
the vector quantization technique needs to be applied to construct a codeword dictionary
in which the number of codewords is significantly lower than the number of visual words
produced from all the images in the training set. Each visual word contained in an image is
assigned the most relevant codeword according to the dictionary. The histogram, which
counts the number of visual words assigned to each codeword, is used to represent the
image for category recognition. The classifier is thus able to learn the category model of
each generic object. It is found that the category model is robust against variations in
viewing angles, illumination, scaling, and deformation.

(4) Convolutional neural networks (CNN). Artificial neural networks are computing
systems that process signals via multiple layers of nodes, mimicking neurons in brain
science. Rosenblatt [23] introduced feedforward neural networks (FNN), where the nodes
receive signals from every node in the previous layer, process the signals, and forward the
result to all the nodes in the next layer. The multilayer perceptron is the first successful
model using FNN. As the number of hidden layers increases, it becomes computationally
prohibitive to learn the network parameters. Hinton and Salakhutdinov [24] proposed
deep belief networks (DBN), which simplify computations through multiple restricted
Boltzmann machines. The CNN methods, which process signals based on convolution and
downsize sampling, have emerged as the dominant neural network model for computer
vision tasks. The CNN methods have won prizes in the ILSVR (ImageNet Large Scale Visual
Recognition Competition). Some of the prize-awarded CNN methods are AlexNet [25],
VGG-19 [26], and ResNet [27]. Considering the recognition accuracy and computation
efficiency, we will employ VGG-19 for the episode clustering in this paper.

3. Proposed Methods
3.1. Framework Architecture

Figure 1 shows the framework architecture of the proposed methods. The innovations
in our methods rely on the use of video processing techniques that have never been applied
to air-pollution analytics. We discover there is a great analogy between the episodes of
PM2.5 activities and the shots of video scenes. The data acquisition and conversion method
obtains the long-term air-quality concentration time series, which is then converted to a
10-category air-quality alert time series for episode analysis. The time series is actually a
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video when considering the air-quality alert category as pixel intensity level. The cycle of
PM2.5 episodes—pollution accumulation, transportation, dispersion, and diminishing—can
be considered as various shots in the video. We developed four video shot detection
algorithms for comparing the quality of the segmented episode shots. In a particular region,
some salient meteorological phenomena and anthropogenic activities repeatedly happen.
These patterns, if correctly extracted and grouped according to their similarity, would
reflect the reasons that cause the major air pollution episodes that frequently appear in
the monitored region. We first transform the shots into corresponding GEIs for efficient
processing. Three GEI clustering algorithms are proposed to partition the GEIs into episode
clusters. These clusters disclose interesting pollution patterns that are implicitly related to
local climate and economic activities.
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3.2. Air-Quality Data Acquisition and Conversion

The field study conducted in this paper is located in Puli, central Taiwan. Puli is
a small town with an area of 13 × 13 km2 and it is centered at 23◦58′12′′ north latitude
and 120◦58′12′′ east longitude. The geography of Puli is basin terrain. There are three
rivers flowing to the west coast of Taiwan and creating three valleys, which induce the
transportation of air pollutants yielded in the west metropolis into the Puli basin. It is
desired to analyze the main patterns of pollution emergence, including those resulting
from external sources or local emissions. As such, appropriate pollution-free actions can
be enforced by the public. Our studied field is the interior of the basin geography, which
is resolved in 10 × 10 grids with an area of 8 × 8 km2. Within each grid, we acquire the
PM2.5 concentration every hour. In our previous research [28], we had deployed 32 PM2.5
sensors in some of the grids. The sensors are model G7 PMS7003, which uses a laser beam
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to illuminate the suspended air particles and generate light scattering. The scattered light
is then analyzed to estimate the particle size and the number of particles. For those grids
where there are no sensors, the concentration intensity can be simulated by smoothing
the concentration intensity from nearby sensors or applying machine-learning imputation
techniques such as the one suggested in Yin et al. [21]. Hence, for every hour, we obtain an
image frame of n × n pixels, and the PM2.5 concentrations in the grids are considered the
gray values of the image. If we continuously monitor the PM2.5 concentrations in Puli for
365 straight days, we will produce a time series of 365 × 24 = 8760 image frames, which is
a video. In this paper, we acquired the hourly PM2.5 concentrations from the PM2.5 sensors
from 1 January 2018 until 31 December 2018, so the collected data involve four seasons.
To extract salient and meaningful PM2.5 episodes, the concentrations of image pixels are
converted to those with 10 air-quality alert levels, as shown in Figure 2. As the original six
air-quality alert categories defined by the Taiwan Environmental Protection Administration
(EPA) may not be sufficient to describe the dynamic variations of air pollution activities,
we refine the six-level categories to 10-level categories. Next, we propose pollution episode
segmentation methods with the alert category time series video.
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3.3. Pollution Episode Segmentation

We developed the shot boundary detection (SBD) algorithms to separate the alert cate-
gory time series maps into meaningful shots (video clips). Each shot implicitly corresponds
to an air pollution episode, which may contain patterns such as pollution accumulation,
transportation, dispersion, and diminishing. We expect that the alert category maps con-
tained in the same shot are more homogeneous than those falling in different shots. The
activity of air pollution is very complex and related to multi-criteria such as land terrain,
weather, and anthropogenic activities. There is no clear definition of how many types of
air pollution patterns are observed in a place. Some ideal examples are ‘clean and stable’,
‘pollution emerging’, ‘pollution transportation’, ‘pollution dispersion’, and ‘pollution dissi-
pating’. However, there still exist other patterns that need to be explained by investigating
natural and anthropogenic criteria.

We propose four types of shot boundary detectors, as follows:

(1) Raster Difference (RS). The RS method reserves all of the n × n grid values in a raster-
scan order and calculates the difference of the corresponding grid values between
different frames within a time window. The sum of the raster differences over the
entire frame is compared to a threshold for shot detection.

(2) Histogram Difference (HD). Instead of reserving the raster sequence of grid values,
the HD method constructs a histogram by counting the number of grids having each
level of the 10 alert categories. The 10 occurrence numbers on the histogram are used
as the feature vector to calculate the difference between different frames within a time
window. As compared to the RS method, the HD method is less sensitive to rotation
and translation of the same pollution patterns and is more likely to extract complete
shots of various episodes.

(3) Edge Difference (ED). The ED method applies the Sobel edge detectors, which are
commonly used in the field of image processing, to extract the boundaries between
adjacent grids having significantly distinct PM2.5 alert categories. The implementation
of the ED method is motivated by the assumption that the edge orientation of the
pollution region changes abruptly at the transition to the next episode. The four 3 × 3
Sobel edge filters, as depicted in Figure 3, for extracting vertical, horizontal, and two
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diagonal edges are employed to convolute the frame image. The response at each
pixel to the four filters is summed up to obtain 64 edge response values as the feature
vector, which is used to calculate the difference between different frames.

(4) Statistics Based (SB). The SB method extracts the properties of the alert category map
and detects the cutting frames, which are assumed to have large variations in these
properties as compared to the frames in the next shot. In particular, we use six moment
statistics; three are non-positional and the others are positional. Let the position of
the n × n grids be resolved as a two-dimensional array, and the grid value at position
[x, y] is denoted as g[x, y]. The three non-positional moments are as follows:

1
n2 ∑n

x=1 ∑n
y=1(g[x, y]− g[x, y])k, k = 1, 2, 3 (1)

where g[x, y] is the mean of g[x, y] over all n × n grids.
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On the other hand, the positional moments designed in this paper are calculated by
multiplying the grid moment element with the weighting of positional indices.

1
n2 ∑n

x=1 ∑n
y=1

(
(g[x, y]− g[x, y])k × (ax + by)

)
, k = 1, 2, 3 (2)

where a and b are the parameters for tuning the linear and exponential weightings at
position [x, y].

Our PM2.5 episode segmentation algorithms detect episode boundaries (cuts) to sep-
arate the alert category time series into meaningful shots. To evaluate the correctness of
the segmented shots, each image frame in the time series was labeled as cut or non-cut by
an expert who has worked in this area for three years. In the machine learning literature,
the commonly used performance measures, namely, precision, recall, and F1-Score, for a
two-class classification problem (cut or non-cut in our case) are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− Score =
2× Precision× Recall

Precision + Recall
(5)

where TP, FP, and FN are the numbers of true positive, false positive, and false negative
samples, respectively.

Each of the measures gauges the classification’s performance from a different perspec-
tive. Precision focuses on the classification correctness of the samples that the algorithm
recognizes as positive, while recall emphasizes how many true positive samples are cor-
rectly recognized by the algorithm. Precision and recall are contrasting measures. A perfect
recall can be obtained at the cost of reduced precision by letting the algorithm recognize
more samples as positive with a lower classification threshold value. The F1-Score is a
balance measure that takes into account both precision and recall simultaneously.

After performing the SBD methods on the PM2.5 alert category time series, a number
of episode shots are obtained. Each shot is a sequence of alert category maps within a time
period and potentially elucidates a particular pollution episode. To efficiently represent the
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pollution episode shot, the gait energy image (GEI) scheme is adopted to reserve the main
pollution variations in the spatiotemporal domain in a single image. GEI representation was
proposed in [19], where the human walking gaits are extracted for individual recognition.
The GEI is the image obtained by calculating the mean gray image over the sequence of
human walking videos in the time sequence. In the context of our research, the GEI is the
mean gray image over the sequence of alert category maps in the segmented shot.

3.4. Pollution Episode Clustering

We then applied the clustering algorithms to partition the GEIs produced from the
air pollution time series into insightful groups, which reveal the main pollution episodes
related to the local terrains, climate, and anthropogenic activities. With the results, ef-
fective strategies for reducing air pollutants emitted from anthropogenic activities can
be managed. Both atmospheric and anthropogenic conditions have cyclic patterns. For
instance, those atmospheric phenomena ranging from seasonal monsoons and tropical
cyclones to temperature inversions during a day are commonly seen atmospheric cyclic
patterns that affect the concentrations and dispersions of air pollutants. Analogously, many
anthropogenic activities also manifest cyclic conditions, such as rush/off-peak hours, week-
days/weekends/holidays, crop burning, and electricity consumption, which would entail
cyclic pollution patterns. The transportation and scattering of the pollutants monitored
at local microsensors manifest particular patterns related to local terrains such as rivers,
plateaus, mountains, and residential areas. As the GEIs constitute the spatiotemporal
drifting of air pollutants, we anticipate that some GEIs are more homogeneous under
similar atmospheric and anthropogenic scenarios than those in different ones. In order to
probe into the cyclic patterns of local air pollutants, the extracted GEIs are grouped into
clusters. We propose three GEI clustering approaches, namely, the histogram vectors (HV),
bag of words (BoW), and convolutional neural networks (CNN), as follows.

(1) HV. Following the same fashion as our HD method, a histogram is constructed
by counting the number of grids having each level of the 10 alert categories. The
10 occurrence numbers on the histogram are used as the feature vector for conducting
the k-means clustering method. To evaluate the quality of the clustering result, several
different numbers of clusters are specified when conducting k-means clustering.

(2) BoW. BoW was originally proposed for document retrieval by using keywords, and
it has been extended for image retrieval by replacing the keywords with visual
words [20]. We further extend this idea for GEI image clustering. We associate Sobel
edge filters with visual words. The GEI is divided into four quadrants. Every quadrant
is processed by the four 3 × 3 Sobel filters for extracting horizontal, vertical, and
diagonal edges. The response values for the same filter within every quadrant are
summed up to simulate the occurrence count of the corresponding visual word. As
such, we obtain a 4(quadrant) × 4(filter) = 16 visual-word histogram. Furthermore,
the histogram is used as the feature vector for the k-means clustering method.

(3) CNN. In contrast to HV and BoW, which learn prespecified features designed by
human experts, CNN automatically learns the representative features for the des-
ignated task. In particular, we apply VGG-19 [26] by using Keras. VGG-19 was
trained with one million images selected from the ImageNet dataset for classification
into 1000 generic classes. VGG-19 has 16 convolutional layers with a large number
of filters, followed by three fully connected layers. We fed VGG-19 with all GEIs
and summed up the collected softmax values for each classification class. The top
20 softmax-value classes are used to construct features for GEI clustering. Further,
each GEI obtains a 20-dimensional feature vector, and the k-means clustering method
is applied to the feature vectors to generate the clustering result.

In order to evaluate the performance of the proposed three GEI clustering methods,
namely, the HV, BoW, and CNN, we need to find appropriate measures. Unfortunately, as
clustering is an unsupervised learning task, there is no universal measure for justification of
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the clustering result. The most widely used measures are the silhouette coefficient (SC), the
Calinski-Harabaz index (CHI), and the Davies-Bouldin index (DBI), as defined as follows:

Let the N data points be grouped by the applied clustering algorithm into k clusters,
each with ni points, i = 1, 2, . . . , k. The SC [29] is the mean of the silhouette width for each
point. The silhouette width S(j) for point j is defined as

S(j) =
b(j)− a(j)

max(b(j), a(j))
(6)

where a(j) is the mean distance from point j to every other point assigned to the same
cluster, and b(j) is the distance from point j to its nearest neighbor assigned to any different
cluster. The SC is then given by

SC =
∑N

j=1 S(j)

N
(7)

The value of the silhouette coefficient, SC, ranges from −1 to 1. The higher the SC, the
more appropriate the clustering result.

The CHI [30] measures cluster validity in terms of between-cluster and within-cluster
distances. Let’s denote the centroid of cluster i by mi. and the centroid of all clusters by m.
The between-cluster square distance (SSB) and the within-cluster square distance (SSW)
are defined as follows:

SSB = ∑k
i=1 ni ‖ mi −m ‖ 2 (8)

SSW = ∑k
i=1 ∑ni

j=1 ‖ xij −mi ‖ 2 (9)

where xij is the coordinate vector of point j in cluster i. The CHI is then given by

CHI =
SSB
SSW

× N − k
k− 1

(10)

The higher the CHI is, the more valid the partition with clustering.
In contrast to CHI, which measures the mean SSB and SSW, the DBI [31] measures the

ratio between the individual SSW of a cluster and its SSB to every other cluster. The DBI is
calculated as follows:

DBI =
1
k

k

∑
i=1

maxi 6=j

√
∑ni

h=1 ‖ xih −mi ‖ 2 +
√

∑ni
h=1 ‖ xjh −mj ‖ 2√

‖ mi −mj ‖ 2
(11)

The smaller the DBI, the more preferable the clustering result.

4. Experimental Results and Comparative Performances
4.1. Pollution Episode Segmentation

The comparative performances of the proposed episode segmentation algorithms
in terms of the three measures are tabulated in Table 1. It is seen that RS and SB have
more balanced performance on precision and recall than HD and ED. This is a desired
property because false positives from cuts will result in many short shots without delivering
meaningful episodes, which hinder the explanation of complete pollution cycles. On
the other hand, RS and HD are overall better performers whose F1-Score is above 73%,
followed by SB, which obtains an F1-Score of 68%. The worst performer among the four
competing methods is ED, whose F1-Score is 62%. The reason for the performance ranking
may be due to the low resolution and shallow color depth of the air-pollution alert map,
which is resolved as a 10 × 10 image with only 10 pollution-alert color categories. The
edge information and moment statistics of such an image are not sufficient for effectively
differentiating the difference between cut and non-cut frames. Another disadvantage of
ED is that the edge responses are relative values rather than absolute ones, and it cannot
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tell the difference in the edge between category 1 and category 2 or between category 9 and
category 10, explaining why ED is the worst performer.

Table 1. Comparative performances of the proposed episode segmentation algorithms.

Precision Recall F1-Score

RS 0.7225909 0.74270123 0.732508063
HD 0.6956363 0.78076398 0.735745954
ED 0.55856833 0.702592087 0.622356495
SB 0.6792861 0.68540246 0.682330574

In Figure 4, we show the detected cuts and the true labeled cuts on an example time
sequence by using the proposed episode segmentation methods. The true labeled cuts are
marked with a red border, while the cut determined by the applied method is marked with
a black border. When the true labeled cut is correctly detected by the applied method, the
cut is marked with both red and black borders. It is observed that there are nine true labeled
cuts out of 80 frames in the time sequence. The nine true labeled cuts belong to three soft
transitions, which segment the time series into four meaningful pollution episodes. The
RS, HD, ED, and SB detect 5, 6, 14, and 13 cuts, respectively. This reveals that ED and SB
may tend to produce more short episodes. A promising phenomenon is that the three soft
transitions are detected by all methods, with at least one cut-frame detected within each
soft transition. ED and SB may produce more cuts than the true labeled cuts. However, if
we examine these cuts closely, the true cuts labeled by the experts are intended to segment
the complete pollution cycle consisting of concentration accumulation, transportation, and
diminishing. While the cuts detected by ED and SB may produce shorter episodes such as
concentration accumulation or pollution diminishing.

4.2. Pollution Episode Clustering

The segmented episodes implicitly correspond to spatiotemporal activities in a pollution
cycle such as concentration accumulation, transportation, dispersion, and diminishing. Due
to the local properties related to microclimate, land terrain, and anthropogenic activities, the
pollution episodes have repeated patterns, such as emerging pollution concentrations from the
downtown area, transporting pollution from the west river valley to the east, and scattering to
larger areas before they diminish. It is desirable to group the episodes belonging to the same
pollution pattern in a cluster for further causal analysis. However, a pollution episode is a
sequence of images. It is difficult to cluster episodes directly. GEI is an effective representation
scheme that compresses a short video into an image while still preserving the main scene-
changing dynamics in the video. We thus transform the segmented episodes into GEIs.

Figure 5 shows an illustration for constructing the GEI from a given PM2.5 episode.
The episode consists of a time series of eight pollution hourly maps, as shown in the first
two rows, and the image in the last row is the constructed GEI. It is seen from the episode
series that the orange-alert pollution emerges from the upper-right towards the lower-left
until it almost covers the entire map (see the fifth hour image). At the sixth hour image,
a red-alert pollution appears in the upper-center and lasts for two hours. Finally, at the
eighth hour image, the pollution is reduced to orange-alert. This episode shows many
dynamics of the pollution cycle, including concentration accumulation (between the first
and third hours), dispersion (between the fourth and fifth hours), intensification (at the
sixth hour), and reduction (between the seventh and eighth hours). By accumulating the
intensity over the eight image maps, the episode is condensed to a GEI image, as shown
in the last row. The darkest cells indicate the constantly lower PM2.5 intensity observed
during the whole duration of the episode, while on the contrary, the brighter area manifests
the continuingly high PM2.5 concentrations in the episode. The various intermediate gray
levels correspond to the changing dynamics of PM2.5 concentrations during the time span
of the episode. The brightest cells in the upper center indicate there was serious pollution
in this region. GEI is a condensed representation of an episode, and it reserves information
about the main pollution dynamics observed in the episode.
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Now we proceed to the clustering of the GEIs into groups such that the GEIs assigned
to the same group manifest similar pollution dynamics, and the comparative analysis
conducted on these GEIs may disclose the multi-factors (terrains, climate, anthropogenic
activities, etc.) that result in the particular pollution dynamics. We evaluate the performance
on GEI clustering obtained by the proposed HV, BoW, and CNN methods. The specified
number of clusters, k, ranges from 2 to 9. The SC, CHI, and DBI derived for each competing
method are listed in Tables 2–4. The best value in terms of each performance measure
for determining the optimal number of clusters is printed in boldface. It is seen that the
suggested number of clusters is 5, 7, or 2 for the HV method, 3, 6, or 2 for the BoW method,
and 2, 2, or 6 for the CNN method. The best SC and CHI performance is achieved by HV,
followed by CNN, while the best DBI performance is obtained by CNN. It is worth noting
that none of the methods dominates any other in all measures for a particular k value. In
other words, we cannot conclude which clustering method is prevailing.

Table 2. The clustering performance of the HV method.

K SC CHI DBI

2 0.501591138 600.3940942 1.108177263
3 0.647946873 1004.078699 1.352115359
4 0.692444416 1254.325130 1.805470173
5 0.699810907 1283.911012 1.857432596
6 0.621794592 1407.539037 1.537950880
7 0.617850347 1414.988043 1.664281480
8 0.567976152 1390.361033 1.288370949
9 0.563132577 1366.345924 1.295097528

Table 3. The clustering performance of the BoW method.

K SC CHI DBI

2 0.301451198 265.2936270 0.837995961
3 0.374914193 276.7063533 0.893594959
4 0.352490637 267.9174494 0.966339562
5 0.361700044 295.2575573 1.107479698
6 0.282343080 305.9140231 1.074090025
7 0.277204879 305.1391090 1.059764619
8 0.283878016 292.5594372 1.020158004
9 0.257572259 285.0925611 0.984416778
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Table 4. The clustering performance of the CNN method.

K SC CHI DBI

2 0.426706271 681.1978051 1.142826628
3 0.312079422 566.5341183 0.861172038
4 0.268289956 493.324105 0.817149345
5 0.278307506 469.2196243 0.898008358
6 0.271767518 428.1691441 0.758196849
7 0.264814784 400.385274 0.77981305
8 0.245515484 379.3548626 0.778609268
9 0.230716353 359.9879666 0.774757245

Figure 6 shows some members of the first two GEI clusters generated by using the
HV method. It is seen that the GEIs in the same cluster are more homogeneous than
those in different clusters, indicating the effectiveness of the HV method. The first cluster
is composed of the GEIs, which have a horizontal pollution strip in the middle. The
second cluster contains the GEIs, which have relatively clean air (darker gray) at the
center surrounded by pollution concentrations. Both clusters deliver specific, meaningful
pollution episodes that are very helpful in causal analysis to disclose why this particular
pattern of episodes repeatedly appears at different times of the year.
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Figure 7 shows some members of the first two GEI clusters generated by using the
BoW method. It should be noted that this is unsupervised clustering; the cluster order
has nothing indicating its content. As a result, the first cluster produced by HV should
not be associated with the first cluster generated by BoW or CNN. It is seen that the
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GEIs in the first cluster have serious pollution concentrations with very high intensity at
the bottom center area. This is very likely incurred by particular weather scenarios or
anthropogenic activities that repeatedly appear at different times of the year, so we see
several episode GEIs grouped in this cluster. For the second cluster, the included GEIs also
have a particular pattern at the center of the map. This particular pattern may indicate
a complex dispersion route where the pollution goes across the horizontal middle but
circumvents some center cells (with very dark intensity). The reason for this phenomenon
should be further investigated by examining the local terrain and artificial constructions.
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Figure 8 shows some members of the first two GEI clusters obtained by the CNN
method. In the first cluster, the GEIs show very rich episode dynamics. There are triangular
shapes near the map sides, but the intensity range of the triangles differs among different
GEI members. Additionally, these GEI members may have similar transportation behaviors
but carry distinct pollution-alert categories. This is inherited from the nature of VGG-19,
which recognizes generic object classes without paying too much attention to the object’s
color. For the GEIs contained in the second cluster, a square of four brighter cells appears at
the center, with darker cells surrounding the square. This isolated white square at the map
center indicates a hot spot of PM2.5 pollution, while the gradually decreasing intensity of
its surroundings may show the dispersion routes of the center pollution source. However,
this pattern is quite different from the square pattern we observed in the second cluster
generated by BoW, where the center square pattern is dark with bright surroundings. Again,
the reason behind this complex phenomenon can only be disclosed by further investigating
the atmospheric and anthropogenic conditions that cause it. For instance, temperature
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inversions, rush/off-peak hours, weekdays/weekends, and crop burning may all entail
such a pattern.
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by further investigating the atmospheric and anthropogenic conditions that cause it. For 
instance, temperature inversions, rush/off-peak hours, weekdays/weekends, and crop 
burning may all entail such a pattern. 
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Figure 8. Some members of the first two GEI clusters generated by using the CNN method. (a) the
first cluster. (b) the second cluster.

As we have mentioned, we cannot conclude which method is the best overall based on
the performance measures (see Tables 2–4). Hence, the clustering results from each method
are worth further investigation. A better way to apply the result is to reserve the classes
obtained from all methods and conduct a causal analysis with local criteria such as land
terrain, weather, and anthropogenic activities. As such, some insightful and explainable
pollution classes can be identified. Our future work will collaborate with atmospheric and
environmental experts to discover the relationships between the obtained pollution classes
and the natural and anthropogenic criteria.

5. Conclusions

In this paper, we have proposed a spatiotemporal analysis framework for air pollution
episode association. Classic spatiotemporal analysis approaches are statistics-based. The
contribution of our paper relies on machine learning approaches, which already have suc-
cessful applications in the image and video processing domains. In our previous research,
we built an internet of low-cost sensors for monitoring the hourly PM2.5 concentrations in
Puli, Taiwan. With this big volume of PM2.5 data, we transform it into a video that consists
of a time series of pollution image frames. To disclose the main pollution patterns in this
area, several shot boundary detection algorithms are proposed to detect the cut-frames
separating the pollution episodes in the time series. Each episode corresponds to particular
activities, such as pollution accumulation, transportation, scattering, and diminishing, in
different spatiotemporal ways. The GEI representation scheme is applied to render the
spatiotemporal dynamics of the episode such that they are able to be dealt with by the clus-
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tering method. Three clustering approaches are proposed for episode clustering, ranging
from histogram-based, edge-based, and deep-learning-based. The experimental results
manifest that the episodes contained in the same cluster have homogeneous patterns that
appear at different times in a year. This means that some particular patterns of pollution
activities emerge many times in this region that may have relations with local weather,
terrain, and anthropogenic activities. The research results provide a useful clue for the
causal analysis of regional pollution in our future study.
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