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Abstract: Sound source target localization is an extremely useful technique that is currently utilized
in many fields. The Hanbury Brown and Twiss (HBT) interference target localization method based
on sound fields is not accurate enough for localization at low signal-to-noise ratios (below 0 dB). To
address this problem, this paper introduces Minimum Variance Distortionless Response (MVDR)
beamforming and proposes a new MVDR-HBT algorithm. Specifically, for narrowband signals, the
inverse of the correlation matrix of the sound signal is calculated, and a guiding vector is constructed
to compute the MVDR direction weights. These direction weights are then used to weight the
correlation function of the HBT algorithm. Subsequently, the MVDR-HBT algorithm is extended
from narrowband signals to broadband signals. As a result, the directivity of the HBT algorithm is
optimized for wide- and narrowband signals, resulting in improved localization accuracy. Finally,
the target localization accuracy of the MVDR-HBT algorithm is analyzed through simulation and
localization experiments. The results show that the MVDR-HBT algorithm can accurately determine
the direction of a sound source, with localization errors at different positions that are smaller than
those produced by HBT. The localization performance of MVDR-HBT is considerably better than that
of HBT, further verifying the simulation results. This study provides a new idea for target localization
within an acoustic propagation medium (air).

Keywords: source localization; adaptive beamforming; microphone array; signal processing; HBT in-
terference

1. Introduction

In recent years, with the continuous development of sound source localization technology
and artificial intelligence, microphone array-based sound source localization technology [1] has
found important applications in industrial inspection [2–4], military detection [5–8], human–
computer interaction [9,10], video conferencing systems [11,12], and other fields. However,
in the face of increasingly complex real-world environments, there is a higher demand
for sound source localization algorithms to accurately locate sound sources under low
signal-to-noise ratios (SNRs). Sound source localization under complex acoustic conditions
puts greater emphasis on the anti-interference capabilities of sound source localization
algorithms, and the accuracy of sound source localization is an important indicator of the
performance of such algorithms. Currently, traditional sound source localization methods
under low SNR include high-resolution spectral estimation [13], time delay estimation
based on time difference of arrival (TDOA) [14,15], and controlled beamforming [16].

The high-resolution spectrum estimation method calculates the correlation matrix
of each element to obtain subspaces under different parameters, thereby obtaining the
orientation information of the sound source. Veerendra Dakulagi [17] modified the classical
MUSIC algorithm by absorbing the Jordon normalization matrix in the covariance matrix
to reconstruct the data. With this modification, even coherent sources can be accurately
estimated in low-SNR environments. However, due to the short duration and smooth
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nature of the sound signal, this method struggles to meet the high-resolution requirements
for estimation accuracy and has limited practicality. The time delay difference localization
method [18,19] is computationally efficient and easy to implement, but the accuracy of the
algorithm is highly dependent on the topology of the microphone array, and the accuracy
of time delay estimation affects the position estimation. The controllable beamforming
method [20–23], with the SRP (steered response power) algorithm being the most famous
example [24,25], is based on the idea of weighting the output of each element and summing
them together while directing the array beam to the same direction at the same time to
give the direction where the expected signal achieves the maximum output power, thus
achieving sound source localization. However, this method has a large computational cost
and is not suitable for real-time localization.

After considering the advantages and disadvantages of traditional positioning meth-
ods, it is clear that a single traditional algorithm is no longer suitable for complex position-
ing requirements. Therefore, in 2019, Liu et al. [26] introduced the HBT [27] interference
principle from optics into the acoustic field and proposed a positioning method based
on HBT interference in the acoustic field. This method analyzes the coherence of the
signal to eliminate the influence of noise on passive target positioning, and it calculates
the normalized correlation function to describe the coherence of the field, thus achieving
accurate positioning of weak target sound sources. This method combines the advantages
of time-delay estimation and controllable beamforming, solving some of the problems
associated with traditional positioning methods. However, the positioning accuracy of
this method still needs to be further improved under low-SNR conditions. Based on the
HBT principle and combining it with the MVDR algorithm [28,29], this paper achieves
accurate positioning of sound source targets under low-SNR conditions without changing
the geometry of the array.

This paper first focuses on narrowband signals and calculates the inverse of the
autocorrelation matrix of the preprocessed sound signal. It then constructs the directional
vector to calculate MVDR directional weights, which are used to weight the correlation
function of HBT, optimizing the directionality of the HBT algorithm and thus improving the
positioning accuracy. The MVDR-HBT algorithm is then extended from narrowband signals
to broadband signals, enhancing the directionality of the HBT algorithm in broadband
signals and further improving the positioning accuracy. This paper proposes a positioning
method that combines MVDR with the HBT interference target positioning method based
on the sound field, aiming to solve the problem of inaccurate positioning of HBT in low-SNR
situations.

The remaining sections of this paper are organized as follows: Section 2 provides a
detailed explanation of the MVDR-HBT method for wideband and narrowband sound
source localization. In Section 3, we present the simulation results of the MVDR-HBT
algorithm under varying sound source parameters such as SNR, sound source position,
and frequency, and we compare them with those of the HBT algorithm. We analyze the
localization performance of both methods. In Section 4, we further validate the effectiveness
and feasibility of the proposed method through a sound source detection experiment, where
sound source parameters such as SNR, sound source position, and frequency are varied.
Finally, conclusions are presented in Section 5.

2. MVDR-HBT Localization Principle

To further enhance the positioning accuracy of the sound field HBT in low-SNR
situations, this paper proposes an MVDR-HBT sound source positioning algorithm that
combines MVDR with the sound field HBT. Firstly, the MVDR beamforming algorithm
is applied to the sound field HBT. The MVDR-HBT algorithm is then derived, and to
ensure its generality, it is extended from narrowband signals to wideband signals, with a
theoretical study of the wideband MVDR-HBT. The MVDR-HBT positioning diagram is
shown in Figure 1.
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Figure 1. Schematic diagram of MVDR-HBT sound field positioning.

2.1. Principle of Narrowband Sound Source Localization Using MVDR-HBT

Assuming that the expected signal received by the microphone array is ps, the inter-
ference signal is pi, and the noise signal is pn, the beamforming receiver receives signal
p = ps + pi + pn, which is a coupling of the expected signal, interference signal, and noise
signal. ps is the target signal that we expect to receive and process, pi comes from external
interference to the signal, and pn is caused by the inherent uncertainty of the signal itself.
Therefore, the output beamforming is given by

y = wH p = wH(ps + pi + pn) = ys + yi + yn (1)

where ys represents the interfering signal component, yi represents the noise signal com-
ponent, yn represents the desired signal component, w =[w1, w2, . . . , wn]

T represents the
weight vector, T represents the transpose, and H represents the conjugate transpose. By
combining and rearranging the pi and pn terms in Equation (1) to form pin, Equation (2)
can be obtained:

y = wH(ps + pin) = ys + yin (2)

Based on Equation (2), the power of interference and noise signals can be obtained as
shown below:

E
{
|yin|

2
}
= E

{∣∣∣wHpin

∣∣∣2} = wHE
{∣∣∣pinpin

H
∣∣∣}w = wHRinw (3)

where Rin = E
{∣∣pinpin

H
∣∣} represents the covariance matrix of the interference signal and

the noise signal.
After satisfying the matrix constraint wHa(θs) = 1, in order to minimize the interfer-

ence and noise, we establish the objective optimization equation as follows:{
minwHRinw
subject to wHa(θs) = 1

(4)

where a(θs) refers to the steering vector of the target signal.
The essence of MVDR is to solve the weight coefficients of each array element. By

using the Lagrange multiplier method to solve for the optimal value of the weight vector,
the following expression can be obtained:

f (w,λ) = wHRin + λ
(

wHa(θs)− 1
)
+ λ∗

(
wHa(θs)− 1

)
(5)
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After taking the derivative of Equation (5) and setting it equal to 0, we can obtain
wH = −λaH(θs)R−1

in . Substituting into Equation (5), we have

λ = −
(

aH(θs)R−1
in a(θs)

)−1
(6)

Combining Equation (6), the weighted vector of MVDR can be obtained as follows:

wMVDR =
R−1

in a(θs)

aH(θs)R−1
in a(θs)

(7)

To ensure the desired distortion-free signal, the smaller the interference signal and
the noise signal, the better, i.e., the covariance matrix of the interference signal and the
noise signal needs to be obtained. However, under actual working conditions, the signal
received by the beamformer is a coupling of the desired, interference, and noise signals, and
it is difficult to separate the interference signal from the noise signal. For this reason, the
covariance matrix of the interference signal and the noise signal cannot be obtained. In this
paper, therefore, the covariance of the received signal Rx is replaced by the covariance of
the received signal, and the direction is assumed to be θs, so that the objective optimization
equation is {

minwHRxw
subject to wHa(θs) = 1

(8)

Assume that the desired signal at this time is represented by s(t) with direction θs.
The received signal contains L interfering signals with direction θi, i = 1, 2, . . . , L. The noise
component of the received signal is modeled as Gaussian white noise and is denoted by
n(t). The covariance matrix of the received signal can be represented by Equation (9):

Rx = E
{∣∣∣ppH

∣∣∣} = σ2
s a(θs)aH(θs) +

L

∑
i=1

σ2
i a(θi)aH(θi) + σ2

nI (9)

If we replace the covariance matrix Rx with the interference and noise signal covariance
matrix Rin, we can obtain the weight vector of the new MVDR beamformer as follows:

wMVDR(θ) =
R−1

x a(θ)
aH(θ)R−1

x a(θ)
(10)

The signal representation after MVDR weighting is as follows:

p ′(θ) = wMVDR(θ)� p (11)

When arbitrarily selecting two microphones, there is coherence between the weighted
signals of the two microphones. When the relative delay between the two beams of sound
waves is zero, the coherence between the two signals is maximized, and the value of the
correlation function is maximized, which corresponds to the location of the sound source.
The maximum correlation function is expressed as Formula (12):

Cmax =

〈
p′ i(θ, t)·p′ j(θ, t + ∆T)

〉
‖p′ i(θ, t)‖·

∥∥∥p′ j(θ, t)
∥∥∥ (12)

where p′ i denotes the weighted signal received by the i-th microphone, P′ j denotes the
weighted signal received by the j-th microphone, and ∆T represents the time delay. We take
∆T = r1−r2

v , where r1 and r2 denote the respective distances from the two microphones to
the sound source S.
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2.2. Principle of Broadband Sound Source Localization Using MVDR-HBT

A flowchart of MVDR-HBT broadband signal localization is shown in Figure 2.
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From the above narrowband principle, it can be concluded that by performing FFT on
the broadband signal pb, we can obtain

FFT(pbi) = [pbi( f0), pbi( f1), · · · pbi( fn)] (13)

The term FFT(·) represents the N-point fast Fourier transform (FFT), n = N/2.
After frequency division processing, the broadband signal is converted to a narrow-

band signal, and the value of wMVDR(θ, f j) is calculated for each frequency component in
the narrowband signal.

wMVDR(θ, f j) =
R−1

x f j
a(θ, f j)

aH(θ, f j)R−1
x f j

a(θ, f j)
(14)

Based on Equation (14), we can obtain the received signals p′b
(

f j
)

corresponding to
each sub-band frequency of the MVDR-weighted microphone signals:

p′b
(

f j
)
= wMVDR(θ, f j)� IFFT

(
pb
(

f j
))

(15)

where IFFT denotes the inverse fast Fourier transform and � represents the Hadamard
product, which is defined as element-wise multiplication of corresponding positions.

Taking the weighted signals of each sub-band frequency of every microphone and
averaging them, we obtain

pbi
* = E

[
p′b
(

f j
)]

(16)
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Finally, we substitute the result into Equation (12) to obtain

Cmax =

〈
pbi
∗(θ, t)·pbj

∗(θ, t + ∆T)
〉

‖pbi
∗(θ, t)‖·

∥∥∥pbj
∗(θ, t)

∥∥∥ (17)

3. Simulation Analysis

To verify the feasibility of the algorithm, a simulation analysis was carried out using
Matlab software, and the positioning performance of the algorithm under a low SNR was
evaluated and compared with the positioning performance of HBT. In addition, the effects
of different sound source positions and frequencies on the positioning performance were
also investigated.

Figure 3 shows the microphone array structure. Two linear microphone arrays were
used for sound source localization. The initial parameters of the simulation were as follows:
the microphone coordinates of array I were ((i− 1)× d, 0), and the microphone coordinates
of array II were (10 + (i − 1) × d, 0), where i = 1, 2, 3, . . . , 16; D = 10 m was the distance
between the two arrays, and d = 0.043 m was the distance between adjacent microphones;
and the sound source signal was a 600 Hz single-frequency signal.
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3.1. SNR

In this study, simulations were conducted for both HBT and MVDR-HBT under SNR
values of 0 dB, −5 dB, and −10 dB. The simulation results of the HBT and MVDR-HBT
algorithms for an SNR of −10 dB and the sound source location (5, 5) are shown in Figure 4.
HBT generated position coordinates of (5.9, 4.9) at the maximum value of the correlation
function, giving a relative error of localization of 12.81%. MVDR-HBT generated position
coordinates of (5.2, 5), giving a relative error of localization of 2.83%, indicating that MVDR-
HBT produced a more accurate location at a low SNR. Subsequently, MVDR-HBT was used
to perform localization at −5 dB and 0 dB. These localization results were then compared
with those of HBT, as summarized in Table 1. With decreasing SNR, the localization error
and relative error of both MVDR-HBT and HBT increased. However, compared with HBT,
the relative error percentage of MVDR-HBT was reduced by 1.41%, 4.59%, and 9.98% when
the SNR was 0 dB, −5 dB, and 10 dB, respectively. These results indicate that MVDR-HBT
has a better localization effect than HBT at low SNR and produces higher localization
accuracy.



Appl. Sci. 2023, 13, 6013 7 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

indicate that MVDR-HBT has a better localization effect than HBT at low SNR and pro-
duces higher localization accuracy. 

  
(a) (b) 

Figure 4. Simulation results for a sound source at (5, 5): (a) −10 dB HBT; (b) −10 dB MVDR-HBT. 

Table 1. Results of simulation of sound targets with different SNRs. 

SNR (dB) Method Position (m) Results (m) Errors (m) Relative Positioning Error 
(%) 

Percentage Decrease in 
Error (%) 

−10 HBT 

(5, 5) 

(5.9, 4.9) (0.9, −0.1) 12.81% 9.98% 
MVDR-HBT (5.2, 5) (0.2, 0) 2.83% 

−5 HBT (5.3, 4.7) (0.3, −0.3) 6.00% 4.59% MVDR-HBT (5.1, 5) (0.1, 0) 1.41% 

0 
HBT (5.1, 5) (0.1, 0) 1.41% 

1.41% MVDR-HBT (5, 5) (0, 0) 0 

3.2. Distance to Sound Source Target 
The simulation parameters were set as before, with the only difference being a change 

in the position of the sound source. The simulation results obtained using MVDR-HBT for 
different source positions at an SNR of −5 dB are shown in Figure 5; from these, the influ-
ence of different positions on the localization accuracy can be further studied. As can be 
seen from Figure 5, the localization results of MVDR-HBT at positions (5, 5) and (8, 10) 
were (5.1, 5) and (8.2, 10), with relative errors of localization of 1.41% and 1.56%, respec-
tively, indicating that MVDR-HBT can still accurately locate the position at low SNR. 
These results were compared with the localization results of HBT, summarized in Table 
2. It can be inferred from Table 2 that, with increasing distance, the localization error grad-
ually increased under low-SNR conditions below 0 dB. In comparison, MVDR-HBT main-
tained good localization performance under these conditions. Therefore, the MVDR-HBT 
algorithm exhibits higher localization accuracy when compared with HBT. In brief, 
MVDR-HBT can accurately localize a sound source target in a low-SNR environment. 

Figure 4. Simulation results for a sound source at (5, 5): (a) −10 dB HBT; (b) −10 dB MVDR-HBT.

Table 1. Results of simulation of sound targets with different SNRs.

SNR (dB) Method Position (m) Results (m) Errors (m)
Relative

Positioning
Error (%)

Percentage
Decrease in

Error (%)

−10
HBT

(5, 5)

(5.9, 4.9) (0.9, −0.1) 12.81%
9.98%MVDR-HBT (5.2, 5) (0.2, 0) 2.83%

−5
HBT (5.3, 4.7) (0.3, −0.3) 6.00%

4.59%MVDR-HBT (5.1, 5) (0.1, 0) 1.41%

0
HBT (5.1, 5) (0.1, 0) 1.41%

1.41%MVDR-HBT (5, 5) (0, 0) 0

3.2. Distance to Sound Source Target

The simulation parameters were set as before, with the only difference being a change
in the position of the sound source. The simulation results obtained using MVDR-HBT
for different source positions at an SNR of −5 dB are shown in Figure 5; from these, the
influence of different positions on the localization accuracy can be further studied. As
can be seen from Figure 5, the localization results of MVDR-HBT at positions (5, 5) and
(8, 10) were (5.1, 5) and (8.2, 10), with relative errors of localization of 1.41% and 1.56%,
respectively, indicating that MVDR-HBT can still accurately locate the position at low
SNR. These results were compared with the localization results of HBT, summarized in
Table 2. It can be inferred from Table 2 that, with increasing distance, the localization error
gradually increased under low-SNR conditions below 0 dB. In comparison, MVDR-HBT
maintained good localization performance under these conditions. Therefore, the MVDR-
HBT algorithm exhibits higher localization accuracy when compared with HBT. In brief,
MVDR-HBT can accurately localize a sound source target in a low-SNR environment.

Table 2. Results of the simulation for the same sound target at different positions.

SNR (dB) Method Position (m) Results (m) Errors (m)
Relative

Positioning
Error (%)

Percentage
Decrease in

Error (%)

−10

HBT
(5, 5)

(5.9, 4.9) (0.9, −0.1) 12.81%
9.98%MVDR-HBT (5.2, 5) (0.2, 0) 2.83%

HBT
(8, 10)

(7.6, 10.6) (−0.4, 0.6) 5.63%
3.88%MVDR-HBT (8.1, 9.8) (0.1, −0.2) 1.75%

−5

HBT
(5, 5)

(5.3, 4.7) (0.3, −0.3) 6.00%
4.59%MVDR-HBT (5.1, 5) (0.1, 0) 1.41%

HBT
(8, 10)

(7.6, 9.6) (−0.4, −0.4) 4.42%
2.86%MVDR-HBT (8.2, 10) (0.2, 0) 1.56%
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3.3. Frequency

To investigate the influence of frequency on the localization results, single-frequency
and multi-frequency signals were selected to conduct simulation analysis using MVDR-
HBT. The simulation results for the sound source position (8, 10) at 600 Hz and at 600
Hz, 700 Hz, 800 Hz are shown in Figure 6, and the effect of different frequencies on the
localization accuracy of MVDR-HBT was further studied. The results are summarized in
Table 3 and compared with the localization results of HBT. As shown in Table 3, at an SNR
of −5 dB, the localization accuracy of MVDR-HBT became more precise with an increase
in spectral width, as the sound source signal contained more information. Although the
localization accuracy of HBT for multi-frequency signals improved compared to that for
single-frequency signals in low-SNR situations, there was still a gap between HBT and
MVDR-HBT in terms of localization error.
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Table 3. Comparison of simulation results of MVDR-HBT and HBT from a single frequency to
multiple.

SNR (dB) Frequency
(Hz) Method Position (m) Results (m) Errors (m)

Relative
Positioning

Error (%)

−5

600
HBT

(8, 10)

(7.6, 9.6) (−0.4, −0.4) 4.42%
MVDR-HBT (8.2, 10) (0.2, 0) 1.56%

600, 700
HBT (7.8, 9.5) (−0.2, −0.5) 4.21%

MVDR-HBT (8.1, 10.1) (0.1, 0.1) 1.10%

600, 700, 800
HBT (8.1, 10.3) (0.1, 0.3) 2.47%

MVDR-HBT (8, 10) (0, 0) 0%

4. The Sound Source Detection Experiment

For an outdoor experiment, we utilized a 16-element linear microphone array. When a
sound signal reaches the microphone array, there are time or phase differences between the
signals on different microphones. By calculating the time or phase differences between the
microphones, the direction of the signal can be inferred. However, due to the limitations of
the array topology, it is difficult to accurately locate the sound source coordinates when
locating far-field sound sources, as only the direction of the signal can be inferred. Therefore,
in this outdoor experiment, the directional deviation between the real signal incidence
direction and the calculated signal incidence direction of the localization algorithm was
used to evaluate the algorithm’s localization performance.

An experimental platform based on a microphone array was constructed, and to
reduce the interference of reverberation on the experiment, the experiment was conducted
in an open space, as shown in Figure 7. MVDR-HBT and HBT were tested under different
sound source parameters, and the localization performance of the two algorithms in a real
environment was compared and analyzed.
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4.1. SNR

To verify the ability of MVDR-HBT to accurately locate sound sources in low-SNR real
environments, white Gaussian noise was added to the original sound signal to simulate a
low-SNR environment, with SNR values of 0 dB and −5 dB. In the positioning experiments,
sound sources located at coordinates (5, 5) and (2.5, 2) were tested, with the experiment
parameters set as follows: the sound source signal was a piece of music ranging from
200 Hz to 2000 Hz, with a sampling frequency of 192 kHz; the microphone array had a
uniform linear structure, with microphone coordinates of (0, 0), (0.129, 0), and (0.258, 0).
The experimental results of MVDR-HBT for sound source coordinates (5, 5) at SNR values
of 0 dB and −5 dB are shown in Figure 8, and the experimental results of MVDR-HBT and
HBT for different SNR values are summarized in Table 4. In Figure 8, the bright striped
area represents the direction of the sound source. The same applies to Figures 9 and 10.
As shown in Figure 8 and Table 4, when the SNR values were −5 dB and 0 dB, the bright
striped areas fluctuated, and the fluctuations were more obvious at −5 dB than at 0 dB, but
the sound source direction could still be distinguished. After adding white Gaussian noise,
the performance of both algorithms decreased to some extent, but the angle deviation of
MVDR-HBT was smaller than that of HBT at both sound source coordinates (5, 5) and (2.5,
2), indicating that the algorithm proposed in this paper has better positioning performance.
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SNR (dB) Method Position (m) Distance (m) Real Incident
Direction (◦)
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Angular
Deviation (◦)

0

MVDR-HBT
(2.5, 2) 3.20 51.34

52.43 1.09
HBT 53.62 2.28

MVDR-HBT
(5, 5) 7.07 45.0

48.24 3.24
HBT 48.95 3.95
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MVDR-HBT
(2.5, 2) 3.20 51.34
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HBT 54.63 3.29
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(5, 5) 7.07 45.0

48.74 3.74
HBT 49.47 4.47
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4.2. Distance to Sound Source Target

To investigate the impact of distance between sound sources on the localization
performance, experiments were conducted to verify different target sound source positions
with coordinates of (2.5, 2), (5, 3), (5, 5), and (6, 8). The experimental results obtained using
MVDR-HBT and HBT for the sound source coordinates of (2.5, 2) are shown in Figure 9
and compared with the localization results of HBT, summarized in Table 5. Figure 9 and
Table 5 reveal that MVDR-HBT could accurately identify the direction of the sound source
at (2.5, 2), and the bright stripes were more concentrated compared to those from HBT. As
the distance gradually increased, the angle deviation of both algorithms also increased, and
the angle deviation of MVDR-HBT was smaller than that of HBT. When the sound source
coordinates were (2.5, 2), the angle deviation of MVDR-HBT was only 0.77◦, while that of
HBT was 1.48◦. When the sound source coordinates were (6, 8), which was the farthest
distance from the microphone array, the angle deviations of both MVDR-HBT and HBT
were the largest. This experiment mainly aimed to locate far-field target sound sources,
and the angular deviation of MVDR-HBT was 3.17◦ at this time, which was smaller than
that of HBT.
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Table 5. Experimental Results Comparison of MVDR-HBT and HBT at Different Locations.

Frequency
(Hz) Method Position (m) Distance (m) Real Incident

Direction (◦)

Estimating the
Direction of

Arrival of the
Signal (◦)

Angular
Deviation (◦)

200~2000

MVDR-HBT
(2.5, 2) 3.20 51.34

50.57 0.77
HBT 52.82 1.48

MVDR-HBT
(5, 3) 5.83 59.04

61.33 2.29
HBT 55.85 3.19

MVDR-HBT
(5, 5) 7.07 45.0

47.78 2.78
HBT 48.43 3.43

MVDR-HBT
(6, 8) 10 36.87

33.70 3.17
HBT 32.91 3.96

4.3. Frequency

In practical environments, most sound signals are multi-frequency. To investigate the
effect of frequency on the localization performance, experiments were conducted on sound
signals of different frequencies. The experimental results of MVDR-HBT for sound source
coordinates (5, 5) on single-frequency and multi-frequency sound signals are shown in
Figure 10 and were compared with the localization results of HBT, summarized in Table 6.
It can be observed from Figure 10 and Table 6 that as the spectral width of the sound
signal increases, the signal contains more information, resulting in more concentrated
bright stripes and more accurate localization performance for MVDR-HBT. Although
HBT exhibited improved localization accuracy for multi-frequency signals compared to
single-frequency signals, there was still a gap in angle deviation compared to MVDR-HBT.

Table 6. Comparison of MVDR-HBT and HBT in Single-Frequency to Multi-Frequency Experiments.

Frequency
(Hz) Method Position (m) Distance (m) Real Incident

Direction (◦)

Estimating the
Direction of

Arrival of the
Signal (◦)

Angular
Deviation (◦)

600

MVDR-HBT
(2.5, 2) 3.20 51.34

53.13 1.79
HBT 53.75 2.41

MVDR-HBT
(5, 5) 7.07 45.0

48.58 3.58
HBT 49.39 4.39

200~2000

MVDR-HBT
(2.5, 2) 3.20 51.34

50.57 0.77
HBT 52.82 1.48

MVDR-HBT
(5, 5) 7.07 45.0

47.78 2.78
HBT 48.43 3.43

5. Summary and Conclusions

In this paper, we introduced a sound source localization method, called MVDR-HBT,
that combines MVDR and HBT interference based on the sound field for target localization.
We analyzed the feasibility of this method from a theoretical perspective and conducted
simulations and experiments to evaluate its performance. The simulation results showed
that the method achieved precise localization of a sound source target in a remote, low-SNR
environment, and the localization accuracy obtained using MVDR-HBT was significantly
better than that obtained using the HBT method. This confirmed the effectiveness and
superiority of the proposed method in low-SNR environments. In addition, we experimen-
tally verified the localization performance and anti-interference ability of the proposed
algorithm in real environments. Our results demonstrate the potential for application of
this algorithm in more complex environments. In short, this research into high-precision
sound source localization in complex environments has significant implications.
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