
Citation: Zhang, S.; Wu, J.; Zhang,

M.; Yang, W. Dynamic Malware

Analysis Based on API Sequence

Semantic Fusion. Appl. Sci. 2023, 13,

6526. https://doi.org/10.3390/

app13116526

Academic Editor: Giacomo Fiumara

Received: 15 March 2023

Revised: 20 May 2023

Accepted: 23 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Dynamic Malware Analysis Based on API Sequence
Semantic Fusion
Sanfeng Zhang 1,2 , Jiahao Wu 1, Mengzhe Zhang 1 and Wang Yang 1,2,*

1 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China;
sfzhang@seu.edu.cn (S.Z.)

2 Key Laboratory of Computer Network and Information Integration, Ministry of Education,
Southeast University, Nanjing 211189, China

* Correspondence: wang.yang@seu.edu.cn

Abstract: The existing dynamic malware detection methods based on API call sequences ignore
the semantic information of functions. Simply mapping API to numerical values does not reflect
whether a function has performed a query or modification operation, whether it is related to network
communication, the file system, or other factors. Additionally, the detection performance is limited
when the size of the API call sequence is too large. To address this issue, we propose Mal-ASSF, a
novel malware detection model that fuses the semantic and sequence features of the API calls. The
API2Vec embedding method is used to obtain the dimensionality reduction representation of the
API function. To capture the behavioral features of sequential segments, Balts is used to extract the
features. To leverage the implicit semantic information of the API functions, the operation and the
type of resource operated by the API functions are extracted. These semantic and sequential features
are then fused and processed by the attention-related modules. In comparison with the existing
methods, Mal-ASSF boasts superior capabilities in terms of semantic representation and recognition
of critical sequences within API call sequences. According to the evaluation with a dataset of malware
families, the experimental results show that Mal-ASSF outperforms existing solutions by 3% to 5% in
detection accuracy.

Keywords: malware; dynamic analysis; API call sequence; semantic feature; fusion

1. Introduction

Background of Malware. Malware presents significant challenges to the security of
network services and data assets and causes substantial economic losses to enterprises and
individuals. An explosive growth trend is being observed in various types of high-risk
malware, including spyware, botnets, ransomware, rootkits, and mining programs [1]. In
the first quarter of 2021 alone, McAfee reported that more than 87 million new malicious
samples were captured, involving about 930,000 new maliciously signed binary files [2].
Over one million suspicious files are uploaded to VirusTotal on a daily basis [3]. The
explosive growth in the number of new variants and malware samples presents a serious
challenge to the existing detection methods. It is difficult to cope with it through detection
methods that simply use manual signatures [4] and feature code matching [5].

Background of Dynamic Analysis. Malware analysis methods can be classified into
static and dynamic malware analysis [6]. Static analysis methods are seriously challenged
when they face obfuscation techniques [7,8] and zero-day or polymorphic malware. Static
analysis approaches tend to be low-cost but unreliable. Dynamic analysis refers to the
execution and analysis of malicious samples in a controlled environment. Malicious
behaviors must be implemented through underlying system API calls [9]. System APIs
are usually called to obtain the relevant system permissions, modify the registry, establish
network communication, monitor GUI operations, and detect sandboxes. Dynamic analysis
methods are widely considered to be more resistant to interference by monitoring these

Appl. Sci. 2023, 13, 6526. https://doi.org/10.3390/app13116526 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116526
https://doi.org/10.3390/app13116526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6626-0487
https://doi.org/10.3390/app13116526
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116526?type=check_update&version=3

Appl. Sci. 2023, 13, 6526 2 of 16

sensitive operations [10]. The existing dynamic analysis methods commonly trace these
sensitive system API call behaviors, establish API call sequences, or directed behavioral
graphs, and then analyze them by machine learning or deep learning methods [11,12].

Limitation of Existing Works. In recent decades, deep learning models, including
CNN, RNN, LSTM, and BiLSTM, have been widely used to automatically obtain sequence
features and locate malicious behaviors. However, recent studies [13–15] revealed that
these models can be deceived through packing and black-box attacking technologies for
both static and dynamic features.

There are two reasons for this issue. Firstly, simply mapping APIs to numerical
values ignores the inherent semantic features of a function. An API function may perform
a query or modification operation, and it may be related to network communication,
the file system, or other factors. Simple numerical values cannot reflect these features.
Secondly, existing models cannot reflect the sequential characteristics well. These models
are not well equipped to handle large datasets. There is a universal decrease in model
performance when these models are presented with a dataset containing excessive types of
APIs, oversize feature sets, and overlong sequences. Therefore, the API call sequences are
usually modified in such a way that key API information is ignored, resulting in degraded
detection performance.

Goals and Approaches. It is considered that the sequence context and implicit se-
mantics of functions play a crucial role in the classification of API call sequences. The
function name of APIs implies several semantics, indicating various actions such as read-
ing, writing, searching, and downloading, as well as various associated resources such as
system privileges, networks, registry, and GUI interfaces. Encoding the API call sequence
with one-hot vectors not only results in high-dimensional vectors but also leads to the
loss of key semantic information. Techniques such as processing text sequences [16] and
word embedding in natural language processing [17] can be employed to aid in dimension
reduction and semantic representation.

As a deep learning-based malicious malware detection method, feature selection is
not required. Starting from the sequence of API functions, the goal of this paper is to map
each function into different operation types and resource-associated types according to its
textual name, encode the API sequence into a high-dimensional matrix in the preprocessing
stage, reduce matrix dimension through API embedding operations, obtain fused sequence
features based on BiLSTM and TextRNN models, and perform classification output at
last. By integrating the sequential features of API sequences and the semantic features of
functions, this method can achieve better classification performance.

Contributions. Focusing on dynamic features, we proposed a malicious code de-
tection model based on API-Sequence-Semantic Fusion (Mal-ASSF). We utilize various
technologies, including API2Vec, TextRNN, BiLSTM, and self-attention mechanisms, to
enhance the model. Our research has made the following contributions:

• API2Vec is a class of neural network models that can produce a corresponding vector
for each unique API element in a continuous space in which the linguistic contexts of
APIs can be observed. It is used to obtain the dimensionality reduction representation
of the API call sequences. When establishing the correlation between APIs, we use a
bidirectional long short-term memory network (BiLSTM) to capture the behavioral
features of segments of different lengths.

• A pair of operation and type, separately representing the verb and the objective in
the function name, is designed to represent the API functions. To fully discover the
implicit semantic information of API functions, we construct the core model based on
TextRNN and the self-attention mechanism, where the sequence feature and semantic
feature of API are fused, and the suspected malicious segments of the sequences are
focused on adaptively.

• To evaluate the effectiveness of Mal-ASSF, we applied a systematic experiment to a
large dataset of malware families. We build up a confusion matrix to analyze the
performance of Mal-ASSF under different classification tasks. We perform experimen-

Appl. Sci. 2023, 13, 6526 3 of 16

tal comparisons of different sequence lengths and determine whether to deduplicate.
We compare Mal-ASSF with machine learning and other deep learning methods for
classifying malicious code. We conduct ablation experiments to verify the effective-
ness of each module in Mal-ASSF. The experimental results show that it achieves
higher detection accuracy than related work, especially in the case of malware family
classification and newer malware samples.

The rest of this paper is organized as follows: Section 2 reviews related work on
malware detection based on dynamic analysis; Section 3 describes our proposed model
in detail; Section 4 presents our experimental setup and results; Section 5 discusses the
advantages and limitations of our approach, and concludes this paper and suggests future
work.

2. Related Work

Dynamic Malware Analysis. API call sequences are considered a representative
technique for understanding the behavioral characteristics of malware. To obtain API
call sequences, the malicious code is executed within a regulated environment such as
Cuckoo or Virmon sandboxes [18]. Throughout the execution process, dynamic behaviors
are continuously observed and subsequently traced. Typically, malware requires the launch
of multiple processes to accomplish specific behaviors. The process may additionally entail
the utilization of multiple threads. From the perspective of the API sequence of a single
thread, it may be benign, but the API sequence of all threads as a whole may pose risks.
Dynamic analysis considers the API calls of all related threads as a whole. The report
generated from dynamic analysis outlines the conduct of malicious executables during
their operation on affected hosts. This behavior can encompass downloading infected files
from the Internet, performing harmful OS tasks, altering or erasing files, configuring or
modifying system registries, remotely extracting vulnerable data, preventing authorized
users from accessing resources, and slowing down the network, among other potential
activities.

Dynamic Malware Analysis Based on Feature Engineering and Machine Learning.
From these dynamic features, machine learning models, including K-Nearest Neighbors
(KNN), Naive Bayes (NB), Decision Trees (DT), and Support Vector Machines (SVM), are
utilized to classify the samples. [19–23]. Based on the sequence of API calls, a C4.5 decision
tree was applied to build a supervised learning model that distinguishes malware from
benign files [19]. Singh et al. [22] extracted API calls as well as other behaviors such as
file operations, registry modifications, and network activities and used a random forest
(RF) method for classification. AL Ahmadi [23] built a supervised malware classifier based
on KNN and RF by mining features from network flow sequences. Despite their efficacy
on the test set, these approaches heavily depend on feature engineering and necessitate
the expertise of practitioners to select and refine suitable features. With the evolution of
malicious code and the improvement of resistance capabilities, the refinement of feature
engineering becomes an ongoing necessity.

Dynamic malware analysis based on deep learning. Deep learning has the capability
to detect sequence features and autonomously identify malicious behaviors [24]. Therefore,
it is an effective tool for tackling the issue of malware classification [6,25,26].

Vinayakumar et al. [25] proposed a DNN-based model to develop a flexible and
effective IDS to detect and classify unforeseen and unpredictable cyberattacks. Their re-
search paper has been widely cited as it introduced deep learning techniques to the field
of dynamic malware analysis. However, the model is insufficient for representing the
sequential dependencies among the API calls made by malware. Jha et al. [27] used RNN
and word2vec to identify malware instances. The experimental outcomes demonstrated
that optimal classification accuracy is attainable when utilizing relatively short sequence
features (50–500). Conversely, inadequate classification performance was observed with
long sequences. Catak et al. [28] used word embeddings and a two-tier LSTM model to
capture the correlation among API calls in sequences. To carry out a control experiment,

Appl. Sci. 2023, 13, 6526 4 of 16

they employed the TF-IDF method and vectorized the textual dataset using term frequency
and inverse document frequency techniques. The experimental outcomes demonstrated
that LSTM-based malware classification performed better than conventional machine learn-
ing algorithms, such as TF-IDF-based classification. However, this approach employs a
unidirectional LSTM and only considers historical API relationships while ignoring API
information in the future. Abusnaina et al. [29] investigated the behavioral features of
Windows APIs invoked by malware during runtime. They introduced the BiLSTM network
and utilized it to model the sequential dependencies between API calls of malware in both
forward and backward directions. The model presented demonstrated favorable effective-
ness in classifying malware families and exhibits the capability to combat heuristic-based
malware that leverages uncorrelated API sequence embedding. However, the sequence
length of the dataset in this method is too short to objectively describe the API calls in
the real world. All these methods above directly use the sequence information of the
API for behavior modeling and do not take the semantic relationship between APIs into
consideration.

Amer et al. [30] used word embedding to capture the contextual relationship that exists
between API functions in malware call sequences. Based on the contextual similarity, related
APIs are clustered, and a simple behavioral graph is constructed to characterize malware.
To detect such malware, they utilized a Markov chain model. Their work is instructive in
proposing a technique for representing the semantic characteristics of API functions within
a contextual framework. Kang et al. [17] proposed a word2vec-driven technique for word
embedding to evaluate opcodes and API function names with fewer dimensions. Every
API incorporates a substantial amount of semantic information, including but not limited
to categories, operations, parameters, and return values. This information can facilitate
detection models comprehension of API sequences with greater precision. Zhang et al. [30]
proposed a predefined method to transform the API call semantic vector. This technique
employs a hash method, which is capable of extracting information pertaining to the API
call’s name, category, and parameters. The latest research has been conducted by Daeef
et al. [31] to implement deep graph convolutional neural networks (DGCNNs) for malware
analysis. However, the result showed that it performed quite similarly to the traditional
method of RF. All these methods are inadequate in terms of extracting API features as
well as including excessive superfluous information, ultimately resulting in ineffective
identification and the learning of implicit data pertaining to function APIs.

Dynamic malware detection based on semantic and sequential features of API call
sequences. Chen et al. [32] present a deep neural network-based malware detection
approach where API call sequences are augmented with parameters. Clustering-based
classification is employed to select malicious behavior-sensitive parameters. Through this
method, the semantic relationship of APIs in terms of security is presented. Furthermore, Li
et al. [33] extract semantic features from API names and arguments and adopt an API call
graph to convert the relationship between API calls into the structural information of the
graph. Balan et al. [34] present an ANN-based model focusing on sequence-pattern feature
mining. Their experimental results show that the sequence pattern of OS API-related call
sequences plays an important role in malware detection. Nawa et al. [35] also explore the
sequential pattern of API call sequences, and maximal and closed frequent API call patterns
are utilized for malware classification. Compared to these works, in this paper we not only
focus on exploring the semantic features of API functions but also integrate sequential
features to obtain better performance with the classification of families of malware.

In summary, current work on dynamic feature analysis using functional calls of API
sequences is inadequate for accurately representing the behavior patterns of malicious
families. The performance of the existing classification approach fails to fulfill the require-
ments for accurately classifying various families of malicious codes. In Mal-ASSF, we fuse
the semantic and sequence features and adopt a self-attention mechanism to enhance the
effectiveness of malware family detection in the case of an excessive number of API types,
oversized feature sets, and excessively long sequences. The experimental results reveal that

Appl. Sci. 2023, 13, 6526 5 of 16

Mal-ASSF has achieved a detection enhancement of approximately 3% to 5% in comparison
to contemporary methods for dynamic analysis.

3. Methodology

In this section, we introduce the key design of Mal-ASSF to determine the API behavior
for dynamic malware analysis.

3.1. Overview

The overall structure of the Mal-ASSF model is shown in Figure 1. The input of
the Mal-ASSF framework is a well-labeled API sequence (for the stage where the trained
model is used) or an unknown sample (for the stage where the trained model is used for
classification). API sequences are extracted from the operation analysis report of executable
file samples. API sequences are processed in parallel by the sequence feature module
and the TextRNN feature module. The API sequence is converted into two-dimensionally
reduced sequences. Then, the classification results will be drawn through the fusion
module, the attention module, and the final MLP classifier module.

Appl. Sci. 2023, 13, 6526 5 of 16

effectiveness of malware family detection in the case of an excessive number of API types,
oversized feature sets, and excessively long sequences. The experimental results reveal
that Mal-ASSF has achieved a detection enhancement of approximately 3% to 5% in com-
parison to contemporary methods for dynamic analysis.

3. Methodology
In this section, we introduce the key design of Mal-ASSF to determine the API behav-

ior for dynamic malware analysis.

3.1. Overview
The overall structure of the Mal-ASSF model is shown in Figure 1. The input of the

Mal-ASSF framework is a well-labeled API sequence (for the stage where the trained
model is used) or an unknown sample (for the stage where the trained model is used for
classification). API sequences are extracted from the operation analysis report of executa-
ble file samples. API sequences are processed in parallel by the sequence feature module
and the TextRNN feature module. The API sequence is converted into two-dimensionally
reduced sequences. Then, the classification results will be drawn through the fusion mod-
ule, the attention module, and the final MLP classifier module.

Figure 1. Overall architecture of the Mal-ASSF framework.

In the preparation process, we run the executable file samples in a security sandbox
environment to obtain the operation analysis report in JSON format. We extract the API
call information, which is recorded in order, from the report.

In the sequence feature module, to represent API behavior, we adopt API2Vec embed-
ding and BiLSTM. Through dimensionality reduction and convolution operations, func-
tional behavior with different lengths can be captured. The APIs are then converted into
a sequential chain.

In the TextRNN feature module, the API semantic chain of function names is trans-
ferred into a vectorized representation containing operation type encoding and operation
object encoding by the embedding layer, and the implicit semantic features are extracted
by the BiLSTM layer.

In the fusion module, the outputs of the API embedding module and the API implicit
semantic extraction module are concatenated together to obtain all the features of the API
sequences.

In the attention module, the attention mechanism is used to calculate the weight cor-
responding to each positioning element so that the model can focus on some malicious
segments.

Figure 1. Overall architecture of the Mal-ASSF framework.

In the preparation process, we run the executable file samples in a security sandbox
environment to obtain the operation analysis report in JSON format. We extract the API
call information, which is recorded in order, from the report.

In the sequence feature module, to represent API behavior, we adopt API2Vec em-
bedding and BiLSTM. Through dimensionality reduction and convolution operations,
functional behavior with different lengths can be captured. The APIs are then converted
into a sequential chain.

In the TextRNN feature module, the API semantic chain of function names is trans-
ferred into a vectorized representation containing operation type encoding and operation
object encoding by the embedding layer, and the implicit semantic features are extracted
by the BiLSTM layer.

In the fusion module, the outputs of the API embedding module and the API implicit
semantic extraction module are concatenated together to obtain all the features of the API
sequences.

In the attention module, the attention mechanism is used to calculate the weight
corresponding to each positioning element so that the model can focus on some malicious
segments.

In the MLP classifier module, we apply a fully connected layer MLP for classification.
Dropout is adopted to reduce overfitting. Softmax is used to calculate the probability of
malware classification. The module uses an Adam optimizer with binary cross-entropy as
the loss function.

Appl. Sci. 2023, 13, 6526 6 of 16

The subsequent paragraphs of this section will provide a detailed account of the data
processing mechanism.

3.2. Detailed Archetecture
3.2.1. Data Preparation

In the preparation process, the API call information is extracted from the operation
analysis report. However, the API call information should be preprocessed. To evade
existing feature detection, malicious code is often inserted into benign code or obfuscated
with a considerable number of APIs with no actual function. Therefore, the API call
sequence obtained by sandbox sampling must be of sufficient length (thousands at least),
which means the length of the API call information samples far exceeds common sequence
length for classification problems such as emotion recognition and comment classification.
Additionally, there are some short-call sequence samples for classification.

Therefore, truncation and padding operations should be performed for the API se-
quences to be trimmed to the same length. The data preparation provides convenience for
the subsequent process.

3.2.2. Vectorized Representation Based on API2Vec

To express the relationship between functions in API sequences and reduce the amount
of computation, we map the API call sequences from strings into vectors.

One-hot encoding is well known as a traditional method for vectorization. However,
this method is associated with several problems. Firstly, the relationship between APIs is in-
dependent through one-hot encoding, which means that the lack of contextual connections
is evident. Additionally, the feature vectors will be quite sparse and bring challenges to
the subsequent process. To address this problem, we use an API2Vec vectorization method
based on Word2Vec to perform word embedding operations on APIs.

In the API2Vec vectorization method, we vectorize string data through a shallow
neural network, and the semantic information of the words is represented in the form
of word vectors. Through this approach, we reduce the dimensionality of word vectors,
and the word vectors corresponding to APIs with similar semantics are also similar. For
example, the system functions NtOpenFile and NtReadFile both belong to file operations.
NtOpenFile is used to open a file, and NtReadFile is used to read a file, which means the
two functions are semantically similar. Then, in the new multi-dimensional space, the
expressed word vector should also be relatively close. On the contrary, the RegOpenKeyEx
function is used to open a specified registry key, which is different from the former file
operation functions, and the distance of the word vectors is relatively far.

The training process of API2Vec is shown in Figure 2. The detailed illustrations are as
follows:

• We first encode the API information through one-hot encoding to obtain a high-
dimensional sparse feature vector.

• We then train a shallow neural network to obtain the hidden layer weight of each
API. The input layer and the hidden layer weights are jointly calculated to obtain the
output vector, which is also the word vector form of the API and can uniquely identify
each API. We use the Skip-Gram model for weight training due to the relatively small
association between APIs. Assuming that an API is represented by a 32-dimensional
vector feature, for 295 kinds of APIs, compared to the 295-dimensional one-hot encod-
ing form, the API2Vec method can be used to reduce the dimension of the word vector
to 32 dimensions.

• The word vector representation of each API name with a fixed dimension is finally
calculated and stored in the form of a dictionary.

Appl. Sci. 2023, 13, 6526 7 of 16

Appl. Sci. 2023, 13, 6526 7 of 16

• The word vector representation of each API name with a fixed dimension is finally
calculated and stored in the form of a dictionary.

Figure 2. Schematic diagram of the API2Vec training process.

Through the vectorization of the name of each function in API sequences, the distance
relationship between functions can be better expressed, and the amount of computation
is reduced through moderate dimensionality reduction, which facilitates the model to ef-
ficiently learn features in a specific functional sequence.

3.2.3. API Implicit Semantic Sequence Feature Extraction
To capture the implicit information behind APIs, we use triples for descriptions. As-

suming that 𝑃௜ is a pair representation of the i-th API in the sequence, then the represen-
tation of 𝑃௜ can be shown in Equation (1). 𝑃௜ =< 𝑂, 𝑇 > (1)

where 𝑂 stands for operation and 𝑇 stands for type.
Operation refers to the actions of APIs. According to the analysis of common func-

tions, we extracted about 50 verbs from common API names to establish the operation set
shown in Table 1. Elements of the set basically outline the core operations of API function
calls. The operations can be extracted and stored in the form of a dictionary through a
string extraction algorithm.

Table 1. The operation set of APIs.

Operation Set
‘allocate’, ‘accept’, ‘bind’, ‘close’, ‘compress’, ‘connect, ‘control’, ‘copy’, ‘crack’, ‘decode’,
‘decrypt’, ‘delete’, ‘download’, ‘draw’, ‘encode’, ‘exec’, ‘exit’, ‘export’, ‘free’, ‘find’, ‘get’,

‘hash’, ‘initialize’, ‘listen’, ‘ls’, ‘load’, ‘lookup’, ‘make’, ‘map’, ‘move’, ‘open’, ‘put’,
‘query’, ‘read’, ‘recv’, ‘register’, ‘remove’, ‘save’, ‘search’, ‘send’, ‘select’, ‘set’, ‘shut-

down’, ‘socket’, ‘start’, ‘suspend’, ‘unhook’, ‘unload’, ‘write’

Type refers to the API classification given in the Cuckoo sandbox. The APIs can be
divided into over 10 types, including system, network, process, registry, interface, and
others. The detailed type list is shown in Table 2.

Figure 2. Schematic diagram of the API2Vec training process.

Through the vectorization of the name of each function in API sequences, the distance
relationship between functions can be better expressed, and the amount of computation
is reduced through moderate dimensionality reduction, which facilitates the model to
efficiently learn features in a specific functional sequence.

3.2.3. API Implicit Semantic Sequence Feature Extraction

To capture the implicit information behind APIs, we use triples for descriptions. As-
suming that Pi is a pair representation of the i-th API in the sequence, then the representation
of Pi can be shown in Equation (1).

Pi =< O, T > (1)

where O stands for operation and T stands for type.
Operation refers to the actions of APIs. According to the analysis of common functions,

we extracted about 50 verbs from common API names to establish the operation set shown
in Table 1. Elements of the set basically outline the core operations of API function calls.
The operations can be extracted and stored in the form of a dictionary through a string
extraction algorithm.

Table 1. The operation set of APIs.

Operation Set

‘allocate’, ‘accept’, ‘bind’, ‘close’, ‘compress’, ‘connect, ‘control’, ‘copy’, ‘crack’, ‘decode’, ‘decrypt’,
‘delete’, ‘download’, ‘draw’, ‘encode’, ‘exec’, ‘exit’, ‘export’, ‘free’, ‘find’, ‘get’, ‘hash’, ‘initialize’,
‘listen’, ‘ls’, ‘load’, ‘lookup’, ‘make’, ‘map’, ‘move’, ‘open’, ‘put’, ‘query’, ‘read’, ‘recv’, ‘register’,
‘remove’, ‘save’, ‘search’, ‘send’, ‘select’, ‘set’, ‘shutdown’, ‘socket’, ‘start’, ‘suspend’, ‘unhook’,

‘unload’, ‘write’

Type refers to the API classification given in the Cuckoo sandbox. The APIs can be
divided into over 10 types, including system, network, process, registry, interface, and
others. The detailed type list is shown in Table 2.

Table 2. The types of APIs.

Type Set

‘system’, ‘network’, ‘process’, ‘file’, ‘registry’, ‘service’, ‘ui’, ‘crypto’, ‘ole’, ‘exception’, ‘none’,
‘certificate’, ‘misc’, ‘netapi’, ‘resource’, ‘iexplore’

According to the descriptions above, each function of the API sequence can be de-
scribed as a pair P, according to the implicit information. Examples are shown in Table 3.

Appl. Sci. 2023, 13, 6526 8 of 16

Table 3. Examples of API implicit semantic extraction.

API Operation Type

RegOpenKeyExW open registry
RegQueryValueExW query registry
NtCreateThreadEx create process

GetSystemInfo get system
DeleteFileW delete file

The pairs formed by each API are connected in sequence to form a pair sequence to
generate an implicit semantic chain of sequence information. The process of converting
each sample into a semantic chain and performing feature mapping is shown in Figure 3.

Appl. Sci. 2023, 13, 6526 8 of 16

Table 2. The types of APIs.

Type Set
‘system’, ‘network’, ‘process’, ‘file’, ‘registry’, ‘service’, ‘ui’, ‘crypto’, ‘ole’, ‘exception’,

‘none’, ‘certificate’, ‘misc’, ‘netapi’, ‘resource’, ‘iexplore’

According to the descriptions above, each function of the API sequence can be de-
scribed as a pair 𝑃, according to the implicit information. Examples are shown in Table 3.

Table 3. Examples of API implicit semantic extraction.

API Operation Type
RegOpenKeyExW open registry

RegQueryValueExW query registry
NtCreateThreadEx create process

GetSystemInfo get system
DeleteFileW delete file

The pairs formed by each API are connected in sequence to form a pair sequence to
generate an implicit semantic chain of sequence information. The process of converting
each sample into a semantic chain and performing feature mapping is shown in Figure 3.

Figure 3. Schematic diagram of API implicit semantic feature mapping.

3.2.4. Sequence Feature Extraction Based on BiLSTM
Mal-ASSF adopts BiLSTM [36] to capture the complex calling relationship between

APIs. The two LSTMs are connected, and each input API sequence feature will be trained
and learned by the network in both forward and reverse directions. The network weights
of BiLSTM are shared, which can accurately reflect the sequence features of malicious code
families. Figure 4 shows the schematic diagram of BiLSTM unfolding at time 𝑡 െ 1, 𝑡, 𝑡 ൅1 according to the time axis, where 𝑥 is the input, ℎ is the hidden layer state, and 𝑦 is
the current output.

The two directions of BiLSTM at time 𝑡 can be calculated as shown in Equations (2)
and (3). ℎ௧ሬሬሬ⃗ = 𝐿𝑆𝑇𝑀ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൫𝑥௧, ℎ௧ିଵሬሬሬሬሬሬሬሬ⃗ ൯ (2)ℎ௧ሬ⃖ሬሬ = 𝐿𝑆𝑇𝑀ሬ⃖ሬሬሬሬሬሬሬሬሬሬ൫𝑥௧, ℎ௧ାଵሬ⃖ሬሬሬሬሬሬሬ൯ (3)

Figure 3. Schematic diagram of API implicit semantic feature mapping.

3.2.4. Sequence Feature Extraction Based on BiLSTM

Mal-ASSF adopts BiLSTM [36] to capture the complex calling relationship between
APIs. The two LSTMs are connected, and each input API sequence feature will be trained
and learned by the network in both forward and reverse directions. The network weights
of BiLSTM are shared, which can accurately reflect the sequence features of malicious code
families. Figure 4 shows the schematic diagram of BiLSTM unfolding at time t− 1, t, t + 1
according to the time axis, where x is the input, h is the hidden layer state, and y is the
current output.

Appl. Sci. 2023, 13, 6526 9 of 16

Figure 4. Schematic diagram of the BiLSTM model.

After processing the features of API sequences and implicit semantics by embedding
operations, these vectorized data can be input into the BiLSTM networks.

The API embedding and BILSTM convolution operations within two parallel mod-
ules actually extract the sequence features and TextRNN features of API sequences, re-
spectively. While learning API sequential relationships and semantic features, Mal-ASSF
can also pay attention to the calling sequence. Certain types of malicious code families
have distinct sequence features, so using the BiLSTM network to capture the sequence
features of API calls is helpful for the identification of malicious code family features.

3.2.5. Key API Sequence Recognition Based on the Attention Mechanism
Mal-ASSF applies an attention module for the recognition of key API sequences. The

module consists of three computational stages, as follows:
(1) The dot product is used to calculate the correlation between the two sides, as shown

in Equation (4). 𝑆𝑖𝑚ሺ𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦௜ሻ = 𝑄𝑢𝑒𝑟𝑦 ∙ 𝐾𝑒𝑦௜ (4)

(2) The Softmax function is introduced to numerically transform the scores calculated in
the first stage. As shown in Equation (5), normalization is performed, and important
factor weights are highlighted. 𝑎௜ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑆𝑖𝑚௜ሻ = 𝑒ௌ௜௠೔∑ 𝑒ௌ௜௠ೕ௅ೣ௝ୀଵ (5)

(3) The 𝑎௜ calculated in the second stage is the weight coefficient corresponding to 𝑉𝑎𝑙𝑢𝑒௜. The attention value can be calculated by weighted summation. In this way, the
attention value of each element can be calculated. as shown in Formula (6).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄𝑢𝑒𝑟𝑦, 𝑆𝑜𝑢𝑟𝑐𝑒ሻ =෍𝑎௜ ∗ 𝑉𝑎𝑙𝑢𝑒௜௅௫
௜ୀଵ (6)

Mal-ASSF regards the constituent elements in the data as a series of < 𝐾𝑒𝑦, 𝑉𝑎𝑙𝑢𝑒 >
data pairs. Given an element 𝑄𝑢𝑒𝑟𝑦 in the target, by calculating the similarity between 𝑄𝑢𝑒𝑟𝑦 and each 𝐾𝑒𝑦, the weight coefficient of each Key corresponding to the value can be
calculated. After the weighted summation of the values, the final attention value can be
obtained. Figure 5 is a computational process diagram of the attention mechanism.

Figure 4. Schematic diagram of the BiLSTM model.

Appl. Sci. 2023, 13, 6526 9 of 16

The two directions of BiLSTM at time t can be calculated as shown in Equations (2)
and (3).

→
ht =

−−−−→
LSTM

(
xt,
−−→
ht−1

)
(2)

←
ht =

←−−−−
LSTM

(
xt,
←−−
ht+1

)
(3)

After processing the features of API sequences and implicit semantics by embedding
operations, these vectorized data can be input into the BiLSTM networks.

The API embedding and BILSTM convolution operations within two parallel modules
actually extract the sequence features and TextRNN features of API sequences, respectively.
While learning API sequential relationships and semantic features, Mal-ASSF can also pay
attention to the calling sequence. Certain types of malicious code families have distinct
sequence features, so using the BiLSTM network to capture the sequence features of API
calls is helpful for the identification of malicious code family features.

3.2.5. Key API Sequence Recognition Based on the Attention Mechanism

Mal-ASSF applies an attention module for the recognition of key API sequences. The
module consists of three computational stages, as follows:

(1) The dot product is used to calculate the correlation between the two sides, as shown
in Equation (4).

Sim(Query, Keyi) = Query·Keyi (4)

(2) The Softmax function is introduced to numerically transform the scores calculated in
the first stage. As shown in Equation (5), normalization is performed, and important
factor weights are highlighted.

ai = So f tmax(Simi) =
eSimi

∑Lx
j=1 eSimj

(5)

(3) The ai calculated in the second stage is the weight coefficient corresponding to Valuei.
The attention value can be calculated by weighted summation. In this way, the
attention value of each element can be calculated. as shown in Formula (6).

Attention(Query, Source) =
Lx

∑
i=1

ai ∗Valuei (6)

Mal-ASSF regards the constituent elements in the data as a series of < Key, Value >
data pairs. Given an element Query in the target, by calculating the similarity between
Query and each Key, the weight coefficient of each Key corresponding to the value can be
calculated. After the weighted summation of the values, the final attention value can be
obtained. Figure 5 is a computational process diagram of the attention mechanism.

Appl. Sci. 2023, 13, 6526 10 of 16Appl. Sci. 2023, 13, 6526 10 of 16

Figure 5. Schematic diagram of the calculation process of the attention mechanism.

4. Experiment
In this section, we conduct a series of experiments to verify the effectiveness of our

Mal-ASSF model.
• A confusion matrix is built to analyze the performance of Mal-ASSF under different

classification tasks.
• The sequence length and whether to deduplicate the adjacent API may affect the per-

formance of Mal-ASSF. Therefore, this paper performs experimental comparisons of
different sequence lengths and determines whether to deduplicate.

• Mal-ASSF is compared with other methods for classifying malicious code based on
API sequences, including deep learning models such as TextCNN, CNN-LSTM, and
TextCNN-LSTM, as well as machine learning methods such as K-Nearest Neighbors
(KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and
gradient boosting (XGB). For the comparison method, we use publicly available al-
gorithms to run on the same dataset and evaluate the experimental results.

• Ablation experiments are performed to verify the effectiveness of each module in
Mal-ASSF. The performance of Mal-ASSF is compared with that of a model using
only one-hot encoding for word embedding, a model using one-way LSTM, and a
model without an attention mechanism.

4.1. Dataset
In our experiment, we adopt the dataset from the Alibaba Cloud Security Malware

Detection Competition [37], where the benign samples are collected from regular software
stores and the malicious samples are collected from the Internet and virus databases. The
dataset includes 12,390 samples from more than 70 million API calls after data filtering
and cleaning. The malicious samples include infectious viruses, Trojans, mining pro-
grams, ransomware, and others, and the labels have been verified by the Virus Total plat-
form. It should be noted that the official only provides samples in the form of API instruc-
tion sequences, which have been desensitized to ensure that these data will not be used
by attackers with malicious motives.

The category and number of samples are shown in Table 4. There are 7 types of sam-
ples, and the normal category accounts for the largest proportion, accounting for 40% of
all. Worm viruses accounted for the least, at only 0.8%. There is a problem of data imbal-
ance in each category of samples, which is of great significance for testing the classification
effect of the model.

Figure 5. Schematic diagram of the calculation process of the attention mechanism.

4. Experiment

In this section, we conduct a series of experiments to verify the effectiveness of our
Mal-ASSF model.

• A confusion matrix is built to analyze the performance of Mal-ASSF under different
classification tasks.

• The sequence length and whether to deduplicate the adjacent API may affect the
performance of Mal-ASSF. Therefore, this paper performs experimental comparisons
of different sequence lengths and determines whether to deduplicate.

• Mal-ASSF is compared with other methods for classifying malicious code based on
API sequences, including deep learning models such as TextCNN, CNN-LSTM, and
TextCNN-LSTM, as well as machine learning methods such as K-Nearest Neighbors
(KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and
gradient boosting (XGB). For the comparison method, we use publicly available
algorithms to run on the same dataset and evaluate the experimental results.

• Ablation experiments are performed to verify the effectiveness of each module in
Mal-ASSF. The performance of Mal-ASSF is compared with that of a model using only
one-hot encoding for word embedding, a model using one-way LSTM, and a model
without an attention mechanism.

4.1. Dataset

In our experiment, we adopt the dataset from the Alibaba Cloud Security Malware
Detection Competition [37], where the benign samples are collected from regular software
stores and the malicious samples are collected from the Internet and virus databases. The
dataset includes 12,390 samples from more than 70 million API calls after data filtering
and cleaning. The malicious samples include infectious viruses, Trojans, mining programs,
ransomware, and others, and the labels have been verified by the Virus Total platform.
It should be noted that the official only provides samples in the form of API instruction
sequences, which have been desensitized to ensure that these data will not be used by
attackers with malicious motives.

The category and number of samples are shown in Table 4. There are 7 types of
samples, and the normal category accounts for the largest proportion, accounting for
40% of all. Worm viruses accounted for the least, at only 0.8%. There is a problem of
data imbalance in each category of samples, which is of great significance for testing the
classification effect of the model.

Appl. Sci. 2023, 13, 6526 11 of 16

Table 4. The quantitative relationship and category attribution of malicious program samples.

Label Category Attribution Quantity

0 Normal software 4978
1 Ransomware 502
2 Mining program 1196
3 DDoS attack 820
4 Worm virus 100
5 Infectious virus 4279
6 Backdoor 515

Shown as Table 5, the table of the dataset includes the API sequences of all samples.
Each record includes 5 fields, f ile_id, label, API, tid, and index. All records of one sample
have the same file_id. The label field takes different values to represent benign samples
or different malware families. One malware or benign sample occupies thousands of
records in the table. The field API means the textual name of the API function. The
‘tid’ field represents the thread that called the API function. The ‘Index’ field represents
the sequence number of the API call in the same thread. The APIs inside the thread are
arranged according to the index number, and there is a sequential relationship. If there is
multithreading concurrency, API functions will not be sorted by thread sequence number.
According to statistics, the API call sequence in the dataset contains a total of 295 different
API names.

Table 5. Alibaba Cloud dataset inclusion list.

File_id Label API Tid Index

5 0 SetErrorMode 2500 0
5 0 LdrGetDllHandle 2500 1
5 0 LdrGetProcedureAddress 2500 2
5 0 GetSystemDirectoryA 2500 3

. .
5 0 SetErrorMode 2596 0
5 0 LdrGetDllHandle 2596 1

4.2. Results and Analysis
4.2.1. Confusion Matrix

Figure 6 illustrates the confusion matrix of the Mal-ASSF model proposed in this paper
for the seven-class classification of malicious code types.

Appl. Sci. 2023, 13, 6526 11 of 16

Table 4. The quantitative relationship and category attribution of malicious program samples.

Label Category Attribution Quantity
0 Normal software 4978
1 Ransomware 502
2 Mining program 1196
3 DDoS attack 820
4 Worm virus 100
5 Infectious virus 4279
6 Backdoor 515

Shown as Table 5, the table of the dataset includes the API sequences of all samples.
Each record includes 5 fields, 𝑓𝑖𝑙𝑒_𝑖𝑑, label, API, tid, and index. All records of one sample
have the same file_id. The label field takes different values to represent benign samples or
different malware families. One malware or benign sample occupies thousands of records
in the table. The field API means the textual name of the API function. The ‘tid’ field rep-
resents the thread that called the API function. The ‘Index’ field represents the sequence
number of the API call in the same thread. The APIs inside the thread are arranged ac-
cording to the index number, and there is a sequential relationship. If there is multithread-
ing concurrency, API functions will not be sorted by thread sequence number. According
to statistics, the API call sequence in the dataset contains a total of 295 different API names.

Table 5. Alibaba Cloud dataset inclusion list.

File_id Label API Tid Index
5 0 SetErrorMode 2500 0
5 0 LdrGetDllHandle 2500 1
5 0 LdrGetProcedureAddress 2500 2
5 0 GetSystemDirectoryA 2500 3

…… …… …… …… ……
5 0 SetErrorMode 2596 0
5 0 LdrGetDllHandle 2596 1

4.2. Results and Analysis
4.2.1. Confusion Matrix

Figure 6 illustrates the confusion matrix of the Mal-ASSF model proposed in this pa-
per for the seven-class classification of malicious code types.

Figure 6. Multiclass confusion matrix of the Alibaba Cloud dataset. Figure 6. Multiclass confusion matrix of the Alibaba Cloud dataset.

Appl. Sci. 2023, 13, 6526 12 of 16

The confusion matrix indicates that Mal-ASSF achieves high performance in most
categories. A small number of DDoS viruses are mistakenly classified as worm viruses.
This can be attributed to the fact that worm viruses have a similar mechanism of action as
DDoS viruses, and feature learning is insufficient due to the limited number of training
samples for worm viruses. Furthermore, some benign software samples are misclassified
as malicious categories, such as mining programs and backdoors, because they contain
mechanisms that resemble malicious behavior.

4.2.2. Effect of the API Sequence Length on the Performance of the Mal-ASSF Model

Figure 7 demonstrates the impact of varying sequence lengths on accuracy.

Appl. Sci. 2023, 13, 6526 12 of 16

The confusion matrix indicates that Mal-ASSF achieves high performance in most

categories. A small number of DDoS viruses are mistakenly classified as worm viruses.

This can be attributed to the fact that worm viruses have a similar mechanism of action as

DDoS viruses, and feature learning is insufficient due to the limited number of training

samples for worm viruses. Furthermore, some benign software samples are misclassified

as malicious categories, such as mining programs and backdoors, because they contain

mechanisms that resemble malicious behavior.

4.2.2. Effect of the API Sequence Length on the Performance of the Mal-ASSF Model

Figure 7 demonstrates the impact of varying sequence lengths on accuracy.

It can be concluded that within the range of 1000 to 6000, increasing the sequence

length enables more sequence features to be captured and thus enhances accuracy. Within

the range of 5000 to 6000, the accuracy gain is marginal (0.17%), while the cost of sampling

and training has become very high. Hence, the optimal sequence length for the experi-

ments in this paper is 5000.

Figure 7. Accuracy with different sequence lengths.

4.2.3. Comparison with API Frequency-Based Machine Learning Models

The proposed Mal-ASSF model achieves an accuracy of 94.49%, a precision of 94.01%,

a recall of 94.19%, and an F1-score of 0.9402 on the test set. Table 6 demonstrates that the

classification performance is markedly superior to other machine learning models. This

indicates that the classification based on the API frequency in the sequence fails to capture

the features in the sequence adequately, resulting in a relatively low multi-classification

performance. The classification accuracies of KNN, SVM, and DT are generally below

90%. RF and XGB employ the concept of ensemble learning to enhance accuracy to some

degree, achieving 90.4% and 91.8%, respectively, which illustrates the effectiveness of fea-

ture integration. Mal-ASSF also leverages the concept of feature combinations. The inte-

gration of API correlation and implicit semantic features enables the implicit model to

attain optimal classification outcomes.

Table 6. Comparison with machine learning model results.

Model Accuracy Precision Recall F1

KNN 86.46% 87.85% 85.76% 0.8681

SVM 88.46% 89.85% 85.76% 0.8775

DT 89.78% 89.17% 89.13% 0.8914

RF 9 0.45% 88.95% 91.54% 0.9023

XGB 9 1.84% 91.95% 91.54% 0.9177

Mal-ASSF 94.49% 94.01% 94.19% 0.9402

90.00%

90.50%

91.00%

91.50%

92.00%

92.50%

93.00%

93.50%

94.00%

94.50%

95.00%

1000 2000 3000 4000 5000 6000
Accuracy F1-score

Figure 7. Accuracy with different sequence lengths.

It can be concluded that within the range of 1000 to 6000, increasing the sequence
length enables more sequence features to be captured and thus enhances accuracy. Within
the range of 5000 to 6000, the accuracy gain is marginal (0.17%), while the cost of sampling
and training has become very high. Hence, the optimal sequence length for the experiments
in this paper is 5000.

4.2.3. Comparison with API Frequency-Based Machine Learning Models

The proposed Mal-ASSF model achieves an accuracy of 94.49%, a precision of 94.01%,
a recall of 94.19%, and an F1-score of 0.9402 on the test set. Table 6 demonstrates that the
classification performance is markedly superior to other machine learning models. This
indicates that the classification based on the API frequency in the sequence fails to capture
the features in the sequence adequately, resulting in a relatively low multi-classification
performance. The classification accuracies of KNN, SVM, and DT are generally below
90%. RF and XGB employ the concept of ensemble learning to enhance accuracy to some
degree, achieving 90.4% and 91.8%, respectively, which illustrates the effectiveness of
feature integration. Mal-ASSF also leverages the concept of feature combinations. The
integration of API correlation and implicit semantic features enables the implicit model to
attain optimal classification outcomes.

Table 6. Comparison with machine learning model results.

Model Accuracy Precision Recall F1

KNN 86.46% 87.85% 85.76% 0.8681
SVM 88.46% 89.85% 85.76% 0.8775
DT 89.78% 89.17% 89.13% 0.8914
RF 9 0.45% 88.95% 91.54% 0.9023

XGB 9 1.84% 91.95% 91.54% 0.9177
Mal-ASSF 94.49% 94.01% 94.19% 0.9402

Appl. Sci. 2023, 13, 6526 13 of 16

4.2.4. Comparison with Other Deep Learning Models

Figure 8a depicts the comparison between Mal-ASSF and other models. The precision-
recall curve is plotted with the precision value on the vertical axis and the recall value on
the horizontal axis. The curvature located in close proximity to the upper-right quadrant
suggests a positive relationship between the recall rate and the precision rate, whereby an
increase in the recall rate is associated with a corresponding increase in the precision rate.

Appl. Sci. 2023, 13, 6526 13 of 16

4.2.4. Comparison with Other Deep Learning Models
Figure 8a depicts the comparison between Mal-ASSF and other models. The preci-

sion-recall curve is plotted with the precision value on the vertical axis and the recall value
on the horizontal axis. The curvature located in close proximity to the upper-right quad-
rant suggests a positive relationship between the recall rate and the precision rate,
whereby an increase in the recall rate is associated with a corresponding increase in the
precision rate.

(a) PR curve (b) ROC curve

Figure 8. Comparison of the PR and ROC curves of different deep learning models.

The PR curve diagram illustrates that, in comparison to other models examined, the
Mal-ASSF model proposed in this study exhibits significant superiority. Figure 8b depicts
the ROC curves of the Mal-ASSF model in contrast with other models investigated in this
study. The PR curve diagram analysis reveals that the Mal-ASSF model displays superior
classification performance, as indicated by its closer proximity to the upper left corner of
the diagram. This finding is substantiated by the Mal-ASSF model’s achieved AUC value
of 0.992, which exceeds those of the comparison models, specifically 0.986 for TCNN-
LSTM, 0.972 for TextCNN, and 0.985 for CNN-LSTMs.

Table 7 presents the specific comparative outcomes between the Mal-ASSF model and
other deep learning models. According to the results presented in Table 7, the Mal-ASSF
model outperformed other models with an accuracy rate of 94.49% in accurately classify-
ing malicious code families. Additionally, the Mal-ASSF model demonstrated superior
precision rate, recall rate, and F1-score value compared to other models. The observed
accuracy rate of TextCNN amounts to merely 8.69%, which suggests that the utilization of
myriad convolution kernels is imperative for effective feature extraction from sequential
data. The CNN-LSTM and TextCNN-LSTM models exhibited an accuracy rate that sur-
passed 90%, underscoring the significance of preserving the sequential order relationship.

Table 7. Comparison in the results of the deep learning model.

Model Composition Accuracy Precision Recall F1
TEXTCNN 88.69% 88.59% 88.69% 0.8864

CNN-LSTM 90.23% 89.64% 90.23% 0.8993
TCNN-LSTM 92.13% 92.17% 92.13% 0.9215

Mal-ASSF 94.49% 94.01% 94.19% 0.9402

4.2.5. Ablation Experiment
In this study, the validation of the efficacy of individual modules within the fusion

model is performed via ablation experiments.
In Table 8, the record named “one hot” indicates using the one-hot encoding method

to replace the API2Vec module. The findings delineated indicate the API2Vec module has

Figure 8. Comparison of the PR and ROC curves of different deep learning models.

The PR curve diagram illustrates that, in comparison to other models examined, the
Mal-ASSF model proposed in this study exhibits significant superiority. Figure 8b depicts
the ROC curves of the Mal-ASSF model in contrast with other models investigated in this
study. The PR curve diagram analysis reveals that the Mal-ASSF model displays superior
classification performance, as indicated by its closer proximity to the upper left corner of
the diagram. This finding is substantiated by the Mal-ASSF model’s achieved AUC value
of 0.992, which exceeds those of the comparison models, specifically 0.986 for TCNN-LSTM,
0.972 for TextCNN, and 0.985 for CNN-LSTMs.

Table 7 presents the specific comparative outcomes between the Mal-ASSF model
and other deep learning models. According to the results presented in Table 7, the Mal-
ASSF model outperformed other models with an accuracy rate of 94.49% in accurately
classifying malicious code families. Additionally, the Mal-ASSF model demonstrated
superior precision rate, recall rate, and F1-score value compared to other models. The
observed accuracy rate of TextCNN amounts to merely 8.69%, which suggests that the
utilization of myriad convolution kernels is imperative for effective feature extraction
from sequential data. The CNN-LSTM and TextCNN-LSTM models exhibited an accuracy
rate that surpassed 90%, underscoring the significance of preserving the sequential order
relationship.

Table 7. Comparison in the results of the deep learning model.

Model Composition Accuracy Precision Recall F1

TEXTCNN 88.69% 88.59% 88.69% 0.8864
CNN-LSTM 90.23% 89.64% 90.23% 0.8993

TCNN-LSTM 92.13% 92.17% 92.13% 0.9215
Mal-ASSF 94.49% 94.01% 94.19% 0.9402

4.2.5. Ablation Experiment

In this study, the validation of the efficacy of individual modules within the fusion
model is performed via ablation experiments.

In Table 8, the record named “one hot” indicates using the one-hot encoding method to
replace the API2Vec module. The findings delineated indicate the API2Vec module has the

Appl. Sci. 2023, 13, 6526 14 of 16

most significant effect on the overall accuracy rate, while solely API encoding with one-hot
representation yields an accuracy rate of merely 87%. The incorporation of API implicit
semantics yields a noteworthy improvement of 2.1% in accuracy, thereby suggesting the
presence of additional features in the sequence data that are open to discovery. The
enhancement produced by BiLSTM exhibits a marginal impact of only 1.3%, suggesting
that the information acquired by the forward sequence alone is capable of capturing a
substantial number of features within the time series data. It can be observed that the
utilization of attention mechanisms results in an enhancement of the accuracy rate by
approximately 2%. The results of the ablation experiments demonstrate that each module
exhibits a discernible increase in the accuracy rate. The Mal-ASSF model proposed in this
research exhibits superior fusion capability and achieves peak levels of accuracy, precision,
recall, and F1 score.

Table 8. Comparison of the results of ablation experiments.

Ablation Part Accuracy Precision Recall F1-Score

one-hot 87.22% 87.63% 87.22% 0.8721
nosemantic 91.12% 91.21% 91.12% 0.9116

nobilstm 92.75% 92.55% 92.75% 0.9265
no-attention 92.13% 92.17% 92.13% 0.9215
Mal-ASSF 94.49% 94.01% 94.19% 0.9402

5. Conclusions

To address the problem that the dynamic feature set is too large to discover the key
hidden information, we propose a dynamic malware detection model, Mal-ASSF, based on
the fusion of sequential features and semantic features of API call sequences. In Mal-ASSF,
the API functions are represented by dimensionality reduction through word embedding.
The sequential behavioral features of different length segments are captured by multiple
convolution kernels. The information of the function API is depicted by a triplet of action,
type, category, and other information.

Mal-ASSF has advantages in the semantic representation and key sequence recognition
abilities of API call sequences. Compared with traditional machine learning methods such
as KNN, SVM, DT, RF, and XGB, the detection performance of Mal-ASSF is improved by
three to eight percentage points; compared with deep learning models such as TextCNN,
CNN + LSTM, and TextCNN + LSTM, the performance of the Mal-ASSF model is also
improved by two to five percentage points. However, through the ablation experiment, it
can be concluded that the improvement of the BiLSTM module is not particularly obvious.
Further studies can be conducted to obtain a better representation of semantic features
using pre-trained models.

Author Contributions: Conceptualization, S.Z. and W.Y.; methodology, S.Z. and M.Z.; software,
J.W. and M.Z.; validation, M.Z. and J.W.; formal analysis, J.W.; investigation, J.W.; resources, W.Y.;
data curation, M.Z.; writing—original draft preparation, S.Z.; writing—review and editing, J.W.;
visualization, M.Z.; supervision, W.Y.; project administration, W.Y.; funding acquisition, W.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program, grant
number 2018YFB1003800.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 6526 15 of 16

References
1. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Ransomware threat success factors, taxonomy, and countermeasures: A survey and

research directions. Comput. Secur. 2018, 74, 144–166. [CrossRef]
2. Mcafee Labs Threats Report. 2021. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-

2021.pdf (accessed on 25 March 2022).
3. VirusTotal File Statistics. 2020. Available online: https://www.virustotal.com/en/statistics (accessed on 20 June 2021).
4. Ye, Y.; Li, T.; Adjeroh, D.; Iyengar, S.S. A Survey on Malware Detection Using Data Mining Techniques. ACM Comput. Surv. 2017,

50, 1–40. [CrossRef]
5. Mohanta, A.; Saldanha, A. Malware Analysis and Detection Engineering: A Comprehensive Approach to Detect and Analyze Modern

Malware; Springer: Berlin/Heidelberg, Germany, 2020.
6. Aghakhani, H.; Gritti, F.; Mecca, F.; Lindorfer, M.; Ortolani, S.; Balzarotti, D.; Vigna, G.; Kruegel, C. When Malware is Packin’

Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features. In Proceedings of the Network and Distributed
Systems Security (NDSS) Symposium 2020, San Diego, CA, USA, 23–26 February 2020.

7. Mantovani, A.; Aonzo, S.; Ugarte-Pedrero, X.; Merlo, A.; Balzarotti, D. Prevalence and Impact of Low-Entropy Packing Schemes
in the Malware Ecosystem. In Proceedings of the NDSS, San Diego, CA, USA, 23–26 February 2020.

8. Sahay, S.K.; Sharma, A.; Rathore, H. Evolution of Malware and Its Detection Techniques. In Proceedings of the Information and
Communication Technology for Sustainable Development, New Delhi, India, 27–28 February 2020; pp. 139–150.

9. Mehrabi Koushki, M.; AbuAlhaol, I.; Raju, A.D.; Zhou, Y.; Giagone, R.S.; Shengqiang, H. On building machine learning pipelines
for Android malware detection: A procedural survey of practices, challenges and opportunities. Cybersecurity 2022, 5, 16.
[CrossRef]

10. Carlin, D.; O’Kane, P.; Sezer, S. A cost analysis of machine learning using dynamic runtime opcodes for malware detection.
Comput. Secur. 2019, 85, 138–155. [CrossRef]

11. Nguyen, T.N.; Ngo, Q.-D.; Nguyen, H.-T.; Nguyen, G.L. An Advanced Computing Approach for IoT-Botnet Detection in
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2022, 18, 8298–8306. [CrossRef]

12. Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic Black-Box End-to-End Attack Against State of the Art API Call Based
Malware Classifiers. In Proceedings of the Research in Attacks, Intrusions, and Defenses, Crete, Greece, 10–12 September 2018;
pp. 490–510.

13. Qiang, W.; Yang, L.; Jin, H. Efficient and Robust Malware Detection Based on Control Flow Traces Using Deep Neural Networks.
Comput. Secur. 2022, 122, 102871. [CrossRef]

14. Rosenberg, I.; Shabtai, A.; Elovici, Y.; Rokach, L. Query-Efficient Black-Box Attack Against Sequence-Based Malware Classifiers.
In Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020; pp. 611–626.

15. Huang, W.; Stokes, J.W. MtNet: A Multi-Task Neural Network for Dynamic Malware Classification. In Proceedings of the
Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastián, Spain, 7–8 July 2016; pp. 399–418.

16. Wang, Q.; Qian, Q. Malicious code classification based on opcode sequences and textCNN network. J. Inf. Secur. Appl. 2022, 67,
103151. [CrossRef]

17. Kang, J.; Jang, S.; Li, S.; Jeong, Y.-S.; Sung, Y. Long short-term memory-based Malware classification method for information
security. Comput. Electr. Eng. 2019, 77, 366–375. [CrossRef]

18. Pektaş, A.; Acarman, T. Classification of malware families based on runtime behaviors. J. Inf. Secur. Appl. 2017, 37, 91–100.
[CrossRef]

19. Suaboot, J.; Tari, Z.; Mahmood, A.; Zomaya, A.Y.; Li, W. Sub-curve HMM: A malware detection approach based on partial
analysis of API call sequences. Comput. Secur. 2020, 92, 101773. [CrossRef]

20. Jan, N.; Gwak, J.; Pei, J.; Maqsood, R.; Nasir, A. Analysis of Networks and Digital Systems by Using the Novel Technique Based
on Complex Fuzzy Soft Information. IEEE Trans. Consum. Electron. 2022, 69, 183–193. [CrossRef]

21. Fan, M.; Liu, J.; Luo, X.; Chen, K.; Tian, Z.; Zheng, Q.; Liu, T. Android Malware Familial Classification and Representative Sample
Selection via Frequent Subgraph Analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1890–1905. [CrossRef]

22. Singh, J.; Singh, J. Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms. Inf.
Softw. Technol. 2020, 121, 106273. [CrossRef]

23. AlAhmadi, B.A.; Martinovic, I. MalClassifier: Malware family classification using network flow sequence behaviour. In
Proceedings of the 2018 APWG Symposium on Electronic Crime Research (eCrime), San Diego, CA, USA, 15–17 May 2018; pp.
1–13.

24. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. IEEE Trans.
Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

25. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep Learning Approach for
Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. [CrossRef]

26. Jha, S.; Prashar, D.; Long, H.V.; Taniar, D. Recurrent neural network for detecting malware. Comput. Secur. 2020, 99, 102037.
[CrossRef]

27. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API
Calls. PeerJ Comput. Sci. 2020, 6, e285. [CrossRef] [PubMed]

https://doi.org/10.1016/j.cose.2018.01.001
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
https://www.virustotal.com/en/statistics
https://doi.org/10.1145/3073559
https://doi.org/10.1186/s42400-022-00119-8
https://doi.org/10.1016/j.cose.2019.04.018
https://doi.org/10.1109/TII.2022.3152814
https://doi.org/10.1016/j.cose.2022.102871
https://doi.org/10.1016/j.jisa.2022.103151
https://doi.org/10.1016/j.compeleceng.2019.06.014
https://doi.org/10.1016/j.jisa.2017.10.005
https://doi.org/10.1016/j.cose.2020.101773
https://doi.org/10.1109/TCE.2022.3226819
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1016/j.infsof.2020.106273
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1016/j.cose.2020.102037
https://doi.org/10.7717/peerj-cs.285
https://www.ncbi.nlm.nih.gov/pubmed/33816936

Appl. Sci. 2023, 13, 6526 16 of 16

28. Abusnaina, A.; Abuhamad, M.; Alasmary, H.; Anwar, A.; Jang, R.; Salem, S.; Nyang, D.; Mohaisen, D. DL-FHMC: Deep Learning-
Based Fine-Grained Hierarchical Learning Approach for Robust Malware Classification. IEEE Trans. Dependable Secur. Comput.
2022, 19, 3432–3447. [CrossRef]

29. Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 101760. [CrossRef]

30. Zhang, Z.; Qi, P.; Wang, W. Dynamic Malware Analysis with Feature Engineering and Feature Learning. Proc. AAAI Conf. Artif.
Intell. 2020, 34, 1210–1217. [CrossRef]

31. Daeef, A.Y.; Al-Naji, A.; Nahar, A.K.; Chahl, J. Features Engineering to Differentiate between Malware and Legitimate Software.
Appl. Sci. 2023, 13, 1972. [CrossRef]

32. Chen, X.; Hao, Z.; Li, L.; Cui, L.; Zhu, Y.; Ding, Z.; Liu, Y. CruParamer: Learning on Parameter-Augmented API Sequences for
Malware Detection. IEEE Trans. Inf. Forensics Secur. 2022, 17, 788–803. [CrossRef]

33. Li, C.; Cheng, Z.; Zhu, H.; Wang, L.; Lv, Q.; Wang, Y.; Li, N.; Sun, D. DMalNet: Dynamic malware analysis based on API feature
engineering and graph learning. Comput. Secur. 2022, 122, 102872. [CrossRef]

34. Balan, G.; GavriluŢ, D.T.; Luchian, H. Using API Calls for Sequence-Pattern Feature Mining-Based Malware Detection. In
Proceedings of the Information Security Practice and Experience, Taipei, Taiwan, 23–25 November 2022; pp. 233–251.

35. Nawaz, M.S.; Fournier-Viger, P.; Nawaz, M.Z.; Chen, G.; Wu, Y. MalSPM: Metamorphic malware behavior analysis and
classification using sequential pattern mining. Comput. Secur. 2022, 118, 102741. [CrossRef]

36. Agrawal, R.; Stokes, J.W.; Marinescu, M.; Selvaraj, K. Neural Sequential Malware Detection with Parameters. In Proceedings of
the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April
2018; pp. 2656–2660.

37. Alibaba Cloud Malware Detection Based on Behaviors. 2021. Available online: https://tianchi.aliyun.com/competition/
entrance/231694/information (accessed on 20 June 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TDSC.2021.3097296
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.1609/aaai.v34i01.5474
https://doi.org/10.3390/app13031972
https://doi.org/10.1109/TIFS.2022.3152360
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1016/j.cose.2022.102741
https://tianchi.aliyun.com/competition/entrance/231694/information
https://tianchi.aliyun.com/competition/entrance/231694/information

	Introduction
	Related Work
	Methodology
	Overview
	Detailed Archetecture
	Data Preparation
	Vectorized Representation Based on API2Vec
	API Implicit Semantic Sequence Feature Extraction
	Sequence Feature Extraction Based on BiLSTM
	Key API Sequence Recognition Based on the Attention Mechanism

	Experiment
	Dataset
	Results and Analysis
	Confusion Matrix
	Effect of the API Sequence Length on the Performance of the Mal-ASSF Model
	Comparison with API Frequency-Based Machine Learning Models
	Comparison with Other Deep Learning Models
	Ablation Experiment

	Conclusions
	References

