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Abstract: The interfacial friction performance of the liner system has an important influence on the
overall stability of modern landfills, but the interface of the liner system using conventional geomem-
branes may have problems such as shear failure and slip along the liner system. Accordingly, the
concept of a ribbed geomembrane was proposed. Based on the laboratory model tests, the variation
laws of p–s curves and the additional stress of sand were studied under different values of shape, rib
spacing, and rib height. A series of particle image velocimetry (PIV) analyses of sand particles were
performed to provide insight into the reinforcement mechanism of the ribbed geomembrane liner
system. The results indicated that the ribbed geomembrane could obviously improve the stability
of the liner system compared with the smooth geomembrane. The ribbed geomembrane formed an
indirect influence area with sand in a specific range. The ribbed geomembrane with optimal values
of rib spacing and rib height was beneficial to reduce the settlement of the upper sand and the stress
redistribution of the sand particles.

Keywords: ribbed geomembrane; laboratory model test; particle image velocimetry (PIV); liner
system; influence area

1. Introduction

Landfill liner systems are generally composed of cohesive soil and geosynthetic mate-
rials (e.g., geomembranes, geotextiles, etc.). As the shear strength of the interface between
geosynthetic materials is often less than the shear strength of the interface between the
overlying refuse and geosynthetic materials, instability often occurs between geosynthetic
materials in landfill liner systems. Therefore, the concept of the ribbed geomembrane was
proposed by Gao et al. [1].

Direct shear tests and theoretical analyses of the interface between ribbed geomem-
branes and geotextiles have shown that ribbed geomembranes can, to a certain extent,
effectively improve the frictional properties of the interface and mitigate the destabiliza-
tion of the liner system. Similar structural materials such as ribbed geomembranes have
also been investigated by domestic and international scholars. The theory of the indirect
influence zone was proposed by Bao [2], who pointed out that the reinforcing effect of
the reinforcing material would cause the soil around it to form a “reinforced soil body”.
Irsyam et al. [3] conducted a direct shear test on the geogrid using hot wax and obtained
the shear surface and displacement vector distribution of loose sand and dense sand at
different cross-rib spacing. The shear zone formation of H–V reinforced sand specimens
was numerically simulated in detail by Zhang et al. [4] to reveal the progressive damage law
of shear zone generation and expansion in H–V reinforced soils. Zhou et al. [5] and Yang
et al. [6] investigated the reinforcement length and height of the reinforced soil foundation
by indoor model tests and pointed out that the optimum reinforcement length was three
times the foundation width, and the optimum number of reinforcement layers was two to
three. Oda et al. [7] analyzed the generation and development of shear zones in the soil by
finite element simulation of triaxial tests.
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In order to study ribbed geomembranes in more depth, this paper investigates the
effects of rib shape, rib spacing, and rib height on the load settlement pattern of the ribbed
geomembrane–geotextile liner system and the additional stresses in the landfill sand based
on preliminary direct shear tests and reinforcement theory [8,9], with the aim of providing a
more comprehensive representation of the properties of the ribbed geomembrane–geotextile
interface through model tests and PIV analysis techniques.

2. Laboratory Tests
2.1. Devices

As shown in Figure 1, the test devices used in this research included a model test
system, a PIV system, and data acquisition systems. The model container (600 mm ×
290 mm × 400 mm) was composed of a 25 mm thick steel plate welding skeleton and
transparent high-strength plexiglass plates. The loading device was a dynamic triaxial
apparatus (GCTS). A 200 mm × 290 mm hardwood loading board was placed in the middle
of the top surface of the sand. The load was controlled at a uniform speed of 40 N/s
with a controlled stress method. Due to the limitations of the loading device, the loading
was terminated at 150 kPa. The test data were collected by a displacement gauge (YHD-
100; range 0–50 mm) and three sand pressure cells (range 0–500 kPa). The test data were
processed by the TK-ST-DA 16-channel wireless receiver, TK-ST wireless transceiver, and
supporting acquisition processing software. The PIV system consisted of a charge-coupled
device (CCD) camera (B5M16; 5 megapixels; image acquisition rate 11.3 frames per second)
and particle image velocimetry software PIVlab 2.40.
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Figure 1. Model test equipment for PIV investigation. 1© CCD camera; 2© Model container; 3© Load-
ing device; 4© PIV analysis software.

2.2. Materials

The specific gravity of the sand was 2.712, the water content was 1.51, the coefficient of uni-
formity was 2.07, and the coefficient of curvature was 0.87. The smooth geomembrane samples
were made of high-density polyethylene (HDPE) with a minimum density of 0.939 g/cm3. The
size of the smooth geomembrane sample was 360 mm × 290 mm × 1.5 mm, the yield strength
was 22 N/mm, and the breaking strength was 40 N/mm. The ribbed geomembrane sam-
ples were made by sticking ribs to the surface of the smooth geomembrane. In order to
prevent the ribs from falling off, they were nailed to the smooth geomembrane. The size of
the strip rib was 30 mm × 290 mm, and the block rib size was 30 mm × 30 mm. The layout
plan is shown in Figure 2.
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Figure 2. Layouts of ribbed geomembrane samples (unit: mm). (a) Strip rib. (b) Block rib.

A non-woven geotextile is a kind of permeable geosynthetic made of synthetic fibers
by acupuncture or knitting. During the test, the non-woven geotextile was tightly attached
to the geomembrane under the extrusion of the upper sand. The physical properties of the
non-woven geotextile sample are shown in Table 1.

Table 1. The physical properties of the non-woven geotextile sample.

Thickness (mm) Minimum
Density (g/m2)

Breaking
Intensity
(kN/m)

Puncture
Resistance of

CBR (kN)

Tearing
Strength (kN)

3 400 12.5 2.1 0.33

2.3. Test Plan

This paper used a ribbed geomembrane–geotextile liner system to study the settlement
and additional stress of landfill sand under different working conditions. The slope ratio
used in the laboratory tests was 1:1.5, and the landfill height was 300 mm, as shown in
Figure 3. As shown in Table 2, 19 test conditions were designed considering different
rib shapes, rib spacings, and rib heights. Three parallel tests were carried out for each
condition with the smooth geomembrane as a comparison.
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Table 2. Test conditions.

Rib Shape Rib Spacing
d (mm)

Rib Height
h (mm)

Strip rib, block rib, smooth 50, 60, 80 3, 4.5, 6

2.4. Test Procedure

The scale line and slope shape were marked on the model container before the test.
The compactness of the sand was ensured to 80% during the sand filling process, and the
foam board model was used to build the slope. In the process of filling sand, three sand
pressure cells were embedded in the specified positions. During the filling process, the
sand interface was kept flat with the scale line, and the slope surface was corrected after
filling to the specified height. After that, the geomembrane and geotextile were laid on
the slope foundation. Then the displacement gauge and the loading board were installed
vertically, and the loading device was aligned with the center of the loading board. After
connecting the sand pressure cells, the displacement gauge and wireless receiver were
opened on the computer. After the model preloading was completed, the equipment was
checked for normal operating. Each group of tests was completed when loading to the
final load.

3. Results and Discussion
3.1. Model Settlement Analysis

The relative reduction in the settlement of the ribbed and smooth samples was cal-
culated at the final load. The maximum load of this model test was 150 kPa. When the
settlement value increased suddenly and the sand around the loading board rose laterally,
the model was regarded as reaching the ultimate load. As shown in Table 3, it can be seen
that the ribbed geomembrane reduced the settlement of the upper sand by 13.35–52.32%
compared with the smooth geomembrane system. It was proved that the ribbed geomem-
brane reduced the settlement of upper sand significantly.
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Table 3. Analysis of settlement under different conditions.

Test Conditions
Settlement

S (mm)
Reduction

∆ (%)Rib Shape Rib Spacing
d (mm)

Rib Height
h (mm)

Smooth / / 5.39 /

Strip rib

50
3 3.63 35.25

4.5 3.43 36.36
6 3.98 26.16

60
3 3.45 36.01

4.5 3.11 42.30
6 3.41 36.73

80
3 4.25 21.15

4.5 4.3 20.22
6 4.45 17.44

Block rib

50
3 3.49 35.25

4.5 3.41 36.73
6 4.01 25.60

60
3 3.18 41.00

4.5 2.57 52.32
6 3.66 32.09

80
3 4.32 19.85

4.5 4.05 24.86
6 4.67 13.35

Note: The reduction in the model settlement of the ribbed geomembrane relative to that of the smooth geomem-
brane was calculated as ∆ = |SRib − SSmooth|/SSmooth × 100%.

3.2. Model p–s Curve Analysis

The p–s curves under different rib shapes, rib spacings d, and rib heights h were
analyzed in this section. The p–s curves of the strip and block ribbed geomembrane were
similar to the variation of rib spacings and rib heights. Therefore, the following section
focuses on analyzing the p–s curves of block ribbed geomembranes under different rib
spacings d and rib heights h.

Figure 4 shows the effect of different rib shapes on the p–s curve. From Figure 4a–c, it
can be seen that the ribbed geomembrane effectively reduced the settlement of the liner
system model compared with the smooth geomembrane. In addition, the settlement of
the strip ribbed geomembrane liner system was smaller than that of the block ribbed
geomembrane liner system in each working condition. The settlement difference was
maximum at d = 60 mm. On one hand, compared with block rib, strip rib had a larger
friction force when sliding with the soil, as well as a more robust extrusion and occlusal
effect, thus providing a more significant passive impedance force. On the other hand, the
end-bearing resistance of ribs increased the overall stiffness of the surrounding soil to a
greater extent and then reduced the settlement.

As shown in Figure 5, when the rib spacing increased from 50 to 60 mm, the settlement
of corresponding rib height h = 3 mm, 4.5 mm, and 6 mm decreased by 8.88%, 24.63%, and
8.73%, respectively. It could be seen that when the rib height was too high, the reinforcement
mechanism would be weakened. The reason was the rib height made the geomembrane
bond too closely with the soil above it, resulting in a shear plane at the lower edge of the
geomembrane, thus increasing the settlement. When the rib spacing was further increased
to 80 mm, the corresponding settlement increased by 35.8, 57.57, and 27.04%. It could be
seen that when the rib spacing was too high, it also had the opposite effect, which was
directly caused by weakening the stiffening mechanism.
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The above test results show that the rib shapes, rib spacings d, and rib heights h
directly affected the reinforcing effect of the ribbed geomembrane on the sand. Within a
specific range, the influence of the rib shapes was inconspicuous when the rib spacing was
small, and the settlement of the strip ribbed geomembrane liner system decreased with
the increase in the rib spacing. The friction and interlocking forces of the ribs on the sand
increased with the increase in the rib spacing d and rib height h. However, the complex
formed by the ribs and the surrounding sand exceeded the limit value for the reinforcing
effect of the ribs. After exceeding the limit value, the reinforcing effect of bearing resistance
on the sand was weakened. The formation range of the composite was reduced, resulting
in decreased overall stability and bearing capacity.

3.3. Additional Stress Analysis of Sand

The additional stress is the incremental stress caused by the load in the foundation. It
is the main cause of deformation due to the loss of stability of the foundation.

The additional stress distribution of the smooth geomembrane model is shown in
Figure 6. From Figure 6, it can be seen that the additional stress of the sand in the smooth
geomembrane liner system gradually decreased from the top to the bottom, indicating
that the upper load was transmitted downward. The attenuation of the upper load was
consistent with the law that the additional stress in the sand decreases with the increase in
the buried depth [10].
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Figure 6. Additional stress distributions of the smooth geomembrane model.

The additional stress distribution of the ribbed geomembrane model is shown in
Figure 7. From Figure 7, it can be seen that the additional stress of the sand in the ribbed
geomembrane liner system decreased uniformly from top to bottom, indicating that the
ribs affected the distribution of additional stress in the sand during the downward transfer
of upper load. It can be seen that the additional stress of the model decreased from top to
bottom, which accorded with the law of load transfer in the model. Compared with the
smooth geomembrane condition, the additional stress of the ribbed geomembrane model
was uniform. This was because the ribs produced a vertical component force under the
upper load, which could offset the upper load to reduce the load. It made the internal
stress distribution of the model change so that the upper load was partly transferred to
the bottom. When the ribbed geomembrane liner system was subjected to the upper load,
part of the upper load was offset by the vertical upward force generated by the ribs. This
changed the additional stress distribution of the sand and avoided the overall instability or
reduction of the bearing capacity of the model.

Taking the rib height h = 6 mm as an example to analyze the effect of the rib spacing d
on the additional stress distribution of the block ribbed geomembrane model (Figure 8),
compared with rib spacings of d = 50 mm and 80 mm, the additional stress of the sand
at measuring points 1 and 2 was significantly lower when d = 60 mm. The additional
stress of the sand at measuring point 3 and the additional stress of the sand with rib
spacing d = 60 mm were significantly higher than those of other conditions. This showed
that when the rib spacing d = 60 mm, the ribs blocked the downward movement of sand,
reduced the tensile stress on the geomembrane when sand slipped, and improved the
overall stability model. When the rib spacing d = 80 mm, the additional stress of measuring
point 3 and measuring point 2 at the final load were almost the same. This showed that
when the rib spacing exceeded a specific value, the overall stability of the model may be
destroyed. It was also indicated that there was an optimal value for the rib spacing of the
ribbed geomembrane.
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Figure 8. Influence of rib spacing on the additional stress of sand.

Due to the similar effects of different rib heights on the additional stress of the sand,
80 mm rib spacing conditions were used as an example to analyze the additional stress
distribution of rib height on the ribbed geomembrane model. As shown in Figure 9, it can
be seen from the figure that when the rib height h = 3 mm, the values at measuring points 1
to 3 varied reached maximums. The additional stress of the sand at different measurement
points decreased with the increase in the landfill depth. When the rib height h = 4.5 mm,
from measuring points 1 to 3, there was additional stress of the sand with the increase in
the landfill depth. The overall change trends were relatively stable, which showed that
the blocks played an active role in bearing the blockage of sand movement. When the
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rib height h = 6 mm, the additional stress of the sand was about 270 kPa at measuring
point 1 and about 30 kPa at measuring point 3. The effect was slightly better than with
the rib height h = 3 mm but was still inferior to that with h = 4.5 mm. This showed that
the inappropriate values of h may weaken the reinforcing effect of the ribs. The optimal
rib height could strengthen the reinforcing effect, increase the end-resistance of the ribs,
and enhance the interaction between the ribbed geomembrane and the sand. It can be
concluded that the optimal rib height was beneficial to the redistribution of the additional
stress of the sand.
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3.4. PIV Image Analysis

The whole process of the sand particle displacement recorded by this research provided
suitable conditions for analyzing the liner system model deformation. Since the blocks
were not set along the edge, the displacement of sand particles can hardly be observed.
Thus, the analysis focused on the conditions of the smooth geomembrane and the strip
ribbed geomembrane.

Figures 10 and 11 show the sand movement under the conditions of the smooth
geomembrane and the strip ribbed geomembrane. The sand particles indicated in the
figure reflected the movement trends of some particles around. In the figure, 1–4 are sand
particles located in four different positions. Under the conditions of smooth geomembrane,
sand particles 1 and 2 moved vertically downward, sand particle 3 deflected down to
the left, and sand particle 4 deflected down to the right. Under the conditions of ribbed
geomembrane, sand particle 1 deflected down to the left, sand particles 2 and 3 slid
downward along the interface, and sand particle 4 deflected down to the right. Due to the
lower upper load, the sand particles under the loading board gradually experienced vertical
downward displacements in the initial stage. When t = 2~4 s, the sand particles between
the loading board and geomembrane moved down to the left, and the influence scope
of the upper load increased. When t = 4~6 s, due to the limitation of the geomembrane
interface, the displacements of the sand particles under the loading board gradually formed
a circular slip surface. When t = 6~10 s, the displacements of the sand particles near the
ribs were relatively low, but the displacements of the sand particles on the observation
surface increased significantly. At this time, the range of the sliding surface expanded, and
the sand particles overflowed to both sides of the loading board.
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Figure 10. Schematic diagram of the sand movement under the conditions of the smooth geomem-
brane. (a) t = 2 s. (b) t = 4 s. (c) t = 6 s. (d) t = 10 s.
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3.5. Sand Displacements Analysis of Different Geomembranes

The photos of the smooth geomembrane and the ribbed geomembrane during the
loading process were intercepted and calibrated, respectively, and then the cross-correlation
calculation was carried out with the initial time to obtain the displacement nephogram
at the corresponding time. To study the effect of ribs on the sand displacements, the
horizontal and vertical displacement nephograms of the smooth geomembrane conditions
were compared with the strip rib geomembrane conditions, as shown in Figures 12 and 13.
The shadows in the middle of the figures were caused by the test equipment blocking
3the model container in the shooting direction. Its influence on the calculation result
was eliminated by drawing masks in the PIV image settings. Figure 12 shows that the
absolute value of the horizontal displacement of sand above the smooth geomembrane
interface was 0.0825 mm. The absolute value of the horizontal displacement of sand
above the ribbed geomembrane interface was 0.0063. As shown in Figure 13, the absolute
value of the horizontal displacement of sand above the smooth geomembrane interface
was 0.2275 mm, and the absolute value of the horizontal displacement of sand above the
ribbed geomembrane interface was 0.0588 mm. This showed that the ribbed geomembrane
reduced the horizontal and vertical displacements effectively.
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To analyze the displacements of the sand particles above the geomembrane interface,
the data in the loading process were extracted and plotted, as shown in Figures 14 and 15. It
was shown that the ribs directly resisted the sand particles, formed a more comprehensive
range of indirectly affected areas, and combined the sand closely. This area prevented the
interface of the geomembrane liner system from slipping and constrained the deformation
of the liner system. This was a kind of quasi-cohesive force, which improved the strength
of the slope surface. With the increasing normal stress of the ribs, the bearing resistance of
the ribs enhanced the interface shear strength significantly. At the same time, the friction
resistance of the ribs increasing with the incremental upper load. Therefore, compared with
the smooth geomembrane conditions, the ribbed geomembrane conditions could effectively
improve the stability of the liner system, which was in accordance with the interaction
mechanism between the sand and the denti-strip [11].
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3.6. Analysis of Rib Spacing on Sand Displacements

Figures 16 and 17 show the horizontal and vertical displacements of different rib
spacings. Compared with Figure 13, it was found that the absolute values of the sand
horizontal displacement above the geomembrane interface of three working conditions
(rib spacing d = 50 mm, d = 60 mm, and d = 80 mm) were 0.1625, 0.0063, and 0.1975 mm,
respectively. At the same time, the absolute values of the sand vertical displacement
above the geomembrane interface of the three working conditions (rib spacing d = 50 mm,
d = 60 mm, and d = 80 mm) were 0.4525, 0.0588, and 0.3650 mm, respectively. This was due
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to the better effect of the 60 mm rib spacing on the cohesion of sand particles around the
ribs. The interaction between the ribs and the sand was not evident under the condition
of 50 mm rib spacing. The reinforcing effect of the ribs on the surrounding sand was
weakened under 80 mm rib spacing.
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As shown in Figures 18 and 19, the sand displacements of different rib spacings were
analyzed. Combined with Figure 15, the results showed that the horizontal and vertical
displacements of the sand particles above the geomembrane interface were smaller when
the rib spacing d = 60 mm. It could indicate that the 60 mm rib spacing blocked and
interlocked the movements of the surrounding sand particles. It proved the optimal rib
spacing of the ribbed geomembrane existed, and this was consistent with the previous
experimental results.
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(a) Horizontal displacement. (b) Vertical displacement.

3.7. Analysis of Rib Height on Sand Displacements

Figures 20 and 21 show the horizontal and vertical displacements of different rib
heights. Compared with Figure 13, it was found that the absolute values of the sand
horizontal displacement above the geomembrane interface of three working conditions
(rib height h = 3 mm, h = 4.5 mm, and h = 6 mm) were 0.0500, 0.0063, and 0.0725 mm,
respectively. At the same time, the absolute values of sand vertical displacement above the
geomembrane interface of the three working conditions (rib height h = 3 mm, h = 4.5 mm,
and h = 6 mm) were 0.1200, 0.0588, and 0.0625 mm, respectively. This was because the elastic
modulus of the sand increased more in the indirect influence area created by the 4.5 mm rib
height, which inhibited the movement trend of the sand particles. The interaction between
the ribs and the sand was small when the rib height was 3 mm, and the reinforcing effect of
the ribs on surrounding sand declined when the rib height was 4.5 mm.
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As shown in Figures 22 and 23, the sand displacements of different rib heights were 
analyzed. Compared with Figure 15, the results showed that the horizontal and vertical 
displacements of the sand particles above the geomembrane interface were smaller when 
the rib height h = 4.5 mm. It can be concluded that the 4.5 mm rib height limited the sur-
rounding sand particles and reduced the risk of liner system interface sliding. It verified 
the optimal rib height of the ribbed geomembrane, which was the same as the previous 
experimental results. 
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Figure 21. Displacement nephograms of ribbed geomembrane conditions (d = 60 mm, h = 6 mm).
(a) Horizontal displacement. (b) Vertical displacement.

As shown in Figures 22 and 23, the sand displacements of different rib heights were
analyzed. Compared with Figure 15, the results showed that the horizontal and vertical
displacements of the sand particles above the geomembrane interface were smaller when
the rib height h = 4.5 mm. It can be concluded that the 4.5 mm rib height limited the
surrounding sand particles and reduced the risk of liner system interface sliding. It verified
the optimal rib height of the ribbed geomembrane, which was the same as the previous
experimental results.
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Figure 23. Displacement of sand above ribbed geomembrane conditions (d = 60 mm, h = 6 mm).
(a) Horizontal displacement. (b) Vertical displacement.

4. Conclusions

1. It can be seen from the comparative analysis of working conditions that the set-
tlement of the ribbed geomembrane was significantly less than that of the smooth
geomembrane. It was proved that the ribs enhanced the stability of the liner system.

2. According to the analysis of the test results, there was an optimum value of 60 mm
for the rib spacing and 4.5 mm for the rib height. When the value was less than the
optimal value, the ribbed geomembrane could not effectively improve the stability of
the liner system. When the value was more than the optimal value, the reinforcing
effect of the ribbed geomembrane on the sand gradually decreased.

3. By analyzing the additional stress of the sand, it can be concluded that the ribbed
geomembrane was beneficial to the stress redistribution, thereby improving the overall
stability of the liner system.

4. According to the PIV image analysis, the ribbed geomembrane can form an indirect
influence area with the sand within a specific range to restrain the displacement of
nearby sand particles. The indirect influence area was conducive to the stability of the
liner system.

5. Prospect

This paper effectively demonstrated the advantages of a ribbed geomembrane and
geotextile liner system using indoor model tests and PIV image velocimetry techniques.
The results of this thesis can provide a theoretical basis for practical applications in projects
such as landfills.
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