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Abstract: Currently, 1-amidoalkyl-2-naphthol derivatives are of increasing interest due to their
biological activities and further use in the preparation of other important bioactive molecules, such
as aminoalkyl naphthols and oxazines. The synthesis of 1-amidoalkyl-2-naphthol moiety is usually
achieved by employing one-pot multicomponent Mannich reactions. This review covers the recent
reports on 1-amidoalkyl-2-naphthols’ preparation with the use of different catalysts and summarizes
the available published data for the period of the last 3 years. It also puts emphasis on the structure,
synthetic transformation and biological importance of this class of products.

Keywords: multicomponent reaction; Mannich reaction; 1-amidoalkyl-2-naphthol; bioactivity; aminoalkyl
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1. Introduction

The 1,3-aminooxygenated functional motif exists in a variety of natural products [1–4]
as well as in a number of marketed drugs [5–10]. Sedridine, allosedridine, febrifugine,
nikkomycin Z, and negamycin, bearing 1,3-aminooxygenated moiety, are naturally oc-
curring compounds some of which possess antifungal and antibacterial properties [1–4].
Ritonavir and lopinavir, approved antiretroviral drugs against HIV/AIDS [5,6]; haloperidol,
an antipsychotic drug [7]; venlafaxine and desvenlafaxine, antidepressant medications [8];
vildagliptin, an antidiabetic drug [9]; and tramadol, a synthetic analgesic [10], are marketed
drugs which also feature the 1,3-aminooxygenated motif. As can be seen, the list of bioac-
tive molecules containing the 1,3-aminooxygenation pattern is fairly long, which justifies
and encourages the search for other valuable and pharmaceutically interesting compounds
bearing this functional motif.

Naphthalene compounds are known to exhibit diverse biological activities. They pos-
sess anti-inflammatory [11], antibacterial [12–14], cardiovascular [15], antiproliferative [16],
and antiviral [17] properties. A pharmaceutically interesting class of substances is the
1-amidoalkyl-2-naphthols, which possess the important 1,3-aminooxygenated moiety in
their molecular structures, as well as an amide linkage, along with a naphthalene ring
(Figure 1).
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2. Amidoalkyl Naphthols as Bioactive Molecules

The 1-amidoalkyl-2-naphthols possess diverse biological properties, such as antiviral,
antibacterial, antifungal, and antiparasitic qualities [18–22]. Furthermore, members of
this family are promising antioxidants, which also show cholinesterase and α-glucosidase
inhibitory activities [23–25].

Abou-Elmagd and colleagues evaluated the in vitro antibacterial and antiviral ac-
tivities of a series of amidoalkyl naphthol derivatives featuring pyrazole or indole frag-
ments [18]. The most potent compounds are illustrated in Figure 2. The results of the
antibacterial test revealed that compounds 1 and 4 show high potency against Staphylococ-
cus aureus, whereas compounds 2 and 3 have more pronounced inhibitory effects towards
Klebsiella pneumoniae and Bacillus subtilis, respectively. All four derivatives demonstrated
comparable antibacterial activities to the used reference, gentamicin. In terms of antiviral
properties, the most active compounds against avian influenza virus (H5N1) were found to
be 3 and 5, which showed similar results to the control, zanamivir.
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Figure 2. Representative amidoalkyl naphthol derivatives with different antibacterial and
antiviral properties.

Bananezhad and co-workers synthesized a series of 14 amidoalkyl naphthols bearing
an azo-moiety and subjected them to in vitro antimicrobial assays [19]. It was observed
that none of the derivatives showed better antibacterial activities than the reference drugs
trimethoprim/sulfamethoxazole (SXT) and ciprofloxacin. However, the results from the
antifungal test were very promising, since five substances (compounds 6–10, Figure 3)
exhibited better potencies against Aspergillus niger than the standard drugs fluconazole
and miconazole.
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Another study by Manavi et al., revealed the in vitro anti-Helicobacter pylori activities of
various amidoalkyl naphthols [20]. The obtained results illustrated that many of them show
promising potency with compound 11 (Figure 4) being the most active against this bacteria.
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Figure 4. Promising anti-Helicobacter pylori agent from the amidoalkyl naphthol class.

Rahimizadeh et al., used different benzaldehydes and long-chain amide derivatives to
prepare a number of amidoalkyl naphthols, and examined their antibacterial properties
in vitro [21]. The results indicated that compounds 12–18 (Figure 5) were the most potent
against Staphylococcus aureus, exhibiting better activity than the reference, gentamicin.
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Figure 5. Amidoalkyl naphthols potent against Staphylococcus aureus.

Rode and co-authors reported the antiparasitic activity of a series of 23 amidoalkyl
naphthol derivatives [22]. As a result of an in vitro screening against Leishmania donovani,
followed by a molecular docking study and an in silico study of the ADME (absorption,
distribution, metabolism, and excretion) properties of the molecules, four of them (com-
pounds 19–22, Figure 6) were distinguished as the most promising anti-leishmanial agents
possessing good drug-like characteristics.
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Boudebbous et al., synthesized 19 amidoalkyl naphthols and evaluated their cholinesterase
and α-glucosidase inhibitory activities [23]. The results of the in vitro assays were backed by a
docking study of selected derivatives. The properties of compounds 23 and 24 (Figure 7) were
found to be very promising since both substances showed better inhibition on cholinesterase than
the reference drug galantamine. Derivative 24 was also the most potent one in the α-glucosidase
assay and exhibited a greater inhibitory effect than quercetin and acarbose, which were used
as standards.



Appl. Sci. 2023, 13, 6616 4 of 16

Appl. Sci. 2023, 13, 6616 4 of 18 
 

 
Figure 6. Amidoalkyl naphthols with antiparasitic properties. 

Boudebbous et al., synthesized 19 amidoalkyl naphthols and evaluated their cholin-
esterase and α-glucosidase inhibitory activities [23]. The results of the in vitro assays were 
backed by a docking study of selected derivatives. The properties of compounds 23 and 
24 (Figure 7) were found to be very promising since both substances showed better inhi-
bition on cholinesterase than the reference drug galantamine. Derivative 24 was also the 
most potent one in the α-glucosidase assay and exhibited a greater inhibitory effect than 
quercetin and acarbose, which were used as standards. 

 
Figure 7. Amidoalkyl naphthols proven as potent cholinesterase and α-glucosidase inhibitors. 

In vitro and in silico studies by Boudebbous et al., aimed to estimate the biological 
potential of another two amidoalkyl naphthol derivatives—NDHA [24] and BHMA [25] 
(Figure 8). Both compounds exhibited promising antioxidant properties, and in addition, 
NDHA was proven to be a potent acetylcholinesterase and α-glucosidase inhibitor. 

 
Figure 8. Amidoalkyl naphthols with promising antioxidant properties. 

Based on the pronounced biological activities that amidoalkyl naphthols exhibit, it 
can be concluded that this class of compounds has the potential to become an important 
starting point for the pharmaceutical industry. However, more in-depth studies are 
needed in order to evaluate the physiological effect of these substances. 

3. Amidoalkyl Naphthols as Building Blocks 
As well as possessing interesting properties, amidoalkyl naphthols are valuable 

building blocks for the preparation of other bioactive molecules. They can be easily con-
verted to aminoalkyl naphthols, the so-called Betti bases, via hydrolysis or reduction 
[23,26–29] (Scheme 1). These are of great importance because of their biological activities, 
such as enhancing antitumor agents’ cytotoxicity [30], and hypotensive and bradycardiac 

Figure 7. Amidoalkyl naphthols proven as potent cholinesterase and α-glucosidase inhibitors.

In vitro and in silico studies by Boudebbous et al., aimed to estimate the biological
potential of another two amidoalkyl naphthol derivatives—NDHA [24] and BHMA [25]
(Figure 8). Both compounds exhibited promising antioxidant properties, and in addition,
NDHA was proven to be a potent acetylcholinesterase and α-glucosidase inhibitor.
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Figure 8. Amidoalkyl naphthols with promising antioxidant properties.

Based on the pronounced biological activities that amidoalkyl naphthols exhibit, it
can be concluded that this class of compounds has the potential to become an important
starting point for the pharmaceutical industry. However, more in-depth studies are needed
in order to evaluate the physiological effect of these substances.

3. Amidoalkyl Naphthols as Building Blocks

As well as possessing interesting properties, amidoalkyl naphthols are valuable build-
ing blocks for the preparation of other bioactive molecules. They can be easily converted
to aminoalkyl naphthols, the so-called Betti bases, via hydrolysis or reduction [23,26–29]
(Scheme 1). These are of great importance because of their biological activities, such as en-
hancing antitumor agents’ cytotoxicity [30], and hypotensive and bradycardiac effects [31].
In addition, these compounds can be used as ligands to chelate with organometallic reagents
in asymmetric synthesis and catalysis [32–34].
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Furthermore, the intramolecular cyclization of amidoalkyl naphthols produces 1,3-
oxazines via the Vilsmeier–Haack reaction (Scheme 2). These compounds have also at-
tracted interest because of their potential as antibiotics, antitumor agents, analgesics, and
anticonvulsants [35].
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The above-mentioned considerations encouraged the extensive research in this area.
Consequently, two review articles, covering the literature data until 2019, have been pub-
lished [36,37]. This review is an update of the existing literature precedents and covers
the reported catalytic synthetic methods for the one-pot preparation of 1-amidoalkyl-2-
naphthol derivatives in the period of 2020–2022.

4. Synthesis of Amidoalkyl Naphthols via Multicomponent Mannich Condensation

Although many routes to obtain similar structures including phenols and naphthols, e.g.,
via transition-metal catalysis, have been reported [38–41], multicomponent Mannich condensa-
tion continues to be the primary way to achieve the synthesis of amidoalkyl naphthols.

Multicomponent reactions are of increasing importance in organic synthesis for the
preparation of complex and diverse molecules through the formation of carbon–carbon
and carbon–heteroatom bonds. These reactions involve three or more compounds mixed
simultaneously in one vessel that react with each other and give the final target product
without having to isolate the intermediates. Hence, one-pot multicomponent synthesis
is in accordance with the principles of green chemistry, which require the development
of new substances and reaction conditions that have the potential to provide benefits to
chemical synthesis to meet certain requirements regarding resource and energy efficiency,
operational simplicity, and product selectivity, as well as including environmental and
health protections through reducing toxic solvent use and amount of waste produced as
much as possible [42–46]. An example of such a reaction is the Mannich condensation
of 2-naphthol with aldehydes and amide derivatives, in the presence of a catalyst, which
is used as a practical synthetic route towards 1-amidoalkyl-2-naphthols [47] (Scheme 3).
The same reaction is applicable to the synthesis of 1-carbamatoalkyl-2-naphthols when
carbamates are used as reaction partners [48–53]. However, the reports on the synthesis of 1-
carbamatoalkyl-2-naphthols over the last 3 years are limited [54,55]. The generally accepted
reaction mechanism of the acid-promoted three-component Mannich condensation of 2-
naphthol with aldehydes and amides proceeds with the initial formation of highly reactive
ortho-quinone methides. These intermediates react with an amide via nucleophilic conjugate
addition to form 1-amidoalkyl-2-naphthol (Scheme 3) [56–58].

A number of different catalytic systems that effectively promote this reaction have
been reported. These catalytic systems could be generally classified as homogeneous (Bron-
sted acids, Table 1, and ionic liquids/deep eutectic solvents, Table 2) and heterogeneous
(nanomaterials and others, Table 3).
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4.1. Homogeneous Catalysis
4.1.1. Bronsted Acids as Catalysts

Bronsted acid catalysts play an important role in modern organic synthesis due to
their ability to activate a wide range of functional groups. These catalysts are relatively easy
to store and generally stable toward oxygen and water. Their metal-free nature also makes
them an alternative to the metal catalysts used in the pharmaceutical industry, as traces
of toxic metal impurities are often very hard to remove from the desired products [59].
In several instances this class of catalysts has been reported to promote the synthesis of
amidoalkyl naphthols via multicomponent Mannich reaction (Table 1).

Boudebbous et al., developed an efficient green synthesis of 1-amidoalkyl-2-naphthol
derivatives via three-component one-pot condensation of 2-naphthol with a wide range of
functionalized aromatic aldehydes and acetamide/acrylamide at 120 ◦C under solvent-free
conditions in the presence of 15 mol% phenylboronic acid as a catalyst. The synthesis
of 19 amidoalkyl naphthols was achieved in 60–92% yields in the range of 1–7 h [23].
Darbandi et al., made use of 10 mol% adipic acid as a catalyst in a similar three-component
condensation of 2-naphthol under solvent-free conditions and 120 ◦C. Yields of up to 96%
for 21 amidoalkyl naphthols have been achieved in shorter reaction times that lay in the
range of 9 to 76 min [60]. Another efficient solvent-free method was reported by Sadeghi
and Moradi. The presence of only 8.5 mol% of the readily available natural ascorbic acid
rendered a range of 13 amidoalkyl naphthols in good to high yields (75–96%) in very
short reaction times of only 4–12 min. Notably, the easy work-up was stated to be one of
the advantages of this method [61]. Govindhan and Nagarajan achieved the synthesis of
1-amidoalkyl-2-naphthol derivatives in the presence of 10 mol% 2,6-pyridinedicarboxylic
acid (dipicolinic acid) as a reusable catalyst. High yields of up to 96% in reaction times
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of a few hours were reported [62]. However, this method requires the use of refluxing
toluene as a reaction medium. Rezaeipour et al., used p-toluenesulfonic acid (10 mol%)
for the preparation of these derivatives. The highest yields (65–91%) were obtained when
polyethylene glycol 400 (PEG-400) was utilized as an environmentally friendly solvent. The
reaction times varied from 20 min to 4 h [63].

Table 1. Summarized data on the recent homogeneous Bronsted-acid-catalyzed amidoalkyl naphthols’
synthesis via multicomponent Mannich reaction (Scheme 3).

Refs. Type of Catalyst (mol%) Reusability
(Cycles)

Substituents
(Number of

Products)

Reaction
Medium T, ◦C Reaction Time Yield, %

[23] Phenylboronic acid (15) No
R1 = Aryl

R2 = Methyl, Vinyl
(19)

Solvent-
free 120 1–7 h 60–92

[60] Adipic acid (10) No
R1 = Aryl

R2 = Methyl, Phenyl
(21)

Solvent-
free 120 9–76 min 83–96

[61] Ascorbic acid (8.5) No
R1 = Aryl

R2 = Methyl, Phenyl
(13)

Solvent-
free 100 4–12 min 75–96

[62] 2,6-pyridinedicarboxylic
acid (dipicolinic acid) (10) Yes (3)

R1 = Propyl, Aryl
R2 = Methyl, NH2

(17)
Toluene reflux 3.5–4.5 h 79–96

[63] p-Toluenesulfonic acid (10) No
R1 = Aryl
R2 = Aryl

(12)
PEG-400 100 20 min–4 h 65–91

4.1.2. Ionic Liquids and Deep Eutectic Solvents as Catalysts

Ionic liquids are often proposed as alternative green reaction media due to their dis-
tinctive physical and chemical characteristics, but they have since surpassed this threshold
and demonstrated their significance in reaction control [64]. The same is valid for the deep
eutectic solvents, with their non-toxicity, biodegradability, and easy and low-cost prepara-
tion, which gives them additional benefits as catalysts for many organic reactions [65]. The
application of these catalysts to the synthesis of amidoalkyl naphthols is summarized in
Table 2.

Hadadianpour and Pouramiri successfully performed a one-pot synthesis of ami-
doalkyl naphthols using triethylammonium hydrogen sulfate ([Et3NH][HSO4]) as a green
and reusable catalyst. The reported yields, using 20 mol% of catalyst at 70 ◦C, varied
from 65 to 85% when the reaction times were in the range of 2–25 min [66]. N,N,N′,N′-
tetramethylethylene-diaminium-N,N′-disulfonic acid chloride ([TMEDSA][Cl]2) has been
found to be another efficient catalyst under solvent-free conditions. High yields (92–95%)
of amidoalkyl naphthols were achieved within minutes using only 7.5 mol% of the catalyst
at 70 ◦C. Notably, this method was applicable to the preparation of 1-carbamatoalkyl-2-
naphthol derivatives in excellent yields [54].

Torabi et al., prepared the magnetic phosphonium ionic liquid (SO3H)(n-Bu)3P+

FeCl4− that proved efficient as a catalyst in the synthesis of one-pot amidoalkyl naph-
thols. High to excellent yields of a number of amidoalkyl naphthols were obtained under
solvent-free conditions at 45 ◦C in short reaction times using only 1 mol% of the catalyst [67].

Keshtibanian et al., synthesized a novel acidic magnetic dicationic ionic liquid [C6BIM]
(SO3H)2 (FeBr3Cl)2 and utilized it as a catalyst in a solvent-free synthesis of amidoalkyl
naphthols. The authors made use of 0.1 g/1 mmol of catalyst/substrate ratio and achieved
good to excellent yields in up to 20 min reaction time. However, in this case a higher
temperature of 100 ◦C was required [68].

Tetradentate acidic catalyst (tetrakis(N-methylimidazolium-1-ylmethyl)methane tetra(hydrogen
sulfate)) was shown to exhibit high catalytic activity in the synthesis of amidoalkyl naphthols under
solvent-free conditions. Only 1.25 mol% of the catalyst was sufficient to promote the reaction at 90 ◦C,
and this rendered excellent yields of 90–96% in very short reaction times (3–15 min) [69].
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Manavi et al., utilized triethanolammonium acetate ionic liquid as a green and
reusable catalyst for solvent-free synthesis of a series of compounds, using 2-naphthol,
(hetero)aromatic aldehydes, and urea/acetamide at 90 ◦C. Although relatively high catalyst
loading of 20 mol% was required, the authors successfully prepared the targeted derivatives
in moderate to high yields of 76 to 91% in up to 85 min reaction times. Furthermore, the
synthesized products were tested for in vitro anti-Helicobacter pylori activity and it was
found that they exhibited promising potency [20].

Numerous amidoalkyl naphthol derivatives have been synthesized by Rode et al.,
using 10 mol% prolinium dihydrogen phosphate as a green catalyst under solvent-free
conditions at 120 ◦C. The synthesis of the remarkable number of 23 derivatives has been
achieved in 79–92% yield. However, the recyclability of this catalytic system was not
revealed. All of the obtained compounds were screened for their anti-leishmanial activity
against L. donovoni. Four of the prepared molecules showed good bioactivity and were
further subjected to a molecular docking study. Furthermore, the in silico study of the
ADME (absorption, distribution, metabolism, and excretion) properties of the synthesized
compounds showed good drug-like characteristics [22].

A green method for the synthesis of amidoalkyl naphthols that utilizes 20 mol%
[CholineCl][ZnCl2] deep eutectic solvent as a recyclable catalyst was reported. Moderate to
high yields of 45–95% were achieved [70].

Nakhate and colleagues successfully prepared a series of amidoalkyl naphthols in
water as a green solvent. In this work, 81 to 96% yields in 1–2.5 h were achieved us-
ing 10 mol% quaternary ammonium compound cetrimonium bromide as a catalyst at
100 ◦C [71].

Table 2. Summarized data on the recent synthesis of amidoalkyl naphthols via multicomponent
Mannich reaction, catalyzed by homogeneous ionic liquids and deep eutectic solvents (Scheme 3).

Refs. Type of Catalyst (mol%) Reusability
(Cycles)

Substituents
(Number of Products)

Reaction
Medium T, ◦C Reaction Time Yield, %

[66] [Et3NH][HSO4] (20) Yes (3)
R1 = Aryl

R2 = Methyl, NH2
(12)

Solvent-free 70 2–25 min 65–85

[54]
Tetramethylethylene
diaminium disulfonic acid
chloride (7.5)

No
R1 = Aryl

R2 = Alkoxyl, Alkyl, Aryl
(13)

Solvent-free 70 15–25 min 92–95

[67] (SO3H)(n-Bu)3P+ FeCl4
− (1) No

R1 = Aryl
R2 = Methyl, Phenyl

(17)
Solvent-free 45 5–30 min 75–94

[68] [C6BIM] (SO3H)2 (FeBr3Cl)2
(0.1 g/1 mmol) Yes (4)

R1 = Aryl
R2 = Methyl, Phenyl

(12)
Solvent-free 100 10–20 min 84–90

[69]

Tetrakis(N-
methylimidazolium-1-
ylmethyl)methane
tetra(hydrogen sulfate) (1.25)

No
R1 = Aryl

R2 = Methyl
(10)

Solvent-free 90 3–15 min 90–96

[20] Triethanolammonium
acetate ionic liquid (20) Yes (4)

R1 = Aryl, Heteroaryl
R2 = Methyl, NH2

(>10)
Solvent-free 90 40–85 min 76–91

[22] Prolinium dihydrogen
phosphate (10) No

R1 = Aryl
R2 = Methyl, Phenyl

(23)
Solvent-free 120 2 h 70–92

[70] [CholineCl][ZnCl2]3 (20) Yes (3)

R1 = Aryl, Furyl, Propyl,
Cyclohexyl
R2 = Phenyl,

Chloromethyl
(16)

Solvent-free 60 40–80 min 45–95

[71] Cetrimonium bromide (10) No
R1 = Aryl, Heteroaryl

R2 = Methyl, Phenyl, NH2
(24)

Water 100 1–2.5 h 81–96

4.2. Heterogeneous Catalysis
4.2.1. Nanomaterials as Catalysts

Nanocatalysts are a rapidly emerging field of research. They find numerous applica-
tions in catalytic reactions due to their large surface area, easy separation, and reusabil-
ity [72]. A large number of nanocatalysts have been reported to efficiently catalyze the
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formation of amidoalkyl naphthols via multicomponent Mannich reaction. The recent
literature precedents are summarized in Table 3, Refs. [73–92].

A nanostructured cobalt-containing complex was successfully employed as a catalyst
under solvent-free conditions. Excellent yields of 85–95% were achieved in the presence of
5 mol% of the catalyst. However, the recyclability of this catalyst was not revealed [73].

Two magnetic-nanoparticle-supported 2-(((4-(1-iminoethyl)phenyl)imino)methyl) phe-
nols, namely Cu(II) and Zn(II) complexes, represented another class of reusable catalysts
for the multicomponent synthesis of amidoalkyl naphthols. Yields of up to 97% have been
achieved under solvent-free conditions in 0.1 g/1 mmol catalyst/substrate ratio [74].

A series of amidoalkyl naphthols was prepared by Hakimi et al., via a reaction of
2-naphthol, various aldehydes, and amides in the presence of nickel nanoparticles as a
catalyst under solvent-free conditions at 100 ◦C. The reported yields ranged from 35 to 95%
and the reaction times were between 12 and 40 min [75].

Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-
SiC3-NH3-H2PW) exhibited good catalytic activity and recyclability in a catalyst/substrate
ratio of only 0.03 g/1 mmol. The reactions were carried out in refluxing ethanol and
rendered 80 to 94% yields in 10–20 min [76].

Rohaniyan and colleagues also prepared functionalized graphene oxide nanosheets
containing a phosphomolybdic counterion. In contrast with the previous work, this catalyst
operated under solvent-free conditions and shorter reaction times (2–10 min), while main-
taining a similar level of recyclability [77]. Another example of a recyclable graphene oxide
catalyst for the preparation of amidoalkyl naphthols was that reported by Rostami et al., [78],
in which graphene oxide was simultaneously functionalized with 2-aminobenzothiazole
and phosphoric acid. This method provided several advantages such as short reaction
times (15–35 min), solvent-free conditions, simple work-up, and high yields (86–97%). The
stability and recoverability of the catalyst were also examined in five cycles which showed
no considerable loss of activity.

Several Fe3O4-based nanocatalysts have been shown to exhibit good catalytic activity
towards the synthesis of amidoalkyl naphthols under solvent-free conditions. In all in-
stances the amidoalkyl naphthols were isolated in good to excellent yields in short reaction
times. Notably, this class of catalysts exhibited a very good level of recyclability [21,79–84].
Furthermore, the biological activity of some of the obtained products was examined against
Staphylococcus aureus and Escherichia coli. Seven of the synthesized compounds showed
better activity against S. aureus than the standard (gentamicin) [21].

Baghernejad and Ashoori used tin(IV) oxide nanoparticles (nano-SnO2) as a reusable
catalyst for the preparation of several derivatives in refluxing aqueous medium. The
targeted amidoalkyl naphthols were isolated in high yields (90–96%) within minutes using
only 0.02 g/1 mmol catalysts/substrate ratio [85].

Sulfonic acid implemented on a silica-coated cobalt ferrite core was applied as a recy-
clable catalyst for the preparation of amidoalkyl naphthols under solvent-free conditions at
80 ◦C. The use of 0.05 g/1 mmol catalyst/substrate ratio rendered good to excellent yields
in 10–20 min [86].

Mazraati et al., explored bis(benzoyl acetone ethylene diimine) complex of nickel(II)
supported on magnetite silica nanoparticles as a catalyst under solvent-free conditions.
Although relatively long reaction times (3.5–4 h) were required compared with other classes
of nanocatalysts, the authors achieved the synthesis of 11 amidoalkyl naphthols in very
good yields using only 1.5 mol% of catalyst [87].

A reusable bifunctional SBA-amino-amido-carboxylic acid rendered 12 amidoalkyl
naphthols in high yields (85–91%) in a very short reaction time (10 min). However, this
catalyst required the use of refluxing ethanol as a reaction medium [88]. CdCl2-containing
filamentous silica nanoparticles [89] and CuFe2O4/KCC-1/PMA [90] also provided access
to very high yields of a similar scope to amidoalkyl naphthols. In comparison with the
bifunctional SBA-amino-amido-carboxylic acid, these catalysts operated under solvent-free
conditions and lower catalyst loadings.
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Mansouri and co-workers made use of phenyltetrazolethiol-based Ni complex as a
recyclable heterogeneous nanocatalyst. The synthesis of 10 amidoalkyl naphthols in 74–93%
yields was achieved using a catalyst/substrate ratio of only 0.01 g/1 mmol [91]. The same
number of amidoalkyl naphthols was prepared in the presence of a pine-cone-derived
nanocatalyst. Very high yields of 90–96% were achieved in 20–30 min [92].

4.2.2. Other Types of Heterogeneous Catalysts

The application of other heterogeneous catalysts to the multicomponent Mannich
reaction leading to the formation of amidoalkyl naphthols is summarized in Table 3,
Refs. [93–96].

A procedure for the synthesis of amidoalkyl naphthols using a biodegradable and
reusable polymeric catalyst, chitosan-SO3H (CTSA), was developed by Patil and colleagues.
Their method operates under solvent-free conditions at 80 ◦C using a 0.02 g/1 mmol
catalyst/substrate ratio and renders high yields in short reaction times [93]. Similar results
have been reported for natural hydroxyapatite derived from waste bovine bone and further
loaded with zinc chloride. Notably, the remarkable number of 22 amidoalkyl naphthols
have been prepared [94]. Perci et al. reported the synthesis of a series of pyrazole-containing
amidoalkyl naphthols by using silica-supported sodium hydrogen sulfate (NaHSO4.SiO2).
Although in some instances the targeted amidoalkyl naphthols were obtained in very
high yields, this method requires longer reaction times and the use of acetic acid as a
solvent [95]. Dipake et al. prepared a zeolite catalyst, zirconium silicate, and utilized it for
the preparation of amidoalkyl naphthols. Excellent yields have been obtained; however,
this catalyst operates at higher temperature and catalyst loading [96].

Table 3. Summarized data on the recent heterogeneously catalyzed synthesis of amidoalkyl naphthols
via multicomponent Mannich reaction (Scheme 3).

Refs. Type of Catalyst
(Catalyst/Substrate Ratio)

Reusability
(Cycles)

Substituents (Number
of Products)

Reaction
Medium T, ◦C Reaction Time Yield,%

Nanomaterials

[73]

Nano-Co-[4-cholorophenyl-
salicylaldimine-
methylpyranopyrazole]Cl2
(5 mol%)

No
R1 = Aryl

R2 = Methyl
(15)

Solvent-free 100 5–15 min 85–95

[74]

Nanoparticle-supported
2-(((4-(1-iminoethyl)phenyl)
imino)methyl)phenol Cu(II)
or Zn(II) complex (0.1 g/1
mmol)

Yes (4)

R1 = Aryl
R2 = Methyl,

Chloromethyl, Phenyl,
NH2
(22)

Solvent-free 80 40–100 min 73–97

[75] Nickel nanoparticles
(6 mg/1 mmol)

Yes (not
reported)

R1 = Aryl
R2 = Methyl

(15)
Solvent-free 100 12–40 min 35–95

[76]

Phosphotungstic acid
supported on functionalized
graphene oxide nanosheets
(0.03 g/1 mmol)

Yes (5)
R1 = Aryl

R2 = Methyl
(10)

Ethanol reflux 10–20 min 80–94

[77]

Phosphomolybdic acid
supported on functionalized
graphene oxide nanosheets
(3.33 mol%)

Yes (5)
R1 = Aryl

R2 = Methyl
(11)

Solvent-free 100 2–10 min 80–94

[78]

Graphene oxide
functionalized with
2-aminobenzothiazole and
phosphoric acid (0.02 g/1
mmol)

Yes (5)
R1 = Aryl

R2 = Methyl, NH2
(15)

Solvent-free 70 15–35 min 86–97

[21]

Sulfonic acid functionalized
silica-coated
Fe3O4-nanoparticles (0.34
mol%)

Yes (6)
R1 = Aryl
R2 = Alkyl

(17)
Solvent-free 120 15 min–8 h 80–96
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Table 3. Cont.

[79] Nano-Fe3O4@TiO2-Pr-
2AB@Cu (0.02 g/1 mmol) Yes (7)

R1 = Aryl
R2 = Methyl, Phenyl,

NH2
(12)

Solvent-free 80 15–25 min 89–94

[80] Fe3O4@enamine-B(OSO3H)2
(0.015 g/1 mmol) Yes (6)

R1 = Aryl
R2 = Methyl, Phenyl,

NH2
(18)

Solvent-free 90 10–40 min 84–96

[81]

Dodecylbenzenesulfonic
acid supported on
Fe3O4-nanoparticles (0.15
g/1 mmol)

Yes (5)

R1 = Aryl
R2 = Methyl, Phenyl,

NH2
(15)

Solvent-free 80 10–15 min 88–92

[82]
Nano-
[Fe3O4@SiO2@RNHMe2][HSO4]
(0.048 g/1 mmol)

Yes (3)
R1 = Aryl

R2 = Methyl, Phenyl
(14)

Solvent-free 90 15–35 min 89–97

[83]

Pistachio-peel-derived
magnetic nanoparticles
(Fe3O4@C-SO3H) (0.04 g/1
mmol)

Yes (6)

R1 = Aryl
R2 = Methyl, Phenyl,

NH2
(12)

Solvent-free 70 15–40 min 90–100

[84] Nano-Fe3O4-hexamine (0.04
g/1 mmol) Yes (7)

R1 = Aryl
R2 = Methyl, Phenyl,

NH2
(10)

Solvent-free 60 5–20 min 92–96

[85] Nano-SnO2 (0.02 g/1 mmol) Yes (5)
R1 = Aryl

R2 = Methyl
(7)

Water reflux 15–60 min 90–96

[86]
Sulfonic acid on silica-coated
cobalt ferrite nanoparticles
(0.05 g/1 mmol)

Yes (10)
R1 = Aryl

R2 = Methyl
(7)

Solvent-free 80 10–20 min 84–96

[87]

Bis(benzoyl acetone ethylene
diimine) complex of
nickel(II) supported on
magnetite silica
nanoparticles (1.5 mol%)

Yes (5)

R1 = Aryl, Hexyl
R2 = Methyl, Phenyl,

NH2
(11)

Solvent-free 100 3.5–4 h 86–95

[88]
SBA-amino-amido-
carboxylic acid (0.05 g/1
mmol)

Yes(5)
R1 = Aryl

R2 = Methyl
(12)

Ethanol reflux 10 min 85–91

[89] KCC-1/ECH-Meg/CdCl2
(0.025 g/1 mmol) Yes (5)

R1 = Aryl
R2 = Methyl, Phenyl

(12)
Solvent-free 100 3–10 min 85–98

[90] CuFe2O4/KCC-1/PMA
(0.03 g/1 mmol) Yes (5)

R1 = Aryl
R2 = Methyl, Phenyl

(12)
Solvent-free 80 2–13 min 82–95

[91]
Phenyltetrazolethiol-based
nickel complex (0.01 g/1
mmol)

Yes (7)
R1 = Aryl

R2 = Methyl, Phenyl
(10)

Solvent-free 75 1–25 min 74–93

[92]

Pine-cone-derived
carbon-based acid
nanocatalyst
(0.05 g/1 mmol)

Yes (4)

R1 = Aryl
R2 = Methyl,

Chloromethyl, Phenyl,
NH2
(10)

Solvent-free 80 20–30 min 90–96

Others

[93] Sulfonated chitosan
(0.02 g/1 mmol) Yes (5)

R1 = Aryl
R2 = Methyl

(11)
Solvent-free 80 8–25 min 85–94

[94]
Hydroxyapatite loaded with
zinc chloride
(0.05 g/1 mmol)

Yes (5)

R1 = Aryl
R2 = Methyl, Phenyl,

NH2
(22)

Solvent-free 80 25–40 min 86–96

[95] NaHSO4.SiO2(0.002 g/1
mmol)

Yes (not
reported)

R1 = Pyrazolyl
R2 = Methyl

(10)
Acetic acid 80 4–6 h 70–92

[96] Zirconium silicate
(0.05 g/1 mmol) Yes (5)

R1 = Aryl
R2 = Methyl, Phenyl

(12)
Solvent-free 110 30–40 min 92–95

It can be seen (Table 1) that when a Bronsted acid is applied as a catalyst the reaction
times are relatively long. In most cases, between 1 and 7 h are needed for the reaction to
finish. The exception is ascorbic acid, with the use of which the products were obtained
quite quickly (within 10 min) [61]. Furthermore, only one of the catalysts (dipicolinic
acid) was recycled and reused [62]. Despite these drawbacks, the products’ yields were
good to excellent. The advantages of ionic liquids/deep eutectic solvents (Table 2) as
catalysts are short reaction times, the possibility of recycling and reusing some of them,
and obtaining the target compounds in good to excellent yields. The only drawback that
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could be noted about these catalysts is they are not commercially available and must be
prepared beforehand.

Almost all of the heterogeneous catalysts (Table 3) were easy to remove from the
reaction mixture (separated by an external magnetic field or simple filtration) and could
be involved in other reaction cycles which demonstrated their reusability. This advantage,
as well as the short reaction times (typically below 1 h and in many cases within a few
minutes) and the high yields of the products, make nanomaterials a preferable choice
as catalysts for the synthesis of amidoalkyl naphthols. Like ionic liquids/deep eutectic
solvents, this type of catalysts are not commercially available and they must be prepared
in-house.

5. Conclusions

Undoubtedly, 1-amidoalkyl-2-naphthols are endowed with great biological potential.
Therefore, it comes no surprise that a lot of effort has been dedicated to their synthesis
using the Mannich reaction. Notwithstanding the numerous attempts to achieve this
transformation under homogeneous conditions, the use of heterogeneous catalysts proved
superior in terms of green chemistry metrics. In several instances under solvent-free
conditions, very high yields in a time scale of minutes have been achieved in the presence
of nanocatalysts. Notable, this class of catalysts exhibits excellent recyclability for up to
10 cycles. As a note, future research should be more interdisciplinary and focused on
biological evaluation of the synthesized amidoalkyl naphthols because of their promising
bioactivities and structural similarities to some natural products and marketed drugs.
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