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Abstract: Urban highway tunnels are frequent accident locations, and predicting and analyzing road
conditions after accidents to avoid traffic congestion is a key measure for tunnel traffic operation
management. In this paper, 200 traffic accident data from the YingTian Street Tunnel in Nanjing city
were analyzed and encoded to extract the main factors affecting tunnel traffic conditions from three
aspects: time, traffic flow, and tunnel environment. Next, graph convolution long short-term memory
networks were used to predict and fill in missing traffic flow data. Finally, seven independent
variables selected by Pearson correlation analysis were input into the constructed BP neural network
and random forest model to predict tunnel traffic conditions during accidents and accident duration.
Experimental results show that the accuracy of random forest and BP neural networks in predicting
traffic flow is 83.39% and 82.94%, respectively, and that the absolute error of the two models in
predicting accident duration is 75% and 60% within 25 min, respectively. Both models perform well in
predicting traffic conditions, and the random forest models perform better in terms of robustness and
generalization in predicting crash duration. The experimental results have important implications for
tunnel operation management during accidents.

Keywords: urban highway tunnels; graph convolution long short-term memory networks; BP neural
network; random forest model; road conditions during accidents

1. Introduction
1.1. Background

Daily life in modern society is closely linked to transportation, and many problems
arise as a result. Foremost among these is traffic congestion, which is classified as re-
curring and non-recurring, and recurring congestion can often be more easily predicted
and managed on the basis of historical data. However, infrequent congestion is typically
triggered by random events, such as various types of traffic crashes. Indeed, approximately
25 to 60 percent of the total delay experienced in the United States is due to road traffic
accidents [1]. Therefore, it is important to prevent such accidents or reduce the harm caused
by them. These goals can be addressed by predicting potential traffic accidents. Traffic
accident research focuses on two aspects, i.e., pre-and post-crash. The likelihood and risk
of the accident are often predicted prior to the crash, and the impact, cause and duration of
the crash are often studied post-crash [2]. Currently, the focus of traffic accident research is
primarily on expressways. Due to the difficulty in obtaining traffic flow and accident data,
there is a paucity of research on long tunnel traffic accidents. To conclude, based on the
actual traffic flow and accident data from the Yingtian Street tunnel in Nanjing, this paper
will investigate the traffic situation on the road and the duration of traffic accidents in the
city’s special tunnel environment and assist traffic operators in formulating reasonable
traffic policies to reduce the harm caused by traffic accidents.
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1.2. Related Works

To date, many models and algorithms have been used in the prediction of traffic
accidents by researchers. Real-time traffic flow and crash data are difficult to obtain, so
simulation and regression analysis are often used to simulate traffic crashes [3]. The devel-
opment of big data and machine learning has led to an increasing number of models being
used in traffic accident prediction, typically Bayesian networks, artificial neural networks,
support vector machines, decision tree models, and random forests [4–7]. Lu, Linjun et al. [8]
used statistical analysis of tunnel accident data from the Shanghai Center 110 to determine
the spatial and temporal distribution of traffic accidents in the Shanghai Crossing Tun-
nel. Al-Ghamdi [9] used the Logistic Regression Model to investigate the data on traffic
accidents in Saudi Arabia. Pande et al. [10] used the data mining method of correlation
analysis to study traffic accidents without intersections in Florida, and the correlation
between traffic impact factors was analyzed. Bezuglov et al. [11] studied the prediction of
short-term crossover speed and travel time between three theoretical models of the grey
system. Jurewicz et al. [12] used crash prediction risk assessment models to evaluate the
wind hazard of future serious vehicle crashes on the road network in order to reduce the
likelihood of severe traffic congestion. For example, Karimnezhad et al. [13] took Dutch
data on traffic crashes as a sample, selected influential factors from crash data, filtered
factors using a combination of master cost analysis and stepwise regression analysis, then
set up the Bayesian network using WEKA to model and test at an 8:1 ratio. Hamad et al. [2]
compared ANN with the random forest model and showed ANN to be simpler and more
effective than the ANN model. Karim Sattar et al. [14] studied the use of three advanced
deep learning methods to model the severity of motor vehicle collision injuries, namely,
Keras’s General Multilayer Sensor (MLP), MLP with embedded layers, and TabNet. Among
them, TabNet is an attention-based spreadsheet data network. Experimental results show
that all the models produce a similar and sufficient performance based on most evaluation
indices. Lee and Wei [15] developed a hybrid genetic algorithm ANN model for predicting
the length of crashes on Taiwan’s freeways. Although the accuracy of the report was high
(R2 = 0.94), their dataset was quite limited (only 39 records), and the corresponding events
were only between 30 and 133 min long. In another interesting study, Valenti et al. [16]
compared five parametric and nonparametric models using datasets from two sections of
Italian motorways. It used 237 event datasets and all the models it tried achieved acceptable
performance on the dataset with a small range of event durations. Tang et al. [17] used
stacked ML techniques, including RF, to predict categories of crash severity, and the authors
used data from approximately 5500 crashes that occurred in approximately 320 different
regions of highway in Florida. To calibrate their model, the authors refined several parame-
ters, such as the number of trees, learning rates, and regularization factors. Basso et al. [18]
built a crash prediction model that was developed for an urban freeway in Santiago, Chile.
The purpose of this study was to use RF models to identify the strongest warning signs
of an accident. Ying [19] used traditional taxonomy decision trees to predict duration
categories (abbreviated, medium term, and long term) of the approximately 4500 traffic
accidents that took place in Taiwan in 2008. Lin et al. [20] have developed a hybrid model
that combines M5P trees with hazard duration models based on parameters to predict the
duration of crashes. In addition to directly predicting the severity of an accident, XG Boost
was also used to study traffic safety authorities from the Ministry of Transportation Security
(MOT) in Riyadh, Saudi Arabia, including 13,546 motor vehicle crashes reported on 15 rural
roads between January 2017 and December 2019. It found that crash type, weather, road
surface condition, type of site damage, lighting conditions, and vehicle type were sensitive
variables in predicting the severity of an accident [21].

Overall, machine learning-based models have achieved a wealth of results in the
prediction of road traffic accidents, but there are still some drawbacks. The first is that
the effect of missing data on the forecasting outcome is not perfectly accounted for. The
missing data set contains missing crash and traffic flow data. Traffic information during
an accident is indispensable for analyzing the impact of an accident [22]. Therefore, there
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is a need to address the lack of missing traffic data. Second, the aforementioned research
primarily focuses on predicting road accidents. It should be noted that the proposed model
and method may not be suitable for tunnel accident analysis and prediction because the
tunnel has a traffic environment different from that of the city road and freeway, and there
is a need to consider the impact of additional traffic conditions on crashes.

To overcome the aforementioned issues, this paper proposes a data-filling method
based on GCN-LSTM to predict and fill missing traffic flow data. Second, this article
encodes data from 200 traffic accidents recorded in Yingtian Street Tunnel in Nanjing and
chooses the independent variables after coding. The classifier and regression model is
based on BP neural network and random forest and is used to predict traffic congestion
and crash duration, respectively.

Therefore, this article has the following three main contributions:

(1) All models are built based on real-time data recorded during accidents, such as the
time of occurrence, duration, type of accident, and type of vehicles involved, rather
than obtained through simulation or modeling.

(2) For missing traffic flow data, we use graph convolution long short-term memory
(GCN-LSTM) network models to predict and fill in the gaps. Compared with direct
deletion or using the mean value filling method, our approach is more accurate.

(3) We build both a BP neural network and a random forest model to predict road
conditions and accident duration after accidents. By comparing the prediction results,
we demonstrate that both the random forest model and neural network have good
predictive performance, and the random forest model is more robust in predicting the
duration of accidents.

2. Materials and Methods

This paper takes the 38,786 traffic flow data and 200 traffic accidents data that occurred
in the YingTian Street Cross-River Tunnel in Nanjing from 1 November to 31 December
2022 as the research object, where the original variable name and corresponding number
are shown in Table 1, and Table 2 shows the partially coded independent variable values.
To better illustrate the data used in this article, we have a statistical description of the
subcategories of some variables, as shown in Tables 3–5. As shown in Table 3, rear-
end accidents were the most frequent, accounting for about 48.5 percent of all accidents,
followed by collisions, accounting for about 29 percent of all accidents. As shown in Table 4,
accidents are more likely to occur at the entrance section of the tunnel than at the middle
section of the tunnel, which is double the number of accidents. The distribution of crashes
between the peak and peak periods, when 72.5 percent of the total crashes occurred, is
shown in Table 5. Sections 2.1 and 2.3, respectively, analyze the input and output variables.
In Section 2.2, a Graph Convolution Long Short-Term Memory (GCN-LSTM) network is
constructed to fill in missing traffic flow data. Sections 3.1 and 3.2 attempt to establish
prediction models for both the traffic conditions during the tunnel’s accident period and
the duration of accidents using the Backpropagation Neural Network (BPNN) and Random
Forest (RF) models, respectively. Finally, the experimental results are analyzed.

Table 1. Variables name table.

Variables Name Encode

Accident occurrence time V0
Off-peak/peak time V1

Accident occurrence date V2
Types of vehicles V3

Ratio of daily to the annual average daily traffic volume V4
Weather condition V5

Location of the accident in the tunnel V6
Ratio of accident time to average traffic flow during the same month V7

Types of accidents V8
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Table 1. Cont.

Variables Name Encode
Rate of large vehicles mixed in traffic V9

Accident occurrence time V10
Slope V10

Number of vehicles involved in the accident V11

Table 2. Value of variable after coded according to data record.

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

0 1 1 2 1.17 0 0 1.04 1 0.26 0 1

1 1 0 1 1.09 0 1 1.21 4 0.35 0 2

1 1 0 1 0.95 1 1 1.46 4 0.32 0 1

0 0 0 1 1.18 1 0 1.32 0 0.58 0 3

0 0 0 0 0.82 1 3 0.77 3 0.46 0 4

0 0 1 0 0.76 1 2 1.53 2 0.76 1 3

0 1 1 2 0.85 1 2 0.96 1 0.51 1 1

Table 3. Distribution of traffic accident patterns in tunnels.

Types of
Accidents Bumping Rear End Ramming Abnormal

Parking Other

Number of
accidents 58 97 15 16 14

The proportion% 29 48.5 7.5 8 7

Table 4. Statistical table of the distribution of accident zones.

Zones Entrance Middle End Outside

Number of
accidents 78 38 26 58

The proportion% 39 19 13 29

Table 5. Statistics on the time of traffic accidents.

Time Slots Peak Off-Peak

Number of
accidents 145 55

The proportion% 72.5 27.5

2.1. Analysis of Input Variables

The factors influencing traffic accidents can be summarized as subjective and objective
factors. Traffic accidents caused by unsafe behavior of individuals belong to subjective
factors, while objective factors include vehicles, road environment, traffic conditions, and
other related factors. In traffic accident analysis, the accident causes are often attributed
to subjective factors of human behavior, while the impact of objective factors on traffic
accidents is often overlooked. Therefore, this paper attempts to analyze the severity of
traffic accidents from multiple perspectives and evaluate their impact on tunnel traffic
capacity, i.e., analyzing the severity of traffic accidents from three aspects: time, tunnel
environment, and traffic dynamics. The time factor includes the date and time of the
accident, such as whether it is a holiday or a peak traffic period. The tunnel environment
factor includes the location of the accident in the tunnel, the number of vehicles involved
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in the accident, the number of lanes occupied by the accident, the direction of travel, slope,
and road marking of the vehicles involved in the accident. The traffic dynamics factor
includes the ratio of daily traffic flow to the annual average traffic volume, the ratio of
traffic volume within 15 min of the accident occurrence to the monthly average traffic
volume during the same period, and the rate of large vehicle mixing. In addition, this paper
will use time series models to predict missing traffic flow data in Section 2.2. Therefore, the
prediction model for the severity of traffic accidents in highway tunnels selects 12 input
variables, and the classification and coding of input variables will be discussed below.

(1) Accident occurrence date (V2): categorized into two types: holidays (including
Saturdays, Sundays, and national holidays) and non-holidays, with 0 representing non-
holidays and 1 representing holidays.

(2) Accident occurrence time (V0): categorized into two types: daytime (6:00–18:00)
and nighttime (18:00–6:00 the next day), with 0 representing daytime and 1 represent-
ing nighttime.

(3) Whether the accident occurred during peak traffic hours (V1): categorized into
two types: off-peak hours with 0 and peak hours with 1 (peak hours refer to 6:30–9:30 and
16:30–18:30).

(4) Location of the accident in the tunnel (V6): categorized into four types: near the
entrance/exit of the tunnel (referring to 100 meters extending inward/outward from the
entrance/exit), middle section of the tunnel, end of the tunnel, and outside the tunnel. Near
the entrance, the tunnel is represented by 0, the middle section of the tunnel is represented
by 1, the end of the tunnel is represented by 2, and outside the tunnel is represented by 3.

(5) Number of vehicles involved in the accident (V11): categorized into four types:
single-vehicle accidents, two-vehicle accidents, three-vehicle accidents, and multiple-
vehicle accidents, with values ranging from 1 to 4.

(6) Weather (V5): according to the historical meteorological data of Nanjing, weather
types can be classified as sunny, cloudy, rainy, and foggy. However, the weather data in the
150 traffic accidents selected for this study only distinguish between rainy and non-rainy
days. Therefore, in the following analysis, weather can only be categorized into rainy and
non-rainy days, with 0 representing non-rainy days and 1 representing rainy days.

(7) Slope (V10): The slope of the tunnel is divided into two categories: uphill section
and downhill section, based on the longitudinal section design data of the tunnel. The
uphill section is represented by 0, and the downhill section is represented by 1.

(8) Traffic volume ratio between the time of the accident and the average traffic
flow during the same period of the month (V7): The Sony SSC-SD26P device was used
to capture traffic flow in the Ying Tian Street Tunnel, and traffic flow was recorded every
15 min. Due to missing values in the traffic flow data, the handling method for missing
values will be discussed in Section 2.2. Based on the traffic flow data and tunnel accident
records, the ratio of traffic volume at the time of the accident to the average traffic flow
during the same period of the month ranges from 0.77 to 1.53.

(9) Ratio of daily to the annual average daily traffic volume (V4): This refers to the
ratio of traffic volume on the day of the accident to the annual average daily traffic volume.
The ratio ranges from 0.34 to 1.22.

(10) Rate of large vehicles mixed in traffic (V9): This refers to the proportion of large
vehicles in the traffic composition on the day of the accident. The rate ranges from 22.21%
to 80.58%.

(11) Types of vehicles involved in the accident (V3): The types of vehicles involved
in the accident are classified into three categories: sedans, large vehicles, and other vehicles.
Sedans are represented by 0, large vehicles are represented by 1, and other vehicles are
represented by 2.

(12) Types of accidents (V8): The types of accidents are classified into five categories:
side collision, rear-end collision, collision with the wall, abnormal parking, and other types.
Side collision is represented by 0, rear-end collision is represented by 1, collision with
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the wall is represented by 2, abnormal parking is represented by 3, and other types are
represented by 4.

2.2. Handling Missing Traffic Flow Data

In traffic flow prediction, missing data can have a significant impact on the accuracy
and reliability of the prediction model. When the model relies on historical data for analysis
and prediction, missing values in the historical data can lead to inaccurate predictions.
Furthermore, if missing values are not handled properly, they can affect the model’s fitting
and generalization abilities, making the model more prone to overfitting to specific patterns
in the existing data and unable to accurately predict new data. Therefore, in this paper,
before predicting the traffic conditions during accidents and the duration of accidents,
it is necessary to fill in the missing values to improve the accuracy and reliability of the
model [23]. There are several methods for handling missing data, including:

(1) Deleting missing values: This method involves directly deleting data that contains
missing values. However, this approach reduces the size of the training set and affects
the accuracy of the model. In this paper, direct deletion would affect the range of the
input variable, the ratio of traffic volume during accidents to the average traffic flow
during the same period of the month.

(2) Interpolation: Interpolation is a method of estimating missing data using known
data. The most common interpolation method is linear interpolation, which estimates
missing values using the straight line between two adjacent known data points. Other
interpolation methods, such as Lagrange interpolation and spline interpolation, are
also available.

(3) Model-based approach: If the missing values in the dataset are relatively small, a
model-based approach can be considered to predict the missing values. For example,
regression models or time series models can be used to predict nighttime traffic flow.

(4) Data imputation: Another method is to replace missing values with other values,
such as the mean or median of the dataset. This method can maintain the size of the
training set, but it may affect the accuracy of the model.

In this paper, the missing traffic flow data mainly occurred during the time period
from 10 p.m. to 2 a.m. on 30 November, from 9 p.m. to 11 p.m. on 10 December, and from
8 p.m. to 10 p.m. on 16 December. The Yingtian Street Tunnel Radar Detector records traffic
flows at fifteen-minute intervals in seven different locations. Seven different locations can
be thought of as nodes, and the connections within the tunnel as edges between the nodes.
The seven nodes and their edges form a tunneling network of nodes, and each node’s
throughput is related not only to its own node throughput at historical times but also to
the throughput of surrounding nodes. As a result, we can build a kind of message passing
network, a GCN model, to explore the spatial characteristics of node A [24,25]. Figure 1
shows the tunneling node network and computational diagram of node A. Additionally,
as shown in Figure 2, we use the output fusion of the two models as a predictor of the
traffic flow of node A using the long short-term memory network to extract the temporal
characteristics of node A [26]. In summary, the GCN-LSTM model will be more accurate at
filling in the missing value of the tunnel traffic volume, which is useful for improving the
stability of the traffic accident prediction model.

The graph convolution formula is as follows:

H(l+1)
ne = ReLU

(
∼
D
− 1

2

ne
∼
Ane

∼
D
− 1

2

ne H(l)
ne W(l)

ne

)
(1)

where W(l)
ne represents the learnable neural layer,

∼
Ane = Ane + I and

∼
Ds,ii = ∑j

∼
As,ij.

H(0)
ne = X ∈ Rn× f , where X denotes the feature matrix (traffic flow) of all sites in tunnel.

Here, f denotes the feature dimension, H(l)
ne ∈ Rn×d represents the I-th layer’s output.
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The LSTM consists of three main components: the forget gate f , the input gate i, and
output gate o. In addition, there is a cell state used to store and pass information, and each
component is composed of one or more fully connected layers for weighting, activation,
and gating operations on the input.

The forget gate controls which information from the previous time step’s cell state
Ct−1 needs to be retained or forgotten to avoid irrelevant information interfering with the
current state. The updated formula for the forget gate is as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
(2)

The input gate is responsible for controlling the update of the cell state Ct by the
current input xt, determining which information needs to be added to the cell state Ct. The
sigmoid layer determines which values need to be updated, and the tanh layer creates a
new candidate value vector and generates candidate memory. The state update rule for the
input gate is: {

it = σ(Wi[ht−1, xt] + bi)
∼
Ct = tanh(Wc[ht−1, xt] + bc)

(3)

Ct = ft × Ct−1 + it ×
∼
Ct (4)
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The output gate is responsible for calculating the output ht at the current time step
based on the input xt and memory cell state Ct, which can be passed to the next LSTM unit
or used as the final output. The state update rule of the output gate is:{

ot = σ(Wo[ht−1, xt] + bo)
ht = ot × tanh(Ct)

(5)

The above formula shows the LSTM cell state update process, where σ denotes the sig-

moid function;
∼
Ct represents the candidate cell information; W f , Wi, Wc, and Wo represent

the weight coefficient matrices in the LSTM cell state update process; and b f , bi, bc, and bo
represent the bias matrices in the state update process.

2.3. Analysis of Output Variables

In this paper, we constructed both a BP neural network and a random forest model to
predict the traffic flow status and accident duration when accidents occur. Therefore, the
output variables are:

• Traffic flow status when accidents occur: According to the special situation record data
of Ying Tian Avenue Tunnel, the traffic flow status when accidents occur is divided into
two categories: normal traffic flow takes 0 and traffic congestion caused by accidents
takes 1.

• Accident duration: In minutes, based on the special situation record data of Ying Tian
Avenue Tunnel, the accident duration ranges from 0 to 38 min.

2.4. Traffic Condition Prediction Model

During traffic accidents, the traffic flow status is one of the most basic pieces of
information to investigate and one of the most intuitive manifestations after the accident.
The traffic flow status can reflect the road capacity to a certain extent after the accident, but
it is not exactly the same as the road capacity, and there is a certain correlation between
the two. Therefore, predicting the traffic flow status is the basis for predicting the duration
of the highway tunnel and analyzing the traffic capacity. Predicting the traffic flow status
of highway tunnel traffic takes it as the dependent variable, studies its relationship with
each independent variable, and predicts the possible traffic flow status in the event of an
accident through the independent variable to facilitate the prediction and handling of other
situations that may occur during the accident.

2.4.1. Correlation Analysis

Undoubtedly, having a large dataset is a bonus for predicting accident targets. How-
ever, it also brings up the issue of variable selection. This includes a large number of
variables directly in classification or regression models that may lead to overfitting, which
in turn may affect the interpretation of the relationships between variables and, more
importantly, the use of the model in the prediction phase. Therefore, it is important to
analyze our data to determine which variables are the main influencing factors of the
dependent variable. In order to achieve this, Pearson correlation analysis was used in this
paper to study the correlation between independent and dependent variables, with the
specific formula as follows [27]:

ρxy =
COV(X, Y)√
D(X)

√
D(Y)

(6)

The correlation coefficient ρxy of independent variable X and dependent variable
Y, COV(X, Y) is the covariance between variables X and Y, and D(X) is the variance of
the variable.
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2.4.2. Model for Predicting Traffic Conditions

Based on the variable screening results described above, this article predicts the traffic
conditions and duration of highway tunnel accidents using both the BP neural network
model and the random forest model. A total of 150 traffic accidents were randomly divided
into 120 as the training set (train label) and 30 as the testing set (test label). For predicting
tunnel traffic conditions, which is a classification problem, the model’s performance is
evaluated by its prediction accuracy. For predicting accident duration, which is a regression
problem, the evaluation is based on the root mean square error between predicted values
and actual values. The formulas for calculating accuracy and root mean square error are
as follows:

accuracy =
length(predict = textlabel)

length(textlabel)
(7)

In the formula, accuracy represents the accuracy of the model prediction,
length(predict = textlabel) is the number of accurate predictions, length(textlabel) is the
number of data points in the training set during training, or the number of data points in
the testing set during testing.

RMSE =

√
∑n

i=1
(
x0 − xp

)2

n
(8)

The n denotes the number of sample, x0 denotes the ground truth, xp represents the
predicting value.

2.4.3. BP Neural Network

The BP neural network is a type of multi-layer feedforward neural network proposed
by Rumelhart in 1986 and is one of the most widely used neural networks. The BP neural
network consists of an input layer, a hidden layer, and an output layer, each layer containing
several neurons, with each neuron receiving signals only from the neurons in the previous
layer and having no connection with the neurons in the same layer. In 1989, Robert Hecht-
Nielsen proved the universal approximation theorem of the BP neural network, which
states that any continuous function on a closed interval can be approximated by a BP
network with only one hidden layer. Therefore, a three-layer (input layer, hidden layer, and
output layer) BP neural network can complete the mapping from any dimension to any
other dimension. The following Figure 3 shows a typical 3-layer BP neural network model.
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• Forward propagation process

Assuming that i denotes input neurons, j represents hidden neurons, k represent
output neurons, for a certain input xk, the output of the network is yk, the output of node i
is oi, and Wji is the connection weight.

The input of hidden node j:

netj = ∑i WjiOi (9)

The output of hidden layer node j:

Oj = f
(
netj

)
(10)

The input of output layer node k:

netk = ∑j WkjOk (11)

The output of node k:
Ok = f (netk) (12)

The f (x) represents the activate function and, in this paper, we use sigmoid function
as follows:

f (x) =
1

1 + e−ax , (0 < f (x) < 1) (13)

After the above forward propagation process, the BP neural network completes the
approximate mapping from an n-dimensional space to an m-dimensional space.

• Backpropagation process

The essence of the backpropagation process is the search for weight vectors, which
requires continuously iterating to minimize the error function. When the difference between
the actual output of the network and the expected output does not meet the expectations,
an error signal is generated and propagated from the output end to the input end. During
the propagation process, the network dynamically adjusts the network weights based on
the error signal feedback to continuously reduce the difference between the actual and
expected output values.

Assuming that number of samples are p, after the p sample is input to the network,
the output Opk is obtained, and the expected output is tpk. If the square error function is
used, then the error of the p sample is Ep:

Ep =
1
2∑n

k=1

(
tpk −Opk

)2
(14)

The global error of the samples:

E = ∑p Ep (15)

• Advantages of BP neural networks

As an artificial intelligence model, one of the most significant features that distin-
guishes BP neural networks from statistical regression models is that it does not require
any assumptions. It can map the relationship between n-dimensional input variables and
m-dimensional output variables as long as there are enough samples. The mathematical
theory has proven that BP networks can approximate any complex function through the
combination of simple nonlinear processing units. When the BP network encounters test
samples that were not present in the training samples, it can still make correct predictions,
and this ability is known as the model’s generalization ability. The BP neural network has
strong generalization ability and therefore has high practical value. In some cases, there
may be errors in traffic accident samples due to the large sample size, making it difficult to
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avoid such errors in the data. However, because BP neural networks are less affected by the
global mapping capability of the network when only a few local neurons are damaged, they
can achieve accurate predictions even with a small amount of error in traffic accident data.

2.4.4. Random Forest Model

Random Forest is a type of machine learning model that utilizes the concept of a
collection of decision trees. Figure 4 shows the framework of the random forest model.
Each tree in the random forest is built using a randomly sampled subset of data and a
randomly selected subset of features. The prediction of the random forest model is based
on the average prediction of all individual trees in the ensemble. Random Forest is popular
due to its ability to handle high-dimensional data, detect complex interactions between
variables, and avoid overfitting.
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First, bootstrap sampling is used to randomly select multiple subsets of samples
with replacements from the original training set; then, for each sample subset, a decision
tree is generated by randomly selecting some features, and a random forest classifier is
constructed. In the constructed random forest classifier, each decision tree is a learner.
Next, the test set is input to the random forest model, and for each sample, each decision
tree will generate its corresponding classification result. Finally, the prediction results of
the base classifiers are summarized, and the final classification result of each sample is
determined by voting. In summary, building a random forest model requires steps, such
as data preprocessing, random sampling of data, constructing decision trees, prediction,
parameter tuning, and model evaluation. Choosing appropriate parameters and variables
will help improve the accuracy and predictive ability of the model.

Currently, the most widely used decision tree generation algorithms are ID3, C4.5, and
CART. In these algorithms, the node split criterion in ID3 and C4.5 is calculated according
to information gain, while in CART, it is calculated according to Gini impurity.

In this article, the decision tree uses the C4.5 algorithm. Decision trees generated using
the ID3 algorithm are prone to the phenomenon of local optimum solutions. Therefore,
Quinlan subsequently improved the node split selection criterion in the ID3 algorithm and
proposed the C4.5 algorithm. The C4.5 algorithm uses information gain ratio as the feature
selection criterion, and the calculation method of the information gain ratio is as follows:

Gainratio(D,a) =
Gain(D, a)

IV(a)
(16)

IV(a) = −∑n
j=1

∣∣Dj
∣∣

|D| log2

∣∣Dj
∣∣

|D| (17)
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where |Dj|
|D| is the weight assigned to the node based on the number of samples. Compared

to the ID3 algorithm, the C4.5 algorithm has improved classification accuracy.

3. Results
3.1. Pearson Correlation Analysis

After the Pearson correlation analysis, the correlation coefficients of each independent
variable to the dependent variable are shown in the Figure 5 below (target is the dependent
variable, taking the tunnel traffic conditions as an example). It can be seen from the
figure that the accident type V8 has a high correlation with the road traffic conditions
inside the tunnel, as the single-vehicle accidents are mainly collisions with the wall and
abnormal parking, while the two-vehicle accidents are mainly rear-ending collisions and
rubbing. This variable is not only important for predicting road traffic conditions but also
for predicting the duration of accidents. In terms of time, the accident time V0 (day or
night) has the highest correlation with whether the tunnel is in a high-traffic period during
accident V1. The correlation between the accident date (whether it is a holiday), season,
and tunnel traffic conditions during the accident is small. In terms of space, the accident
location V6 (whether it is inside the tunnel) has the greatest influence, followed by whether
it is in a deceleration zone, and the tunnel length and accident section have a relatively
small impact. In terms of traffic volume, the ratio of traffic volume at the time of the
accident to the average traffic flow during the same period of the month V7 and the mixing
rate of large vehicles V9 have a greater impact on the traffic conditions. In addition, the
weather V5 also has a significant impact on the tunnel traffic conditions after the accident.
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After analysis and comparison, the seven most relevant independent variables were
selected to predict the tunnel traffic condition and accident duration during accidents. They
are the involved accident types (V8), accident time (V0), accident location (V6), rate of large
vehicles mixed in traffic (V9), the ratio of traffic volume during an accident to the average
traffic volume in the same period of the month (V7), whether it is a traffic peak period (V1),
and weather (V5) (See Figure 6).
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3.2. Missing Data Prediction

In the application of GCN-LSTM for missing traffic flow prediction, we treat the
missing traffic flow as the value to be predicted and use the time periods with complete
traffic flow records as the training set. The entire dataset is divided into an 80% training set
and a 20% test set. The training and evaluation process is based on the PyTorch framework,
and the model loss function adopts Mean Squared Error (MSE). The model loss reduction
and prediction results are shown in Figure 7.
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As shown in the Figure 8, the purple curve represents the actual values of the test
set, and the red curve represents the predicted values of the model. Whether it is during
peak hours or off-peak periods, the GCN-LSTM model is able to predict the missing traffic
volume values accurately. Therefore, the predicted results can be used to calculate the
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input variable “the ratio of traffic volume at the time of the accident to the average traffic
flow during the same period of the month”, which can then be used to predict the traffic
conditions and the duration of the accident.
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3.3. Tunnel Traffic Condition Prediction

Based on the variable selection results in Section 3.1, after normalization, the variables
were input into both the BP neural network and random forest model for prediction. This
paper uses a linear function transformation method to convert the input data into data
between 0 and 1:

xij =
xij − xi,min

xi,max − xi,min
(18)

where xij is the normalized value of the j-th sample of the i-th variable, xij is the actual input
value of the j-th sample of the i-th variable, xi,max is the maximum value of the variable
samples, and xi,min is the minimum value of the variable samples.

• BP neural network

The BP neural network model in this paper was trained based on the PyTorch deep
learning framework. The training process was set with a learning rate of 1× 10−3, 3 hidden
layers with 12 neurons in each. The loss function during the training phase was calcu-
lated using the accuracy formula. The activation functions used were the sigmoid and
SoftMax functions, and the optimizer used was Adam. The training was carried out for
30,000 iterations (epochs). The model was run five times, and the results are shown in
Table 6:

Table 6. Accuracy of BP neural network.

Accuracy (%) Mean Std.

83.29 82.25 82.29 80.61 84.28 82.94 1.31

As can be seen from the table, the accuracy of the BP neural network model for
predicting traffic flow conditions is about 82%, and the prediction results are relatively
accurate. The time for completing one model training is around 10 s, which is short.
Therefore, the BP neural network model has good robustness for predicting traffic flow
conditions when accidents occur.
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• Random-forest model

The random forest model has good predictive performance, so in the actual operation
of the model, in order to save time and improve efficiency, it is often not necessary to
adjust all parameters to ensure high model accuracy. To improve the running efficiency,
this article mainly selects two main parameters for adjustment, namely, the number of
decision trees (n_estimators) and the maximum depth of decision trees (max_depth). The
parameter adjustment mainly uses the GridSearchCV class in the sklearn.model_selection
library in Python, that is, grid search. The main function of this class is to automatically
adjust the parameters. As long as the range of parameter values is given, the parameter
values corresponding to the optimal result can be obtained. At the same time, this class
can also perform cross-validation for each parameter combination. Through grid search
and cross-validation, the optimal values of n_estimators and max_depth of the model can
be obtained. Through experiments, the optimal number of decision trees for the random
forest model in this article is 200, and the optimal maximum depth of decision trees is 10.
The model was run five times, and the results are shown in Table 7:

Table 7. Accuracy of random forest.

Accuracy (%) Mean Std.

82.64 83.03 84.71 84.06 83.53 83.39 0.81

3.4. Accidents during Time Prediction

The duration of a traffic accident refers to the total time from the occurrence of the
accident to the restoration of normal traffic conditions. It includes four parts: the time of
accident discovery, the time of accident response, the time of accident clearance, and the
time of traffic recovery. Predicting the duration of a traffic accident can provide accurate
predictions of road closure time after the occurrence of an accident, which can be provided
to drivers to facilitate the cancellation or change of their travel routes and enable accident
handlers to effectively manage the accident scene with ease. For predicting the duration of
a traffic accident, the model inputs and parameter selection are the same as those of the
method for predicting the shape of the accident presented earlier. The prediction results of
the two methods are presented below.

Through experimental data, the stochastic forest and BP neural network models were
75% and 60% accurate, respectively, in predicting the duration of accidents when the
absolute error was less than 25 min. The results of accident duration prediction by the BP
neural network model are shown in Figure 9 below, where the blue curve represents the
actual accident duration of the test set, the red curve represents the prediction result of
the random forest model, and the green curve represents the prediction result of the BP
neural network. As shown in the figure, the trend of the accident duration predicted by
the BP neural network is generally consistent with the actual value, but due to the large
discreteness of the actual values, the BP neural network has reduced the discreteness of
the predicted values to avoid greater errors. Therefore, the predicted values mostly fall
between 3 min and 20 min, and the accuracy of predicting traffic accidents with a duration
between 6 min and 20 min is relatively high. However, due to the strong discreteness
of accident duration, the predictive ability of the model is poor. On the other hand, the
random forest model shows a trend of accident duration that is generally consistent with
the actual value and has a better-fitting effect. As shown in the figure, the predicted values
mostly fall between 5 min and 25 min, and the accuracy of predicting traffic accidents with
duration between 5 min and 30 min is relatively high. Therefore, the random forest model
has a better fitting effect than the BP neural network in predicting accident duration.
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To improve the interpretability of model predictions, we used Shape (Shapley Ad-
dictive Explanations) for better predictive stochastic forest models to analyze the relative
impact of independent variables on the target variable, i.e., the duration of an event. We
used the Summary Plot method to map the Shape value of each feature for each sample,
explaining which features are most important and their impact on the dataset. The position
on the y-axis is determined by characteristics and the position on the x-axis is determined
by each Shapley value. Colors represent eigenvalues (red is high, blue is low), and colors
allow us to match how changes in eigenvalues affect changes in risk. Overlapping points
wobble on the y-axis, so we can understand the Shapley value distribution of each feature,
and these features are sequenced according to their importance. As shown in Figure 10,
the order of importance of the feature variables is as follows: involved accident types (V8),
accident location (V6), accident time (V0), the ratio of traffic volume during accident to the
average traffic volume in the same period of the month (V7), and weather (V5), whether it
is a traffic peak period (V1), rate of large vehicles mixed in traffic (V9).
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4. Discussion

In this paper, we review the relevant literature on road traffic crashes combined with
machine learning and summarizes and discusses various factors affecting the safety of road
tunnels, including tunnel geometry, road surface condition, and traffic condition. The study
also analyzed 38,786 traffic flow data and 200 accident data obtained from the Yingtian
Tunnel in Nanjing, China, and was conducted on the same day. To account for missing
traffic data, we combined the actual location of the tunnel flow logging equipment with
the spatiotemporal relevance of the traffic data and designed a deep learning framework
based on GCN-LSTM to predict the missing traffic flow values. We believe that our
approach is more compelling and generalizable than traditional methods of using mean
filling-in or direct deletion. This was followed by a combination of previous studies and
correlation analysis to investigate factors affecting tunnel capacity and accident duration
and visualization of the results using heat maps. Our study shows that seven independent
variables—the type of accident, the time of the accident, the location of the accident, the
proportion of heavy vehicles, the ratio of traffic during the accident to average traffic during
the same month, if it was a peak-hour cycle, and weather—have a significant impact on
tunnel capacity and accident duration, whereas other factors are insignificant. Thus, we
confirm these seven variables as inputs to subsequent prediction models.

Based on the above work, we built a prediction model of highway tunnel traffic
accident severity using random forest and reverse propagation neural network, with time,
tunnel environment, and traffic dynamics as input variables and tunnel traffic condition
and accident duration as output variables. The results of this study showed that BP neural
network and random forest model both performed well in predicting traffic conditions
after a tunnel accident. Both models were run five times under the same experimental
setting and hyperparameters. The BP neural network had an average prediction accuracy of
82.94%, standard deviation of 1.31; and the random forest model had an average prediction
accuracy of 83.39% and a standard deviation of 0.81. The prediction accuracies of the
stochastic forest model and the BP neural network are 75% and 60% in terms of accident
duration, respectively, when we set the absolute error to less than 25 min.

5. Conclusions

In this research, we primarily investigate the prediction of traffic accidents in long
tunnels in cities. We also design a deep learning-based framework, namely, GCN-LSTM,
to predict and fill in the missing values of the input variables, in addition to analyzing
the traffic accidents themselves. This method can be applied to traffic research in other
scenarios in the future, in particular missing data on traffic flows in large road networks.
Random forest and BP neural networks are used in studies of traffic accidents and accident
durations for two reasons. First, a large of prior research has confirmed that both models
perform well in crash analysis and forecasting in other scenarios. Second, both of these
models have better landing prospects than other more complex deep learning frameworks,
and they have better accuracy than traditional models based on statistics. Our work may
provide guidance to transportation operators in formulating more rational policies during
special hours and provide a relevant benchmark for the implementation of emergency
relief in long-distance urban tunnels. However, it should be noted that the study only
used data from 200 vehicular accidents in a tunnel in Nanjing, which could limit the
representativeness of the findings. Given these limitations, we will thus focus on the
following directions for future work, one of which is to continue collecting more data on
traffic accidents, not only from the inside of the tunnel but also from the road network
surrounding the tunnel. By improving the data, we can improve the feature extraction
of the model, which will make a significant contribution to the model’s credibility and
robustness. Second, we view deficits in data quality and quantity as inevitable in some
scenarios, and that small-sample learning may be the key to addressing this issue.
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