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Abstract: Structural reanalysis methods have been proposed to improve the efficiency of structural
analysis. However, the methods are typically only applicable to their specific type of structural
modification. Since the optimization process often involves multiple types of modifications, it is
necessary to establish a criterion for selecting the most suitable reanalysis method for each type of
modification, aiming to accelerate the optimization process. In this study, the effects of different
types of structural modifications are first analyzed. A qualitative correspondence is established
between different types of structural modifications and the mainstream of the reanalysis methods.
Secondly, the most suitable reanalysis method for different types of structural modifications is
quantitatively analyzed from the aspects of selecting efficiency indicators and clarifying accuracy
requirements. Finally, in conjunction with the Structural Topology and Shape Annealing (STSA)
algorithm, a criterion for selecting reanalysis methods, which are applicable to the optimization
process of plane trusses, is established. To verify the validity of the selection criterion, two types
of numerical examples are conducted. The results show that the proposed criterion can effectively
improve the efficiency of structural computations.

Keywords: structural optimization; plane truss; structural reanalysis method; selection criterion;
computational efficiency

1. Introduction

During the optimization process of structural design, the structural analysis and
solution need to be repeatedly performed due to continuous adjustments and modifications
of the design variables, including the decomposition or inverse operation of the structural
stiffness matrix. The traditional approach is to treat the structure after each change as
a new structure for the complete analysis, even if a minor change is concerned. This
causes a large number of unnecessary and repetitive calculations, resulting in low efficiency
of structural computation. To solve this problem, reanalysis methods have gradually
emerged. The basic idea of these methods is to use the calculation information before the
modification (such as the initial stiffness and response of the structure) and then combine it
with the modification information (such as incremental stiffness matrix) to quickly solve the
structural response after the change. These methods can effectively avoid complete analysis
of the structure, significantly reduce the computing cost, and improve the computing
efficiency. Currently, structural reanalysis methods are mainly divided into two categories,
namely, exact methods and approximate methods, which are based on the accuracy of the
calculation results.

Exact methods can generally obtain precise structural response after the modifications
through mathematical deduction. The most classic method in the early period is the
Sherman–Morrison–Woodbury (SMW) method [1]. The SMW method can quickly obtain
the inverse matrix of the modified stiffness matrix by using the inverse matrix of the initial
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stiffness matrix and the incremental stiffness matrix. Then the modified structural response
can be readily obtained. In recent years, new methods have been developed. Song et al. [2,3]
proposed a matrix partitioning method named the UMTF method based on the idea of
“filling elements”, which shows good performance in large-scale structural calculations.
Wang et al. [4] proposed the Independent Coefficient (IC) method, which simplifies the
inputs for the calculation and is suitable for local modification of large-scale structures. On
this basis, the more applicable Indirect Factorization Updating (IFU) method [5] has been
proposed. In addition, a block-based reanalysis method named the BB method proposed
by Gao et al. [6] has been applied to the problem of local modification of large structures.
For the processing of sparse matrices, Chan et al. [7] proposed a partial re-decomposition
method (PR method) for sparse matrices, whereas Davis et al. [8] developed a method for
the rapid decomposition of sparse matrices as a whole.

Compared with the exact methods, approximate methods usually estimate the struc-
tural response by reducing the solution size (such as reducing the dimension of the stiffness
matrix). They can further be classified into four categories: local approximation, global
approximation, iterative approximation, and combined approximation [9].

Local approximation methods estimate the structural response based on the calculation
information of a single point. The common approach is to perform various series expan-
sions at a single point in order to approximate the exact solution. Typical representative
methods include the moving asymptote method [10] and the second-order approximation
method [11]. Since these methods only rely on the effective information at a single point,
they are suitable for small-scale modifications. Once the modification scale becomes larger,
their calculation accuracy may not be guaranteed.

Global approximation methods, also known as multipoint approximation methods,
utilize the calculation information of multiple points after structural changes to construct
an approximate function of the structural response with respect to design parameters.
Classical global approximation methods mainly include the response surface method [12],
the reduced basis method [13,14], and the polynomial fitting method [15]. Due to the
integration of the calculation information of multiple points, global approximation methods
normally have higher calculation accuracy than local approximation methods. However,
the acquisition and fitting calculation of multiple-point information often make their
calculation efficiency relatively low, especially in solving complex structural problems,
which can even be lower than that of complete analysis.

The idea of iterative approximation methods comes from the iterative method for
solving linear equations in mathematics [9]. For example, the Preconditioned Conjugate
Gradient (PCG) method [16], which is based on the Conjugate Gradient (CG) method [17],
introduces a suitable preconditioning matrix to reduce the condition number of the stiffness
matrix, thereby improving the overall calculation efficiency. The PCG method is widely
used due to its fast convergence rate and high accuracy. Wu et al. [18] extended the PCG
method to solve the topology optimization problems with reduced degrees of freedom
(DOFs). Combined with Guyan reduction [19], the PCG method can also handle topology
optimization problems with increasing DOFs [20]. The principle of Guyan reduction
involves partitioning the stiffness matrix to consolidates the newly added DOFs onto
the existing structural DOFs, ensuring that the solution scale remains consistent with the
existing structural DOFs.

The Combined Approximations (CA) method is a popular and extensively studied
method, which is considered to combine the high efficiency of local approximation methods
and the high accuracy of global approximation methods. CA was proposed by Kirsch [21],
who applied the reduced basis vector method to represent the approximate solutions of
displacements [22]. Furthermore, CA can be derived using binomial series as reduced
basis vectors and was successfully applied to topology optimization [23]. To improve the
accuracy of CA in solving large-scale modifications, Yang et al. [24] proposed the Iterative
Combined Approximations (ICA) method. In addition, scholars such as Chen [25], Wu [26],
and Huang [27] also conducted a series of studies on CA.
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Although the above reanalysis methods have significantly improved structural calcu-
lation efficiency, previous studies have mainly focused on innovating or improving single
methods. Little research has been done on comparing and exploring the most suitable
methods for different structural modification types. The purpose of this paper is three-fold.
The first is to investigate the effects of different structural modification types on structures
during the structural optimization process. The second is to explore the most suitable
method that maintains both accuracy and efficiency under different structural modifica-
tion types from both qualitative and quantitative perspectives. The third is to develop a
selection criterion for reanalysis methods, which is suitable for the structural optimization
of plane trusses. The criterion will be combined with the Structural Topology and Shape
Annealing (STSA) algorithm [28] to “draw on the strengths of all” and further improve the
calculation efficiency.

2. Qualitative Classification of Structural Reanalysis Methods

The qualitative classification of reanalysis methods is primarily achieved by analyzing
the effects of different types of structural modifications (size, shape, or topology) on the
structure. This analysis is to establish the correspondence between the reanalysis methods
and the applicable modification types. In this section, CA, ICA, PCG, Epsilon [29], and their
variant methods oriented towards changes in DOFs are selected as research objects. The
improved PCG method is selected for the reduction of DOFs in the structure, whereas the
combinations of the Guyan method and other methods are used for the increase of DOFs.

The STSA algorithm is used for structural generation and optimization in this study. It
integrates shape grammar and structural evaluation into an improved simulated annealing
algorithm, forming a discrete structural optimization method. The shape grammar defines
the basic rules for structural size, shape, and topology transformations. Each rule acts
dynamically on the initial structure based on probabilities, achieving free transformation of
the structural configuration. The workflow is shown in Figure 1 [28].
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Figure 1. Flow chart of STSA.

According to the principles of the STSA algorithm, structural modifications only
involve one of size, shape, or topology transformation at a time. Therefore, determining
the effects of a single modification on the structure will be beneficial for the qualitative
classification of reanalysis methods. In this paper, the effects of a single modification are
divided according to the number of modifications to the elements in the stiffness matrix
and according to whether the modifications are local or global in the structure.

The size transformation of a structure involves modifying the cross-section of a single
member. The resulting incremental stiffness matrix, ∆K, as shown in Equation (1), contains
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non-zero elements only at the corresponding nodes i and j, whereas all the other elements
are zero. This indicates that the impact of the cross-section changes in a single member
of the structure is relatively limited, especially when the total number of nodes increases.
Overall, the effect of size transformation in the structural optimization process is relatively
small and can be considered as a local small modification.

∆K =
E∆A

lij



· · · i · · · j · · ·
...[

c2 sc
sc s2

]
· · ·

[
−c2 −sc
−sc −s2

]
i

...
. . .

...
...[

−c2 −sc
−sc −s2

]
· · ·

[
c2 sc
sc s2

]
j

...


, (1)

where E is the elasticity modulus, Lij is the length of a member, and ∆A represents the
changes in the cross-section.

Shape transformation of the structure refers to the modification of a single node’s
position, assuming that there are m nodes connected to the modified node. The resulting
non-zero element count in the incremental stiffness matrix is 12m + 4. The size of this
modification is closely related to the number of connected nodes. In the structural design
process, the maximum number of connections for a single node is generally limited due
to the consideration of subsequent construction difficulties. In this study, the maximum
number of connections for a single node is 5. Overall, the incremental stiffness matrix
caused by the changes of node positions exhibits a nonlinear relationship with the design
variable (node coordinates). At the same time, its rank is also relatively high. Compared
with the size transformation, shape transformation brings relatively greater effects and can
be considered as a local moderate change.

Topology transformation includes three cases. The first one is a topology modification
where the DOFs remain unchanged, as shown in Figure 2a. The second one is a topology
modification that increases the DOFs, as shown in Figure 2b. The third one is a topology
modification that reduces the DOFs, as shown in Figure 2c.
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Regarding the first case, it can be viewed as the superposition of two-size transfor-
mations. Firstly, the cross-sectional area of member kj reduces to 0, and secondly, the
cross-sectional area of member im changes from 0 to non-zero. Although the number of
modified elements in the incremental stiffness matrix is twice that of the size transformation,
its overall impact on the structure is still relatively small. Therefore, it can be regarded as a
local small change.

As for the second case, it can be converted to a superposition of multiple size transfor-
mations. Firstly, the cross-sectional area of member ij is reduced to 0, and then members
mi, nj, and mk are added. The third case is the reverse process of the second one. Since the
second and third cases involve changes in the size of the stiffness matrix, and the number of
modified elements compared to the size transformation is relatively high, these two types
of modification can be considered as local moderate changes.
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Based on the analysis presented above, the corresponding relationship between vari-
ous modification types and each method can be preliminarily established, as seen in Table 1.
This table provides a summary of the applicable reanalysis methods for each modification
type, laying the groundwork for subsequent quantitative analysis.

Table 1. Qualitative selection of reanalysis methods.

Modification
Type

The Number of
DOFs is Unchanged

The Number of
DOFs Is Increased

The Number of
DOFs Is Decreased

Size Modification Shape
Modification

Topology
Modification

Topology
Modification

Topology
Modification

Applicable
methods

CA CA CA Guyan + CA MPCG
Epsilon ICA Epsilon Guyan + Epsilon

PCG Epsilon PCG Guyan + PCG
PCG

DOFs: degrees of freedom.

3. Quantitative Analysis of Reanalysis Methods

In this section, a quantitative analysis is conducted on various reanalysis methods by
selecting computational efficiency indicators and specifying accuracy requirements for cal-
culations. This numerical analysis serves to measure the various methods from a numerical
perspective and lays a foundation for constructing the ultimate selection criterion.

3.1. Efficiency Study of the Methods

Various factors affect the efficiency of algorithms, such as hardware conditions, com-
putation scale, and complexity. Therefore, it is difficult to find a universal indicator that
accurately reflects computational efficiency. Golub et al. [30] proposed using the number of
floating point operations (flops) to measure the computational complexity of algorithms,
but results relying solely on this indicator have certain limitations. Thus, this study pro-
poses using the storage space required for input, output, and intermediate variables of
an algorithm (referred to as the MS value) as an indicator of the algorithm’s reading and
writing time, in addition to using the flops. This approach enables a more comprehensive
assessment of computational efficiency and assists in the measurement of the computational
efficiency of various reanalysis methods.

A flop is defined as a single floating point operation that includes one of the four basic
arithmetic operations: addition, subtraction, multiplication, or division. For example, if
a dot product is performed between two vectors with n elements each, then the number
of flops is 2n because it involves n multiplications and n additions. Furthermore, real
structural stiffness matrices are generally sparse. In order to save storage space, this study
stores the stiffness matrix using a two-dimensional banded format and assumes that a
single element occupies one unit of storage space. For instance, if the initial stiffness matrix
K0 of size n × n has a half-bandwidth of b0, its MS value is (b0 + 1)n. The MS value of other
variables is calculated based on their actual size.

Using the CA method as an example, the calculation procedure for flops and MS
values is illustrated. Firstly, the initial equilibrium equation of a structure with n DOFs
is defined:

K0r0 = f0, (2)

where K0 is the initial stiffness matrix of size n × n, f 0 is the initial load vector, and r0 is the
initial response of the structure.

Due to the symmetry and positive definiteness of K0, it can be decomposed via
Cholesky factorization:

K0 = UT
0 U0, (3)

where U0 is the upper triangular matrix.
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Assume that a structural modification causes an incremental stiffness matrix ∆K, and
the modified stiffness matrix is K (with a half-bandwidth of b). The loading vector is
denoted by f and the structural response by r. In this study, the changes in loading are not
considered, i.e., f = f 0. The new equilibrium equation is given as follows:

Kr = (K0 + ∆K)r = f . (4)

The CA method mainly reduces the computational complexity by constructing a
reduced basis vector. The main steps of the CA method [22] in the structural analysis are
given as follows:

1. Approximate the modified structural response r using s linearly independent basis
vectors. Define basis vectors ri and construct a basis vector matrix rB:

r1 = K−1
0 f , (5)

ri = Bri−1 , i = 2, 3, · · · s, (6)

rB = [r1, r2, · · · , rs], (7)

where B is −K−1
0 ∆K.

2. Calculate the reduced matrix KB and load vector fB:

KB = rT
BKrB = rT

B(K0 + ∆K)rB, (8)

fB = rT
B f (9)

3. Calculate the vector of coefficients y:

yT = [y1, y2, . . . ys], (10)

KBy = fB. (11)

4. Evaluate the modified displacements r:

r = y1r1 + y2r2 + . . . + ysrs = rBy. (12)

According to the above-mentioned analysis, the flops can be calculated step by step. By
combining Equation (6) in step 1 with Equation (3), the following equation can be obtained:

K0ri = UT
0 U0ri = −∆Kri−1. (13)

Every basis vector can be calculated by forward and backward substitution based
on Equation (13). The computational complexity on the right-hand side of the equation
is 2n(2b + 1). Moreover, the computational complexity for both forward and backward
substitution is 2nb. Therefore, the flops for constructing basis vectors are approximately
4nb + [2n(2b + 1) + 4nb](s − 1).

In step 2, Equation (8) involves the multiplication of three matrices. The computational
complexity of rT

B ·K is 2ns(2b + 1), while the computational complexity of multiplying it
by rB is 2ns2. Equation (9) involves the multiplication of a matrix and a vector, and its
computational complexity is 2ns. Therefore, the flops for this step are 4nsb + 4ns + 2ns2.

Step 3 solves the coefficient vector y, and Equation (11) uses LU decomposition with
flops of approximately 2s3/3 + 2s2.

In step 4, the approximation response only involves the multiplication of a matrix and
a vector, with flops of 2ns.

Combining the above-mentioned analysis, the flops of the CA method as a whole are
2s3/3 + 2s2 + 12nsb + 8ns + 2ns2 − 4nb − 2n.
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The inputs, outputs, and intermediate variables involved in the above process include
U0, ∆K, K, f, rB, KB, fB, etc. Thus, the MS value is approximately s2 + (n + 2)s + (3b + 5)n.

After analyzing the flops and MS values of various reanalysis methods, the relevant
results are summarized in Table 2. Please refer to [31] for detailed information.

Table 2. Summary of index results.

Method Flops MS

CA 2s3/3 + 2s2 + 12nsb + 8ns + 2ns2 − 4nb− 2n s2 + (n + 2)s + (3b + 5)n
ICA 2nb + n +

[
2s3/3 + 2s2 + 12nsb + 8ns + 2ns2 − 4nb− 2n

]
k (3b + 5)n +

(
s2 + ns + 2s

)
k

PCG [8nb + 14n + 3]k + 2n 2nb + 9n
Epsilon 8nsb + 11ns/2 + 5ns2/2− 4nb− 2n

[
s2/2 + 5s/(2 + 2b + 3)

]
n

MPCG (4mb + 4nb + 14m + 2n)k (m + n)b + n + 9m

Guyan + CA n2 + 4nt2 + 2n2t + 7t2/3 + 4nt− n + t + 2s3/3 + 2s2 +
12nsb + 8ns + 2ns2 − 4nb t2 + s2 + 3bn + 2nm + 2n + 2m + s

Guyan + Epsilon n2 + 4nt2 + 2n2t + 7t2/3 + 4nt− n + t + 11ns/2 + 5ns2/2 +
8nsb− 4nb ns2/2 + 5ns/2 + 2nb + 2nm + 3n + m

Guyan + PCG 4tb + 2t + b2 + b + 2n + (2 + 8nb + 14n + 4tb + 2t)k t2 + 2nb + 2nm + 8n + 2m
Cholesky nb2 + 7nb + 2n 2nb + 4n

k: number of iterations; n: number of DOFs of K0; m: number of DOFs of K; t = m − n.

3.2. Computational Accuracy Requirements

The accuracy of the structural reanalysis method is typically measured by the error
between the computed response r̃ and the actual response r, as shown in Equation (14).

ε =
‖r̃− r‖
‖r‖ . (14)

However, the actual response is often unknown in practical computations. Therefore,
the following equation is generally used to estimate the computational accuracy in place
of the actual response. The calculation formula for the error in this study is also based on
Equation (15).

ε =
‖Kr̃− f ‖
‖ f ‖ . (15)

Both excessively large and excessively small values of error will impact the perfor-
mance of the algorithm. An error that is too small can compromise the effectiveness of
reanalysis methods by sacrificing computational efficiency to ensure accuracy, sometimes
even resulting in lower efficiency than complete analysis. On the other hand, an excessively
large error will affect the optimization process and results of the algorithm. In order to
determine a reasonable value of error, a series of numerical tests was conducted. As a
result, a value of 0.01 was chosen, indicating that the overall error ε of this study should
not exceed 0.01. For structural calculations during the optimization process, once the error
exceeds 0.01, the reanalysis method should be discontinued, and the accurate solution
method should be applied to eliminate the error in the structural response calculation.

4. Construction of Selection Criterion
4.1. Method Comparison Study

Based on the information from Table 2, the flop ratio (Fr) and Ms ratio (Mr) were de-
fined to compare the computational efficiency of different methods, as shown in
Equations (16) and (17). The numerators of the two indicators represent the flops and
MS values of the first reanalysis method, while the denominators represent these of the
second method.

Fr =
f lop1

f lop2
, (16)
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Mr =
MS1

MS2
. (17)

If the Fr value is greater than 1, it indicates that the flops of the first method are higher
than that of the second, and it can be considered that the second method has relatively
higher computational efficiency. Similarly, if the Mr value is greater than 1, then the second
method has a smaller storage space and shorter read and write time, which contributes to
the improvement of the method’s computational efficiency to a certain extent. The impact
of the Mr value is limited and is only used as an auxiliary judgment factor.

4.1.1. Unchanged Number of DOFs

According to Table 1, there are four candidate methods including CA, ICA, Epsilon,
and PCG methods when the structural DOFs remain unchanged. Previous studies have
suggested that the CA method and the PCG method have certain equivalences, i.e., when
the number of basis vectors (s) in the CA method is equal to the iteration steps (k) in the PCG
method, the two methods can achieve the same computational accuracy [16]. Therefore, the
CA method and the PCG method can be directly compared at the same level of accuracy,
and the calculations of the Fr and Mr for the two methods are given as follows:

FrCA/PCG =
2s3/3 + 2s2 + 12nsb + 8ns + 2ns2 − 4nb− 2n

[8nb + 14n + 3]k + 2n
, (18)

MrCA/PCG =
s2 + (n + 2)s + (3b + 5)n

2nb + 9n
. (19)

In this section, three cases were selected for the structural DOFs (n), namely, 20,
100, and 1000, and the half-bandwidth b was divided into two cases: 0.2n and 0.4n. The
calculation results are shown in Figure 3.
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It can be observed in Figure 3a that the Fr values of CA/PCG gradually increase with
the increase of k or s and gradually converge to around 1.5 with the increase of structural
DOFs. Only when the structural DOFs are small, and k or s is equal to 1, are the Fr values
of CA/PCG less than 1. However, the accuracy of the two methods is generally low at this
time, so the situation where k or s is 1 can be ignored. Based on this, it can be seen from a
flops perspective that the computational efficiency of the CA method is lower than that of
the PCG method. From the Mr curve in Figure 3b, it can be seen that the values of Mr for
CA/PCG are greater than 1 under different DOFs and k or s, indicating that the storage
space of the CA method is relatively high, which further affects its efficiency. Therefore, the
PCG method is more suitable than the CA method for the case of unchanged DOFs.

For the Epsilon, PCG, and ICA methods, since the three methods do not have theoret-
ical equivalence, the efficiency indicator of complete analysis (Cholesky factorization) is
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used as the numerator for calculation. In order to present the comparison results clearly, a
log scale is used for the vertical axis. The relevant results are shown below.

From the figures above, it can be observed that the ln(Fr) values of the ICA method
are the smallest among the three methods. Especially in cases of lower structural DOFs,
even with smaller iteration steps, the corresponding ln(Fr) values for the ICA method are
smaller than 0. This implies that for structures with low DOFs, the computational efficiency
of the ICA method is generally lower than that of complete analysis. Compared to the other
two methods, the performance of ICA is poor. On the other hand, as shown in Figure 4f,
its Mr values are below 0.7 both for different DOFs and iteration steps, indicating its low
performance compared to the other two methods. Therefore, the ICA method is not used
for structures with unchanged DOFs.
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As for structures with higher DOFs, as shown in Figure 4a,c, both the Epsilon method
and the PCG method have high computational efficiency, especially when there are small
changes in high DOF structures (which require fewer basis vectors or iteration steps).
Furthermore, when the number of basis vectors in the Epsilon method is less than or equal
to 3, its ln(Fr) value is significantly higher than that of the PCG method. This indicates that
its computational efficiency is higher than that of PCG. However, as the number of basis
vectors or iteration steps exceeds three, the difference between the two methods gradually
narrows, and the PCG method proves to be more efficient.

Since the number of iteration steps of the PCG method is generally smaller than the
number of basis vectors in the Epsilon method when achieving similar accuracy (Epsilon
usually takes an odd number of basis vectors), it is stipulated that when using the Epsilon
method, only three basis vectors should be used. Otherwise, the PCG method should be
employed. In order to verify this conclusion, three examples with different DOFs (n = 20,
96, and 1368) are designed for validation (Figure 5).
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Figure 5. Initial layouts of the three structural cases based on number of DOFs: (a) n = 20; (b) n = 96;
(c) n = 1368.

The above examples all consist of circular solid members with a cross-sectional area of
250 cm2 and an elastic modulus of 210 × 109 Pa. The following types of modifications are
applied to all three examples:
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(1) Size modification: one randomly selected member’s area is changed to twice
that of its original cross-sectional area. (2) Shape modification: one randomly selected
node undergoes vertical displacement. (3) Topology modification: one randomly selected
member undergoes a connection node transformation (see Figure 2a).

Complete analysis, the Epsilon method, and the PCG method were used to perform
calculations on the three examples under the three modifications. In order to ensure the
reliability of the results, the calculations for Examples 1, 2, and 3 were iterated 10,000 times,
5000 times, and 5 times, respectively, with a required accuracy of 1% error limit. These
examples were implemented using the MATLAB programming language and executed on
a computer with IntelI CoreI i7-6700k CPU @ 4.00GHz. The results are given in Table 3.

Table 3. Results of structural examples with unchanged DOFs.

Example No. Modification Type Indicator Cholesky Epsilon PCG

1

(1)
s or k - 3 2

Computation time 1.5196 s 0.9577 s 1.0967 s
Proportion 100% 63.0% 72.2%

(2)
s or k - 13 8

Computation time 1.5786 s 5.6932 s 4.6567 s
Proportion 100% 360.6% 295.0%

(3)
s or k - 5 3

Computation time 1.4979 s 2.0093 s 1.7246 s
Proportion 100% 134.1% 115.1%

2

(1)
s or k - 3 2

Computation time 39.3519 s 6.7370 s 7.6099 s
Proportion 100% 17.1% 19.3%

(2)
s or k - 13 8

Computation time 39.5669 s 42.5712 s 30.0116 s
Proportion 100% 107.6% 75.9%

(3)
s or k - 13 8

Computation time 40.1709 s 13.5988 s 11.3561 s
Proportion 100% 33.9% 28.3%

3

(1)
s or k - 3 2

Computation time 153.3645 s 2.0374 s 2.3564 s
Proportion 100% 1.3% 1.5%

(2)
s or k - 9 6

Computation time 150.3360 s 6.8872 s 6.6025 s
Proportion 100% 4.6% 4.4%

(3)
s or k - 5 3

Computation time 149.7456 s 3.6079 s 3.4680 s
Proportion 100% 2.4% 2.3%

It can be seen that under different DOFs, the Epsilon method can always complete the
calculation and meet accuracy requirements with only three basis vectors when dealing
with changes in structural size (modification type (1)), while the corresponding PCG
method requires two iteration steps. In terms of computation time, the Epsilon method
outperforms the PCG method. However, for the other two modification types, the Epsilon
method requires more than three basis vectors to meet the accuracy requirements, and the
computation time for the Epsilon method is longer than that for the PCG method. Therefore,
the PCG method is more effective for shape and topology modifications (with unchanged
DOFs). It is worth noting that when the DOFs of the structure are low, the iteration steps or
the number of basis vectors required by both methods for shape modification (modification
type (2)) are relatively large, resulting in significantly lower computational efficiency than
complete analysis. Therefore, the complete analysis should be considered for structural
calculations with low DOFs in shape modifications.
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Based on this analysis, the selection criterion for the reanalysis method under the
condition of unchanged DOFs can be summarized as follows: The Epsilon method can be
used for size modifications, while the PCG method can be used for shape and topology
modifications. However, when the DOFs of the structure are below 50, the complete
analysis should be used for shape modifications.

4.1.2. Increased Number of DOFs

Under the condition of increased DOFs, there are three candidate methods, namely,
the Guyan + CA method, the Guyan + Epsilon method, and the Guyan + PCG method.
The Guyan reduction [19] is an independent method that reduces the size of the stiffness
matrix. The stiffness matrix processed by this method can be solved using those reanalysis
methods under unchanged DOFs. Following the comparison between the CA method and
the PCG method in the previous section, the Guyan + CA method can be eliminated first.
This section focuses on comparing the Guyan + Epsilon method and Guyan + PCG method,
and it compares the ln(Fr) and Mr values obtained using the complete analysis and the
two methods. The results are shown below.

As can be seen from Figure 6, when the number of iteration steps is small, the ln(Fr)
value of the Guyan + PCG method is significantly larger than that of the corresponding
Guyan + Epsilon method, and this phenomenon occurs for various DOFs. Considering
that the iteration steps of the PCG method are generally smaller than the number of basis
vectors in the Epsilon method under similar accuracy, the difference between ln(Fr) values
will further widen in this case. Therefore, it can be considered that under the condition
of increased DOFs, the Guyan + PCG method has better computational efficiency. As
for the Mr values, both methods are smaller than those obtained by complete analysis.
However, as the number of iteration steps or basis vectors increases, the storage space of
the Guyan + Epsilon method gradually becomes larger.

The same examples as in Section 4.1.1 were used for validation, but with only one
modification type, i.e., adding a node to a non-boundary member in each of the three
examples. Other conditions remained the same. The results are shown in Table 4.
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Table 4. Results of structural cases with increased DOFs.

Case No. Indicator Cholesky Guyan + Epsilon Guyan + PCG

1
s or k - 3 2

Computation time 1.8388 s 2.1057 s 2.0882 s
Proportion 100% 114.5% 113.6%

2
s or k - 3 2

Computation time 63.7727 s 18.3677 s 17.6684 s
Proportion 100% 28.8% 27.7%

3
s or k - 3 2

Computation time 149.7456 s 2.6594 s 2.1351 s
Proportion 100% 1.8% 1.4%

According to Table 4, it can be seen that under the condition of increased DOFs,
the number of basis vectors or iteration steps in both methods remains consistent with
that of size modification under unchanged DOFs. Additionally, the computational time
of the Guyan + Epsilon method is longer than that of the Guyan + PCG method. For
lower DOFs, the computational time of complete analysis is shorter than that of both
methods. These results support the conclusions presented earlier. Therefore, the selection
criterion for increased DOFs is summarized as follows: when the structure undergoes a
topology modification that increases DOFs, the Guyan + PCG method should be used for
solving. However, when the DOFs of the structure are below 50, the complete analysis
should be adopted.

4.1.3. Decreased Number of DOFs

For the situation where the DOFs decrease, the MPCG method [18] was employed in
this study. To evaluate its effectiveness, the examples presented in Section 4.1.1 were used
for verification. Specifically, the top-right corner node was removed from examples 1 and 2,
and the bottom-right corner node was removed from example 3 while keeping all other
conditions constant. The complete analysis and MPCG methods were utilized for the
calculations, and the results are presented in Table 5.
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Table 5. Results of structural cases with decreased DOFs.

Case No. Indicator Cholesky MPCG

1
k - 3

Computation time 1.0027 s 1.2604 s
Proportion 100% 125.7%

2
k - 1

Computation time 42.1804 s 2.7074 s
Proportion 100% 6.4%

3
k - 4

Computation time 153.4685 s 3.2429 s
Proportion 100% 2.1%

According to Table 5, the computational efficiency of the MPCG method increases
with the increase of DOFs. Moreover, for low DOFs, the computational efficiency of the
complete analysis method is higher than that of the MPCG method. Therefore, a criterion
for selecting the reanalysis method under decreased DOFs is proposed. Specifically, when
the DOFs are reduced, the MPCG method should be selected. However, if the number of
DOFs is less than 50, the complete analysis method should be used for solution.

4.1.4. Selection of the Accurate Solution Methods

Two methods were used for the accurate solution task in this study, namely, the
Cholesky factorization (complete analysis) and the UMTF method. The principle of the
UMTF method is to record the impact row positions of structural modifications on the
stiffness matrix with a location vector and correspondingly update the elements in the
decomposition matrix on the respective rows [3]. The computational complexity of this
process is closely related to the distribution of elements in the structural stiffness decom-
position matrix, making it difficult to accurately calculate the flops. For simplicity, it can
be assumed that all rows in the decomposition matrix corresponding to the row of the
first non-zero element in the incremental stiffness matrix, and all subsequent rows need to
be updated (if the first row of the incremental stiffness matrix has a non-zero element, then
the computational complexity of this method is the same as that of the complete analysis).
Obviously, the later the row in which the first non-zero element of the incremental stiffness
matrix appears, the more computational effort the method saves. As the calculations of
the incremental stiffness matrix and location vector will also take time, a selection criterion
is set for the accurate solution method after comprehensive consideration, i.e., the UMTF
method is used for the accurate solution when the row number where the first non-zero
element appears in the incremental stiffness matrix is greater than 30% of the structural
DOFs. For example, if the first non-zero element in the incremental stiffness matrix of a
100-DOF structure appears after the 30th row, the UMTF method will be used for the accu-
rate solution. At the same time, considering the requirement for accuracy in the structural
optimization phase, it is stipulated that the complete analysis will be used for solution in
the last 10 iterations.

4.2. Selection Criterion of Reanalysis Methods

After the above analysis, the reanalysis method selection criterion for structural opti-
mization process is established in this section (Figure 7).

When evaluating a newly generated structure, it is necessary to first determine the
stage of the optimization process. If the optimization process enters the last 10 iterations,
the structural response is directly calculated using the complete analysis. Otherwise, the
corresponding reanalysis method is selected according to the type of structural modifica-
tions and the number of DOFs. When the calculation is completed, it is necessary to check
whether the calculation accuracy meets the error requirement. If not, the complete analysis
should be used for solution, and the final structural response is outputted.
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5. Numerical Examples

To validate the effectiveness of the proposed selection criterion, two types of numerical
case studies were conducted in this section. One type is an example of a truss design
based on the STSA-P system [32]. As the DOFs for this type of structural design are
generally low, another example type of truss structural optimization with higher DOFs was
designed. These examples were implemented using the MATLAB programming language
and executed on a computer with Intel(R) Core(TM) i7-6700k CPU @ 4.00GHz.

5.1. Truss Design Calculation Based on User Preferences

The STSA-P method [32] can convert the user’s design preferences for structural ap-
pearance into design objectives, thus achieving the effect of guiding structural optimization
based on user preferences. This method was applied to design a two-hinged arch truss
structure with a span of 20 m. Figure 8 shows the initial structure and load conditions.
The point load F was 150 kN, and the distributed load q was 100 N/cm. The members
were solid and circular, with a material density of 7.85 g/cm3 and an elastic modulus
of 210 GPa. The maximum tensile and compressive stresses were both 31 kN/cm2. The
design objectives of this example included user preferences, structural mass, and maximum
node displacement.

Based on the above information, a user was invited to conduct the truss design using
the STSA-P method, and the design results are presented in Figure 9 and Table 6.
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Table 6. Information on design objectives.

Design Objectives User Preference Structural Weight Node Displacement

Value 1.665 1974.152 kg 1.424 cm
Range “Tolerable” “Tolerable” “Desirable”

The design results consisted of 12 nodes, 21 member elements, and 20 DOFs. The
design objective values were all within the “tolerable” and “desirable” range, and the user
was also satisfied with the design results. In terms of computational efficiency for struc-
tural analysis, the total optimization time, the time of using complete analysis (Cholesky
factorization) for calculation, and the time of using the selection criterion for calculation
were all recorded. Based on these data, the time proportion of complete analysis was
calculated to show the time contribution of structural analysis to the entire optimization
process. In addition, the efficiency improvement ratio was calculated to demonstrate the
efficiency improvement of structural analysis by using the selection criterion. The results
are summarized in Table 7.

Table 7. Computational efficiency information based on STSA-P.

Indicator Value

Total optimization time 26.279 s
Cholesky time 3.105 s

Selection criterion time 2.983 s
Time proportion of Cholesky 11.82%
Efficiency improvement ratio 3.93%

Based on the information presented in Table 7, it can be concluded that the total time
spent on complete analysis in the design process of the STSA-P system was only 11.82%.
This is due to the low structural DOFs, which resulted in shorter calculation times for
structure analysis. Additionally, during the optimization process, tasks such as selecting
grammar rules and calculating cost functions further decreased the proportion of time
spent on structural calculation.

After applying the selection criterion, the efficiency of structural calculation increased
by approximately 4%. However, the improvement ratio was limited due to the low DOFs
of the structure, which were less than 50. According to the selection criterion, the complete
analysis is used for shape modifications and topology modifications that involve changes
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in structural DOFs. As a result, the difference between using complete analysis and the
selection criterion is further minimized.

In summary, the selection criterion has limited effectiveness in improving efficiency
when the number of structural DOFs is low.

5.2. Multi-DOF Truss Calculation

This section included two cases. The first case is a two-span truss structure, and the
second is a four-span truss structure. The initial structures for both cases are shown in
Figure 10, with a total length of 80 m and 160 m and a height of 4 m. The two-span structure
contained 83 nodes with 154 DOFs, and the four-span structure contained 163 nodes with
306 DOFs. Both structures were subject to a 900 kN point load on the upper chord. The
material information for both structures was the same as that of the example shown in
Section 5.1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 20 
 

In summary, the selection criterion has limited effectiveness in improving efficiency 

when the number of structural DOFs is low. 

5.2. Multi-DOF Truss Calculation 

This section included two cases. The first case is a two-span truss structure, and the sec-

ond is a four-span truss structure. The initial structures for both cases are shown in Figure 10, 

with a total length of 80 m and 160 m and a height of 4 m. The two-span structure contained 

83 nodes with 154 DOFs, and the four-span structure contained 163 nodes with 306 DOFs. 

Both structures were subject to a 900 kN point load on the upper chord. The material infor-

mation for both structures was the same as that of the example shown in Section 5.1. 

 
(a) 

 
(b) 

Figure 10. Initial layouts of the multi-span trusses: (a) case 1; (b) case 2. 

The two cases both employed the STSA algorithm for optimization calculations, with 

the only optimization objective being structural mass. Throughout the optimization pro-

cess, the load application points were fixed and not subjected to movement. The optimi-

zation results information and figures are shown in Table 8 and Figure 11. 

Table 8. Information of design results. 

Structural Information Case 1 Case 2 

Node number 79 146 

Member number 155 289 

Structural weight 59695.90 kg 148992.50 kg 

It can be observed in Figure 11 that both results showed a reverse arch shape at the 

support and between the supports, which is consistent with mechanical requirements. The 

computational efficiency information of the structural optimization process is summa-

rized in Table 9. 

 

(a) 

 

(b) 

Figure 11. Design results based on STSA: (a) case 1; (b) case 2. 

  

Figure 10. Initial layouts of the multi-span trusses: (a) case 1; (b) case 2.

The two cases both employed the STSA algorithm for optimization calculations, with
the only optimization objective being structural mass. Throughout the optimization process,
the load application points were fixed and not subjected to movement. The optimization
results information and figures are shown in Table 8 and Figure 11.

Table 8. Information of design results.

Structural Information Case 1 Case 2

Node number 79 146
Member number 155 289
Structural weight 59,695.90 kg 148,992.50 kg
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Figure 11. Design results based on STSA: (a) case 1; (b) case 2.

It can be observed in Figure 11 that both results showed a reverse arch shape at the
support and between the supports, which is consistent with mechanical requirements. The
computational efficiency information of the structural optimization process is summarized
in Table 9.
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Table 9. Computational efficiency information based on STSA.

Indicator Case 1 Case 2

Total optimization time 291.032 s 1394.512 s
Cholesky time 116.104 s 733.956 s

Selection criterion time 100.195 s 510.468 s
Time proportion of Cholesky 39.89% 52.63%
Efficiency improvement ratio 13.70% 30.45%

Based on the results in Table 9, it can be observed that the efficiency of using the
selection criterion was improved by 13.7% in case 1 (with final DOFs of 143) compared to
the complete analysis, and 30.45% in case 2 (with final DOFs of 272). In addition, as shown
in the example in Section 5.1 (with final DOFs of 20), an improvement in computational
efficiency could be achieved with increasing structural DOFs. On the other hand, the
proportion of structural calculation to the structural optimization process also increased
with the increase in structural DOFs.

In summary, the selection criterion of reanalysis methods proposed in this paper
was effective in improving computational efficiency, resulting in a significant reduction of
computational time required for structural optimization, especially for structures with high
DOFs, while ensuring calculation accuracy.

6. Conclusions

This paper presents a selection criterion for reanalysis methods that can improve the
efficiency of structural analysis in the optimization of plane trusses. The proposed crite-
rion selects automatically the most suitable reanalysis method according to the structural
modification type. The effects of different structural modifications, such as size, shape, and
topology, are first analyzed qualitatively to establish the correspondence between different
modification types and candidate reanalysis methods. Then, the number of floating point
operations (flops) and the storage space of input/output and intermediate variables (MS
values) are statistically calculated for all the candidate methods. The flop ratio (Fr) and Ms
ratio (Mr) are defined to investigate the most suitable reanalysis method under different
structural modifications in a quantitative manner.

Based on the analysis, this study establishes a selection criterion for reanalysis methods.
Specifically, when a structure undergoes size modifications and topology modifications with
unchanged degrees of freedom (DOFs), the Epsilon and PCG methods are recommended
for computation, respectively. The UMFT method is recommended for shape modification
when the row of the first non-zero element that appears in the incremental stiffness matrix
is greater than 30% of the structural DOFs. The Guyan + PCG method and the MPCG
method are recommended for topology modifications with increased DOFs and decreased
DOFs, respectively. It should be noted that the overall error ε of the computation results
should not exceed 0.01. Otherwise, an accurate solution method should be applied.

Finally, two types of numerical examples are conducted to confirm the effectiveness
of the proposed criterion, in which the selection criterion is combined with the Structural
Topology and Shape Annealing (STSA) algorithm.

In future work, the extended study will focus on the exploration of more comprehen-
sive indicators for assessing computational efficiency beyond flops and MS values. The
objective is to provide a more accurate reflection of algorithmic performance. Furthermore,
the development of space structure generation algorithms will be undertaken to validate the
effectiveness of the proposed criterion in the computation of three-dimensional structures.
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