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Abstract: There are several major threats to crop production. As herbicide use has become overly
reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to
the environment, food safety, and human health. Convolutional neural networks (CNNs) have
demonstrated exceptional results in the analysis of images for the identification of weeds from crop
images that are captured by drones. Manually designing such neural architectures is, however, an
error-prone and time-consuming process. Natural-inspired optimization algorithms have been widely
used to design and optimize neural networks, since they can perform a blackbox optimization process
without explicitly formulating mathematical formulations or providing gradient information to
develop appropriate representations and search paradigms for solutions. Harris Hawk Optimization
algorithms (HHO) have been developed in recent years to identify optimal or near-optimal solutions
to difficult problems automatically, thus overcoming the limitations of human judgment. A new
automated architecture based on DenseNet-121 and DenseNet-201 models is presented in this study,
which is called “DenseHHO”. A novel CNN architecture design is devised to classify weed images
captured by sprayer drones using the Harris Hawk Optimization algorithm (HHO) by selecting the
most appropriate parameters. Based on the results of this study, the proposed method is capable
of detecting weeds in unstructured field environments with an average accuracy of 98.44% using
DenseNet-121 and 97.91% using DenseNet-201, the highest accuracy among optimization-based
weed-detection strategies.

Keywords: weed detection; Harris Hawk optimization; DenseHHO; Dense-Net201; DenseNet-121

1. Introduction

Precision agriculture and measures have improved production, quality, and working
conditions by reducing manual labor. These things help make farming sustainable. Modern
farmers use digitally controlled farm plants and unmanned aerial vehicles (UAVs) for
monitoring and forecasting. Affordable drones can image ground data with geolocations.
This helps users understand ground information better. Multispectral and RGB drones can
image the near-infrared section of the electromagnetic spectrum above crops, revealing their
health [1]. Satellites, aerial photography, unmanned aerial vehicles (UAVs), geographic
information systems (GIS), global positioning systems (GPS), variable rate application
(VRA), and geostatistics are all examples of remote sensing utilized in precision agriculture.
This method of geostatistics is a branch of applied statistics that is closely linked to precision
farming. Through data transformation, it is possible to discover the values of the attributes
at unsampled points on the field by calculating their spatial dependency and spatial
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structure. Interpolation is a common technique for estimating values at nearby points when
exact values are unavailable. Variography is a type of geographical modeling utilized in
precision agriculture, while kriging is the term used to describe spatial interpolation [2].

Precision farming has numerous significant applications in arable land, one of which is
enhancing the efficiency of fertilizer utilization based on the three macronutrients, namely
nitrogen, phosphorus, and potassium. In conventional agricultural practices, fertilizers are
typically applied uniformly across the entire field at predetermined intervals throughout
the year. Precision farming enables the optimization of agricultural practices by increasing
applications in certain locations and decreasing applications in others. Numerous envi-
ronmental hazards are commonly attributed to the escalating usage of agricultural inputs,
resulting in the leaching of nitrogen and phosphorus from fields into both surface and
groundwater sources. The utilization of PF technology enables the precise application of
fertilizers in varying spatial and temporal dimensions, therefore enhancing the efficacy of
variable rate application [1,3]. Weeds are a major threat to crops because of their detrimental
effects on neighboring plants and their ability to stunt plant growth and reduce nutrient
intake. If weeds are not controlled quickly and efficiently, they can diminish agricultural
output by 20–80% [4].

Weeds compete with crops for limited resources, making them a problem in agri-
cultural settings. Their strong competition with agricultural plants for nutrients, water,
sunlight, air, etc. affects production and yield, which have monetary value. Weeds reduce
output by 34% worldwide [4]. Wheat yields drop 48–60% [5] and sesame yields drop
50–75%. Weeds degrade crop output and quality. Farmers spend billions of dollars yearly
on weed management in an attempt to achieve satisfactory weed control and higher crop
productivity. Reduced yields and worse quality products are the direct results of ineffective
weed management in horticulture crops [6]. The use of chemical and cultural control
strategies may have unintended consequences for the environment. Low-cost technology
for early weed identification and mapping will make weed management more effective
and sustainable. Using early weed management can cut down on agricultural diseases and
pests and boost crop yields by as much as 34% [7]. Many strategies exist for weed control,
and each one is eco-friendly in some way. One of the most promising of these techniques
is image processing. Image processing makes use of UAVs (unmanned aerial vehicles)
to survey fields for weeds and other unwanted plants. UAVs are useful in agriculture
because of their speed and efficiency in covering large areas, without damaging the soil or
compacting it [8]. Converting UAV data into actionable intelligence remains a significant
hurdle. Conventional data gathering and classification cannot be automated because of
the human labor necessary for segment size adjusting, feature selection, and rule-based
classifier development.

The primary focus of agricultural mechanization research is on improving crop yields
while reducing weed infestations. Data scientists have found weed detection to be a fruitful
field of study due to the prevalence of algorithms based on machine learning [9]. To classify
agricultural and weed plants, many researchers have turned to computer vision tech-
niques [10]. Significant advances have also been made through the publication of several
deep-learning and hand-crafted models [11] As a subfield of both ML and AI, deep learning
(DL) is making significant progress toward automating precision agriculture [12,13]. DL
has made important contributions to many fields of agriculture [14,15], including: disease
detection [16], crop plant detection and counting [17], crop row detection [18], crop stress
detection [19], fruit detection and freshness grading [20], fruit harvesting [18,21], and
site-specific weed control [21].

Hand-crafted methodologies require substantial testing to extract essential features and
may also be insufficiently robust in complicated environments and biological variability [20].
CNNs have improved object detection [22]. CNNs can be taught end to end without feature
extraction, making them superior at classifying and detecting weeds [21].

This paper’s contribution can be summarized as follows:
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1. A deep-learning-based framework, “DenseHHO”, that is designed to improve the
detection of weeds using pre-trained CNNs such as DenseNet-121 and DenseNet-201
is presented.

2. The devised model’s CNN architecture is adopted based on the analysis of weed
images captured by sprayer drones structured as an optimization problem addressed
by an HHO natural-inspired algorithm.

3. The performance of the devised model is improved using HHO for binary class
classification to automatically select as well as optimize the CNN’s hyperparameters.

4. The performance of DenseHHO has been evaluated through a comparative analysis
and performance evaluation based on various performance metrics.

This paper is organized into five sections. The problem addressed in this paper is
introduced in Section 1, along with a summary of the proposed solution. Section 2 discusses
the major milestones in the weed-detection literature. Section 3 describes the materials and
procedures used in the proposed solution. Section 4 explains the proposed algorithms and
solutions, while Section 5 discusses the experimental results. Section 6 concludes with a
discussion of the findings.

2. Related Work

Traditional machine-learning approaches require a limited sample size, a quick train-
ing period, and a few graphics-processing units to calculate picture texture, shape, hue, or
spectral properties to identify crops or weeds.

There have been several attempts in the literature to generate weed maps from un-
manned aerial vehicle (UAV) images using a variety of classification approaches [23,24].
However, recent state-of-art work shows [25] that machine-learning algorithms, when
dealing with complex data, are more accurate than conventional algorithms. The utilization
of high-resolution UAV imagery and the application of the random forest (RF) algorithm
for agricultural mapping have been demonstrated to yield advantageous outcomes [7,8,26].
SVM classifier is also commonly used for the classification of crops and weeds [27,28].

For early cranesbill seedling extraction [29], improved Mask RCNN was used. The
proposed method separated weeds from the original image, allowing an increase in yield.

Deep neural networks (DNNs) were used to segregate weed crops [30]. Four ad-
ditional elements improved segmentation accuracy, improving weed detection for com-
plicated shapes in tough environments without image preprocessing or data conversion.
Recognition accuracy is higher than the machine-learning techniques that use manually
specified features. Deep learning was used to detect ryegrass species from weeds in [31].
The dataset included photos of ryegrass seedlings, maculata, hederacea, and officinale
weeds—16,116 weed-free samples and 18,230 weedy samples. The dataset was trained
with GoogLeNet, AlexNet, and VGGNet. VGGNet’s F-score was the highest. Maculata,
hederacea, and officinale had success rates of 92.65%, 99.84%, and 97.37%, respectively.

Convolutional Neural Network (CNN) architectures are better at classifying plant
species. The AlexNet model had a 99.5% accuracy on a grass-broadleaf dataset, according
to [32]. In categorizing four weed species, Ahmad et al. [33] attained an average accuracy
of 98.90% for VGG16, 97.80% for ResNet50, and 96.70% for Inceptionv3.

Beeharry and Bassoo [34] tested ANN and AlexNet weed recognition algorithms on
UAV photos. AlexNet’s weed-detection rate was over 99%, while the ANN’s was 48% on
the same dataset.

Metaheuristic optimization rarely optimizes weed categorization models. Computer
vision is used in [35] to recognize potato plants and three weed categories. The proposed
method improves NN-classifier performance using two metaheuristic methods, the cultural
algorithm by which the five most significant features are selected and the harmony search
method for finding the network architecture. The system’s identification accuracy was
98.38%.

ANN was used to categorize narrowleaf and broadleaf weed species and rice species
in [36]. A total of 97 rice images, 77 narrowleaf, and 52 broadleaf images were used. Particle



Appl. Sci. 2023, 13, 7083 4 of 19

swarm optimization (PSO) and the bee algorithm (BA) identified efficient features. The
ANN-BA method was the best. The study found an arithmetic mean accuracy of 92.02%
and geometric mean accuracy of 90.7%.

A unique optimization strategy to improve weed image-classification accuracy was
given by the authors in [37], which categorizes spraying drone weed and wheat shots
differently. SVM, NN, and KNN were the classifiers optimized using cosine, sine, and gray
wolf optimizers. The optimized voting classifier showed 97.70% detection accuracy, 98.60%
F-score, 95.20% specificity, and 98.40% sensitivity.

The authors in Ref. [38] introduce a technique called Modified Barnacles Mating
Optimization with Deep-Learning-based Weed Detection (MBMODL-WD). MBMODL-WD
uses Gabor filtering (GF) for noise removal, DenseNet-121 for feature extraction, and the
MBMO algorithm for hyperparameter optimization. Elman Neural Network (ENN) was
used to classify weeds. MBMODL-WD performed with maximum accuracy of 98.99%.

3. Proposed Framework

Detailed descriptions of the proposed method are provided in this section. Further-
more, the dataset used is described in detail. The proposed approach involves loading weed
data directly into the DenseHHO deep modeling framework for the purpose of arriving at
a final decision. Figure 1 depicts a block diagram of the designed DenseHHO framework
from beginning to end. The first step in the analysis process was to collect and prepare the
dataset. The next step involves separating the data into two groups: training and testing.
Data preparation techniques are implemented in training sets first, then applied to test sets
to avoid data leakage and overload. To classify weed data, two models were developed,
namely DenseNet-121 and Densenet-201. Then, the best-performing features from each
model were used for the classification. A natural-inspired evolutionary algorithm was used
for DenseHHOś DNN networks to automatically optimize the network’s hyperparameters
based on their accuracy. A final step involves testing and evaluating the performance of
the models developed.

Figure 1. DenseHHO Framework.

3.1. Dataset Collection and Preprocessing

A detailed description of the dataset of this study and the key pre-trained models is
provided in this section. UAVs equipped with cameras are capable of capturing field crops
using sensors. An autonomous aerial sprayer drone was used to capture the images of
wheat crops in this study, and the dataset is freely available on Kaggle (https://www.kaggle.
com/datasets/gavinarmstrong/open-sprayer-images, accessed on 4 February 2023). The

https://www.kaggle.com/datasets/gavinarmstrong/open-sprayer-images
https://www.kaggle.com/datasets/gavinarmstrong/open-sprayer-images
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“Open Sprayer Images” dataset includes images related to agricultural sprayers. The UAV
type typically used in conjunction with sprayers is a multirotor UAV or a fixed-wing UAV.
The “Open Sprayer Images” dataset provides sample images and visual representations
associated with the dataset. However, the creator did not add any details about the UAV
or Flight parameters. Furthermore, it is explained that all the collected photos should be
retaken from a higher elevation. Based on the assumption that the sprayer will cover a
3 m width, he might be able to use one camera mounted high enough to view 3.5 m with
0.5 m of overlap. The resolution and size of the photos can be easily changed by changing
the camera settings or dividing the photos into sections before processing. Dock leaves
do stand out quite well from the grass background, so hopefully, a picture taken from a
greater distance will provide enough information to classify the leaves. Images of broad-
leafed docks and pictures of shorelines without broad-leafed docks are included in the
dataset. In the context of weed detection, “dock” typically refers to a group of weed species
belonging to the Rumex genus. Common dock species include broadleaf weeds such as
curly dock (Rumex crispus) and broadleaf dock (Rumex obtusifolius) [19]. These plants
typically have broad leaves with distinctive veining and are often considered undesirable
in agricultural or landscaping settings. Figures 2 and 3 show examples of images from this
dataset. The dataset is comprised of 1176 wheat and 4851 weed images, respectively. A
total of 540 images of weeds and 130 images of wheat are included in the testing set.

Figure 2. An example of wheat and weed images from the employed dataset.

Figure 3. An example of Weed classes (notdocks, docks) images from the employed dataset.

As the images were derived from various sources, there may be variations in shapes,
brightness, and contrast. All Weed-Spray images were resized to (256, 256, 3), and aug-
mented using a 2-layer augmentation. To increase the diversity of the gathered datasets
and making our models more robust, all fused weed scans have undergone a two-layer
augmentation process:

1. Random Flip: This layer will perform horizontal and vertical mirroring through the
reversal of rows/columns of pixels.
t f .keras.layers.RandomFlip (mode = ‘horizontal_and_vertical’).

2. Random Rotation: This layer will apply random rotations to each image. The factor
here is a float represented as a fraction of 0.1.

3.2. Pre-Trained Models

CNN is a subset of the multilayer neural network, which analyzes the pixels in images
to extract information. Huang et al. proposed DenseNet-102 and DenseNet-201 [39] as
a deep CNN architecture in their paper “Densely Connected Convolutional Networks”.
DenseNet creates dense networks by connecting every layer to every other layer in a feed-
forward manner. All subsequent layers receive their feature maps from each preceding layer
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as an input, and all subsequent layers receive their feature maps as output. DenseNet-102
and DenseNet-201 have demonstrated state-of-the-art performance on several benchmark
image-classification datasets with significantly fewer parameters than other top-performing
pre-trained models, such as Inception-v4 and ResNet-152. DenseNet-121 and DenseNet-201
are employed in the devised models, which have proved to be exceptionally effective in
classifying images. Additionally, using such a CNN-based pre-trained model, an automated
mechanism for feature extraction has been implemented in the current work. The structures
used for DenseNet-121 and DenseNet-201 consist of five layers. The layers are the input
layer, the model layer (either 121 or 201), the flatten layer, and the dense layer, which
contains 128 cells and an activation function. There are two cells and an activation equation
in the dense layer, which is the output layer. As a result, this structure is the general
structure used because no changes have been made to the basic structure of any model, but
the only difference between the two structures is the model layer, which has been replaced
by the specific model version. This approach resulted in the creation of a fixed feature
extractor, in which the output layer was removed, and the entire network was utilized. For
the devised models, the feature map is represented based on the following equation:

y(i,j,k) = σ(
U

∑
u=1

V

∑
v=1

C

∑
c=1

W(u,v,c,k)X((i+u−1),(j+v−1,c))) (1)

where activation values y(i,j,k) represent the activation value in the kth feature map, acti-
vation function σ represents the activation function, and input value X(i,j,c) refers to the
input channel value of (i, j), W(u,v,c,k) refers to the weight value for the kth feature map at
position (u, v) of the cth input channel and U, V, and C, respectively, represent the filter’s
width, height, and channel count. This is followed by the calculation of output using the
following equation:

y(k) = σ(
J

∑
j=1

Wj,kXj + bk) (2)

3.2.1. DenseNet-121 Model

DenseNet-121 is a member of the DenseNet family consisting of 121 layers of Convolutional
layers (117-Convolutional, 3-transition, and 1-classification) with four dense blocks separated
by transition layers. Convolutional layers are interspersed between the dense blocks, forming
convolutional layers. Every block is composed of a 1 × 1 convolutional layer followed by a
3 × 3 convolutional layer. Concatenating the outputs of each dense block with those of the
previous dense block is performed using a transition layer. An average pooling layer of 2 × 2 is
used to downsample the feature maps after a convolutional layer of 1 × 1 reduces the number
of channels. The devised model setting is shown in Table 1.

Table 1. The DenseNet-121 Model Structure.

Layer (Type) Output Shape Param #

Input_2 (InputLayer) [(None, 256, 256, 3)] 0
sequential (Sequential) [(None, 256, 256, 3)] 0

densenet121 (Functional) (None, 8, 8, 1024) 7,037,504
flatten (Flatten) (None, 65, 536) 0
dense (Dense) (None, 128) 8,388,736

Dense_1 (Dense) (None, 2) 258

Total Params: 15,426,498
Trainable Params: 15,342,850
Non-trainable Params: 83,648

3.2.2. DenseNet-201 Model

This model, as shown in Table 2, has more layers and is more complex than DenseNet-
121. There are 201 layers, divided into four dense blocks, each preceded by a transition
layer. Every dense block has multiple convolutional layers with fully connected layers
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between them. An input fully connected layer is made up of a 1 × 1 convolutional layer,
which is used to reduce the number of input channels, followed by a 3 × 3 convolutional
layer to transform it non-linearly. After each dense block, the output is concatenated with
the output of the previous dense block. To downsample the feature maps, the transition
layer uses a 1 × 1 convolutional layer, followed by a 2 × 2 average pooling layer.

Table 2. The DenseNet-201 Model Structure.

Layer (Type) Output Shape Param #

Input_2 (InputLayer) [(None, 256, 256, 3)] 0
sequential (Sequential) [(None, 256, 256, 3)] 0

densenet121 (Functional) (None, 8, 8, 1024) 18,321,984
flatten (Flatten) (None, 65,536) 0
dense (Dense) (None, 128) 15,728,768

Dense_1 (Dense) (None, 2) 258

Total params: 34,051,010
Trainable params: 33,821,954

Non-trainable params: 229,056

3.3. Harris Hawks Optimization Algorithm

Data-driven AI models are represented by three major components: the data they use,
the parameters used to train them, and the architecture of the networks they use. To perform
tasks with maximum efficiency, any deep-learning model must achieve a proper balance
among these elements. To confirm the design of the model, a set of initial parameters is
used in several trials, and the performance of the model is measured within each trial.
Additionally, there are optimization concerns associated with increasing network depth.
Furthermore, incorrect selection of hyperparameters may result in suboptimal results. The
hyperparameter tuning and result analysis for DenseHHO can be a time-consuming process.
Consequently, the process of hyperparameter optimization must be performed to iteratively
search for the most optimal values based on the training data and update them accordingly.
The Harris Hawk Optimization algorithm (HHO) [40,41] is a metaheuristic optimization
method used for the DenseHHO framework. HHO was inspired by Harris hawks’ hunting
behavior. The HHO algorithm can solve various optimization problems, including function
optimization, feature selection, and parameter optimization for machine-learning models.
To implement the algorithm, the following steps must be taken. A significant difference
between HHO and other optimization algorithms lies in the introduction of the concepts of
elite and non-elite hawks instead of following a strict hierarchical structure. As a result, elite
hawks take the lead in the search process, representing the fittest solutions. To maintain
their position, they mimic the behavior of the best hawks in the population. In this manner,
the algorithm can converge toward promising solutions using this exploitation mechanism.
Three types of hunting behavior are observed in Harris hawks:

• Exploration: Hawks fly randomly to discover new areas in which they can search.
• Exploitation: Hawks attempt to improve upon the solutions provided by the most

successful individuals.
• Intensification: Hawks coordinate their efforts to search for prey.

Algorithm 1 provides the detailed steps of the proposed DenseHHO framework. After
initializing the pre-trained model, the HHO will be used to optimize the network hyperpa-
rameters. To search for an optimal solution, the HHO uses the following hunting behavior:

Xt+1
i = Xt

i + rand().(Xt
j − Xt

k), (3)
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where rand() is a random number between 0 and 1, j and k are two randomly chosen hawks,
and t is the current iteration. The hawks guide the optimization process by updating their
positions in accordance with those of other hawks using the following:

Xt+1
i =

(Xt
i ) + (Xt

j)

2
+ rand().(Xt

j − Xt
k), (4)

Algorithm 1 The suggested DenseHHO framework pseudocode
Input: Weed Images Dataset Dt, CNN- Hyperparameters , Objective Function F
Output: best model architecture, Performance Metrics.

1: Create TestDataset, and trainDataset;
2: Set Dimension d, optimization iteration T[max], and objective function Accuracy
3: for trainDataset portion Tt do
4: Train TLD using DenseNet-121 and DenseNet-201.
5: Initialize a population P of n hawks with random positions Xi, where i = 1, 2, . . . , n.
6: Create solution SL0 ← InitialPopulationGeneration.
7: Set t← 0 an initial optimization step, Counter C← 1,DimensionList DL[ ]. . Use

HHO to learn the Densenet model hyperparameters for Tmax optimization iteration
8: Use ImageNet to initialize each pre-trained network.
9: while (t ≤ Tmax) do

10: while (C 6= Nmax) do
11: Create an initial solution list ML[C].
12: Sort the hawks in descending order of fitness value.
13: Choose the top p% of the hawks and update the positions and velocities of each

hawk in accordance with its hunting behavior using the following Equation (3)
14: Determine which hawks will form the next generation based on their perfor-

mance by choosing the remaining (1− p) of the hawks and updating their positions
using the following Equation (4).

15: calculate fitness Function (TLD, DL, Tl, Ts, V).
16: Use Equation (4) to select the best solution HL.
17: if (HL outperforms ML) then
18: Update the Harris values( Equation (3)).
19: ML← HL.
20: Apply same TLD, ML, TL, Ts, VR
21: if ( There is no more space in the archive) then
22: Allow new Harris solution to be added by deleting some iterations.
23: Update Solutions Using Harris(HL, DL)
24: i++.
25: t++.
26: Apply HHO Optimizer for Training Options (F, H1, H2, H3 ,H4, H5) . The best

overall score and solution using optimizer range
27: Train DL using bestscore
28: Fuse Weed images’ features of DLs
29: Calculate performance metrics for BM based on Training Data;
30: Classify the fused Weeds features.
31: Return: BM, performance evaluation metrics.

3.4. Experimental Setting

Our optimization algorithm uses the Adam optimizer at a learning rate of 0.001, a
batch size of 32, and a training schedule of 50 epochs. A list of loss functions is created after
each epoch using the categorical cross-entropy loss function.

The number of epochs used for training is five, with 188 iterations per epoch. The
optimizer used for DenseNet-121 and DenseNet-201 is “Adam” with learning_rate = 0.0001
and loss = categorical_crossentropy. In addition, the learning _rate_reduction was used
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with these settings: monitor =′ val_accuracy′, patience = 2 , verbose = 1, f actor = 0.5,
min_lr = 0.00001. HHO algorithm settings are shown in Table 3.

Table 3. HHO Parameter Setting.

Parameter Purpose Value

Fitness_function

A user-defined function that takes a set of
hyperparameters as input and returns a fitness

value that represents the performance of a
machine-learning model trained with those

hyperparameters.

The maximum
validation accuracy

and minimum
validation loss

objf The objective function to be optimized. Accuracy

lb A numpy array representing the lower bounds
of the search space. 0

ub A numpy array representing the upper bounds
of the search space. 1

dim The number of dimensions in the search space. 10

SearchAgents_no The number of search agents (i.e., hawks) to be
used in the optimization algorithm. 30

Max_iter The maximum number of iterations to run the
optimization algorithm. 2

3.5. Performance Parameters and Evaluation Metrics

Several measures were used to evaluate the proposed DenseHHO, including accuracy,
F1_score, Sensitivity, and Specificity. According to the ratio between the number of Dock
samples correctly classified to the total number of samples, the [accuracy] value is calculated.
This evaluation metric can be calculated using Equations (5)–(8), where [True Positive TP]
represents the number of Dock, and Not-Dock images that have been correctly classified; [True
Negative TN] represents the number of weed images that have been misclassified. Additionally,
macro average scores can be used to evaluate the overall performance of the model across
several sets of data. This study uses the macro average to measure the performance of the
different classes. The macro average F1-score is calculated by first computing the accuracy and
recall of each class label from n classes, followed by calculating the unweighted arithmetic mean
and weighted average score as shown in Equations (9)–(12). The DenseHHO is evaluated with
confusion matrices (CMs). A classification method’s CM represents the characteristics of that
method’s classification performance during its execution.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(5)

Sensitivity (Recall) =
TP

(TP + FN)
(6)

Speci f icity(Precision) =
TP

(TP + FP)
(7)

F1_score =
TP

(TP + 0.5(FP + FN))
(8)

Macro avg precision (MAP) = ∑n
i=1 TP

n
(9)

Macro avg recall (MAR) = ∑n
i=1 FN

n
(10)

Macro average =
2(MAP×MAR)
(MAP + MAR)

(11)
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Weighted average =
(1 + β)× (Precision× Recall)
(Recall + (β2 × Precision)))

(12)

where 0 < β < 1 add weight to the Precision, and β >1 add weight to the Recall.

4. Results

The purpose of our study was to evaluate the accuracy of two pre-trained deep-
learning models for the classification of weed images. in the following subsections, we will
detail the experimental setting and the obtained results.

4.1. Model Evaluation Performance

The experimental dataset consisted of 6697 images of weeds that were grouped into
two categories. Using a 70-30 split, the dataset was divided into training and testing sets.
Five-fold cross-validation was used to train and evaluate the models. A total of 6027 images
were used to train the model and 670 images were used to test its accuracy. In Table 4, we
provide the obtained accuracy for each model as well as other evaluation metrics. The
training and validation confusion matrix for model 1 and model 2 is given in Figures 4–7.

Table 4. DenseHHO Classification Accuracy.

Model Accuracy F1_Score Sensitivity Specificity

DenseNet-121 98.44% 97.61% 99.10% 97.30%
DenseNet-201 97.91% 97.91% 97.50% 98.00%

An imbalance between classes in the dataset is not taken into account when calculating
the classification accuracy alone, which can result in misleading results when the dataset
has a skewed distribution of classes. It is, therefore, important to take into account the
imbalance between classes in the dataset by evaluating the “weighted accuracy” and
“macro accuracy” assessment. For DenseNet-121 and DenseNet-201, Tables 5 and 6 provide
the evaluation report for each model considering their macro and weight average.

Table 5. The testing performance of HHO-optimized DenseNet-121.

Precision Recall F1_Score Support

0 0.95 0.91 0.93 130
1 0.98 0.99 0.98 540

accuracy 0.97 670
macro avg 0.96 0.95 0.96 670

weighted avg 0.97 0.97 0.97 670

Table 6. The testing performance of HHO-optimized DenseNet-201.

Precision Recall F1_Score Support

0 0.98 0.92 0.94 130
1 0.98 0.99 0.99 540

accuracy 0.98 670
macro avg 0.98 0.95 0.97 670

weighted avg 0.98 0.98 0.98 670
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Figure 4. HHO-optimizedDenseNet-121 training confusion matrix.

Figure 5. HHO-optimizedDenseNet-201 training confusion matrix.

Figure 6. HHO-optimized DenseNet-121 validation confusion matrix.
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Figure 7. HHO-optimized DenseNet-201 validation confusion matrix.

The convergence of an optimization algorithm is typically determined by comparing
the difference between two consecutive iterations of the objective function. The algorithm is
said to have converged if the difference falls below a certain threshold. If further iterations
of the algorithm do not produce a significant improvement in the objective function, the
optimization algorithm has converged. The maximum validation accuracy and minimum
validation loss are then derived as an objective function for the fitness solution, and
convergence criteria are established that the algorithm will terminate once the gradient
norm does not exceed 1.0. The HHO coverages for 5 epochs with 188 iterations per epoch,
which is shown in Figures 8 and 9 for the devised framework considering DenseNet-121 and
DenseNet-201, respectively. After several iterations of the algorithm, we obtain a solution
of x = 0.98. As a result of this convergence, the algorithm has reached a solution that is very
close to its optimal value. The best solution obtained by HHO is a 10-dimensional vector
whose values are:[

0.41220429 0.51325094 0.14969204 0.26833381 0.60773674
0.84484728 0.98244724 0.98372854 0.06231934 0.14492935

]
and for DenseNet-201, based on the HHO algorithm, the best solution is:[

0.88840973 0.82984462 0.17273697 0.42786396 0.93121754
0.90590804 0.6815667 0.83325338 0.10811796 0.86986838

]

Figure 8. HHO-optimized DenseNet-121 Convergence.
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Figure 9. HHO-optimized DenseNet-201 Convergence.

Figures 10 and 11 plot the training progress of DenseHHO. Additionally, Figures 12 and 13
plot the testing progress of DenseHHO. The initial test accuracy is higher than the training
accuracy for the first few iterations, but as the training epoch proceeds, the test and training
accuracy become more similar. The training and test efficiencies were close to 98% after the
second iteration of training. Training and test accuracy increased as the iteration progressed.
The best accuracy value of the objective function found by HHO for the first and second
models: 98.44%, and 97.97% consequently.

Figure 10. HHO-optimized DenseNet-121 Accuracy.

Figure 11. HHO-optimized DenseNet-201 Accuracy.
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Figure 12. HHO-optimized DenseNet-121 Loss.

Figure 13. HHO-optimized DenseNet-201 Loss.

4.2. DenseHHO Performance Compared to State-of-the Art

This section presents a comparison and evaluation of DenseHHO efficiency with state-
of-the-art algorithms. An analysis of the proposed algorithm compared with that of peer
competitors is provided in Table 7. There are three columns in this table corresponding to
types of purpose, namely methodology, classification accuracy, and the use of optimization
algorithm. A comparison of the classification accuracy is taken from published papers
and compared with the implementation of DenseHHO. From Table 4, there is a consistent
performance level across the two classifiers of the network. The findings of the study
demonstrate that DenseHHO yielded extremely consistent and high levels of accuracy with
the same computational complexity and storage as the existing technique.
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Table 7. Performance comparison of DenseHHO and state-of-the-art-related works—Neural networks
(NNs), Support vector machines (SVMs), and K-nearest neighbors (KNN).

Ref. Target Images Methodology Performance Optimization

[31]
Ryegrass species
& three distinct
weed types

VGGNet

F-Score:
maculate-92.65%,
hederacea-99.84%,
officinale-97.37%

No

[32] Plant species AlexNet Accuracy-99.5%

[33]
Four weed
species.

VGG16,
ResNet50,

Inceptionv3

Accuracy
VGG16-98.90%,
ResNet50-97.80%,
Inceptionv3-96.70%,

No

[34] Weed
AlexNet
ANN

Accuracy
AlexNet-99%,
ANN-48%.

No

[36]
Rice plant
species & weeds

ANN Bee
Algorithm (BA) Accuracy-92.02% Yes

[37] Weed & wheat

NNs, SVMs,&
KNN & hybrid
of sine cosine &
gray wolf optimization.

Accuracy-97.70% Yes

[38] Weed
DenseNet-121
MBMO Accuracy-98.99%. No

DenseHHO Weed & wheat
DenseNet-121 &
DenseNet-201
optimized with HHO

Accuracy:
DenseNet-121-98.44%
DenseNet-201-97.61%

Yes

5. Discussion

Detecting undesirable plants, or weeds, plays a significant role across a variety of
sectors and has significant implications for society as a whole. It is possible to increase
agricultural productivity, protect natural ecosystems, and improve the quality of our
environment by effectively identifying and controlling weeds. Plants cultivated in soil
compete with weeds for resources such as water, nutrients, and sunlight. In addition to
hindering crop growth, they can decrease yields and result in economic losses for farmers.
To mitigate these negative effects on agriculture, early detection, and effective weed-
management strategies are essential. Using artificial intelligence and machine learning,
weed-detection systems can be improved in accuracy and efficiency, allowing them to
identify weed species with greater accuracy and reliability. A more effective and sustainable
management practice can be achieved across the agricultural and environmental sectors
using this information to help researchers, farmers, and land managers make informed
decisions about weed-control strategies. The current study examines the effects of the HHO
algorithm to boost weed classification accuracy using two different CNN-based pre-trained
models. Optimization algorithms can be used to tune hyperparameters in pre-trained
models to improve their performance on specific tasks. Hyperparameters are parameters
that are set before training begins and cannot be learned from the data. Examples of
hyperparameters include the learning rate, the number of layers in the network, and
the size of each layer. A significant achievement of the HHO algorithm is that it was
able to find a set of hyperparameter values that resulted in the best accuracy value for
weed classification.

An objective function’s accuracy value indicates the performance of the deep-learning
model with the corresponding hyperparameters. HHO found the best accuracy value of
98.44% and 97.97% (as shown in Figures 4 and 5), which is close to 100%. The results indicate
that the deep-learning model with the best set of hyperparameters is capable of accurately
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classifying the weed collected data. This level of accuracy is quite high and indicates that
the model has the potential to be useful in a wide range of real-world applications. As part
of testing the generalization ability of the devised methodology over imbalanced complex
datasets, DenseNet-121 and DenseNet-201, Figures 5 and 6 provide training accuracy
assessments for both macro and weighted accuracy. A 100% weighted accuracy means
that the model correctly classified all instances in the dataset, regardless of their class,
and that the model was able to handle any class imbalance in the dataset. It is crucial
to determine the convergence of an optimization algorithm to determine how quickly it
can find a solution. Slow-converging algorithms may require many iterations to find a
sufficiently good solution, whereas fast-converging algorithms may find a good solution in
fewer iterations. The concept of convergence in optimization refers to the point at which an
algorithm stops searching for a better solution and settles on a solution that is considered
sufficiently good. After several iterations of the algorithm, we obtain a solution of x = 0.98
for five epochs with 188 iterations per epoch as shown in Figures 8 and 9. At this point, the
gradient at the current solution is small, indicating that the objective function is nearly flat. It
can be concluded from this result that the algorithm has found a solution that is very close to
the optimal solution and that further iterations are not necessary. The DenseNet-121 shows a
99.96% training accuracy (Figure 4), which indicates that it can learn training data correctly;
however, a test accuracy of 97.8% indicates that it is also able to generalize well to unknown
data with an average loss of 0.125 (Figure 12). The results shown in Figure 13 indicate that
DenseNet-201 accurately predicted weed cases based on an average loss of 0.135. HHO is
a relatively new method of solving optimization problems compared to other optimization
algorithms such as GA and PSO. Despite this, there are several limitations to the HHO
algorithm, such as the performance of the algorithm depending greatly on the selection
of parameters, including the number of iterations, the population size, the probability of
exploration, and the selection of a leader hawk. The process of determining the optimal
value for these parameters can be time-consuming and challenging. Additionally, due
to the computational cost and memory requirements associated with evaluating fitness
functions for large populations, the Harris Hawks Optimization algorithm may not be able
to scale to large-scale optimization problems.

6. Conclusions

The study introduces a novel methodology for categorizing wheat and weed in aerial
images obtained from drones, utilizing metaheuristic optimization and machine-learning
techniques. This study created an automated model called “DenseHHO” that utilizes
conventional neural networks to classify images of weeds taken by sprayer drones. A
metaheuristic algorithm, HHO, is proposed to optimize the layer structure and parameters
of a given model. The study also examined the effects of the HHO algorithm in boosting
the weed classification accuracy using the two different CNN-based pre-trained models,
namely DenseNet-121 and DenseNet-201. In a series of experiments, the proposed method
outperformed existing optimization strategies with a detection accuracy of 98.44% for
DenseNet-121 and 97.91% for DenseNet-201 The attained detection accuracy surpasses all
other weed-detection approaches. Future research may assess the proposed methodology
across diverse densities of cultivated crops and under different farm conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AUC Area Under the Curve
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Networks
ENN Elman Neural Network
GA Genetic Algorithm
GF Gabor Filtering
GWO Gray Wolf Optimizer
HHO Harris Hawks Optimization
KNN K-Nearest Neighbor
MBMODL-WD Modified Barnacles Mating Optimization with

Deep-Learning-based weed detection
RCNN Region-based CNN
RF Random Forest
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
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