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Abstract: Unsupervised domain adaptation for object detectors addresses the problem of improving
the cross-domain robustness of object detection from label-rich to label-poor domains, which has
been explored in many studies. However, one important issue in terms of when to apply the domain
adaptation algorithm for geospatial object detectors has not been fully considered in the literature.
In this paper, we tackle the problem of detecting the moment or change-point when the domain of
geospatial images changes based on conformal test martingale. Beyond the simple introduction of this
martingale-based process, we also propose a novel transformation approach to the original conformal
test martingale to make change-point detection more efficient. The experiments are conducted
with two partitions of our released large-scale remote sensing dataset and the experimental results
empirically demonstrate the promising effectiveness and efficiency of our proposed algorithms for
change-point detection.

Keywords: conformal test martingale; change-point detection; geospatial object detector; domain shift

1. Introduction

Object detection for geospatial images is a fundamental task in remote sensing [1].
Nowadays, many deep learning-based object detectors have been proposed to improve the
performance of geospatial object detectors drastically when the training and test data are
independent and identically distributed (IID assumption) [2–6]. Since the test images may
be distributed differently from the training images because of the variation of illumination,
image quality, and background, the domain shift problem has been considered for object
detection [7]. To overcome the large drop in detection precision, the strategy of unsuper-
vised domain adaptation has been utilized in many works [8–11], and which improves
the cross-domain robustness of object detection from label-rich to label-poor domains in
an unsupervised way. The existing literature builds on the assumption that the domain
shift is known in advance and the research mainly focuses on how to make the trained
object detector adapt to a new domain. In practice, however, the domain shift phenomenon
may not appear immediately after the deployment of an object detector, and the time when
the domain changes should be detected automatically. In other words, one important
issue of detecting domain shift and deciding when to call domain adaptation algorithms
intelligently has not been fully addressed. Figure 1 shows the flowchart of deploying object
detectors in a situation where the domain of the test images changes, and our focus in this
paper is to design the change-point detector. This is essential for geospatial object detectors,
which are deployed in satellites in military or civilian areas without human intervention. In
this case, automatically detecting the change point of two domains is important for timely
avoiding the considerable drop in detection precision caused by domain shift.
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Figure 1. Flowchart of deploying object detectors where the test data comes from different domains.
A change-point detector is needed to detect the change point of different domains and decide to call
the domain adaptation algorithm to update the object detector. The different domains come from the
partitions of the remote sensing dataset with clustering analysis in Section 3.1.

Detecting the change point of data streams is important and challenging for both
statistics and machine learning areas [12,13]. Without the detailed assumptions of under-
lying distributions, many statistical methods can fail to effectively and efficiently detect
the changes [14,15]. Also, the mainstream work in statistics focuses on the batch setting
where the observations are real numbers, which limits usability. The existing algorithms in
machine learning, on the other hand, do not test IID assumption directly, which lacks theo-
retical bases and interpretability [16,17]. Based on the idea of conformal prediction [18,19],
one promising non-parametric framework of testing IID assumption online named confor-
mal test martingale has been proposed, which does not require any detailed assumptions
of the data-generating process [20,21].

The conformal prediction-based method can construct exchangeability martingales
with the assumption of the test data stream, satisfying IID assumptions, and makes use of
the martingale inequalities to test this null assumption [22]. Each martingale inequality can
define a corresponding little probability event, and the IID assumption can be rejected if
the event happens. These martingales are built on the p-values calculated by conformal
prediction, which are uniformly distributed when the IID assumption holds. Thus, these
conformal prediction-based martingales for testing IID assumption are called conformal
test martingales (CTMs), and have been successfully used for change-point detection in
the area of classification or regression problems. The first work of using CTMs to detect
change-point was proposed in [14], and more explorations [17,23,24] were conducted. The
recently proposed CTMs with Simple Jumper [17,25] were successfully applied to change-
point detection for regression problems, and further extended to probabilistic prediction
for classification problems to protect the predictors from significant deterioration after the
change point [26]. Despite their success in detecting a change point, CTMs have only been
tested for data with a relatively simple structure, such as vectors or handwritten digits.
Therefore, whether they can be used to detect change-point for high-resolution images with
complex contents and backgrounds such as geospatial images is worth exploring.

Therefore, we introduce CTMs to detect change-point of different domains for geospa-
tial object detectors, such that the domain adaptation algorithm can be called automatically.
Moreover, we develop transformations on top of conformal test martingales using mo-
mentum [27] to make change-point detection faster. To test the proposed approaches,
we propose using clustering analysis on a remote sensing dataset to construct different
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domains, since there is a lack of datasets, especially for domain adaptive geospatial object
detectors.

In summary, this work is the first to attempt to address the problem of detecting
the change point of different domains for geospatial object detectors, and which employs
conformal test martingales and proposes a novel transformation method to accelerate the
detection process. The contributions of this paper are as follows:

• Clustering analysis for partitioning our released large-scale remote sensing dataset for
geospatial object detection [28] is proposed for domain shift problems in the field of
geospatial object detection.

• Conformal test martingales and a novel transformation method are first introduced to
detect change-point for object detectors, with few false alarms for the target domain.

• Experimental results not only demonstrate the effectiveness and efficiency of our
proposed methods for change-point detection, but also verify the partitions of the
datasets in a statistical way.

The rest of this paper is organized as follows. Section 2 introduces conformal test
martingale and change-point detection. Section 3 proposes the methods of constructing
different domains, calculation of nonconformity measure, and improving detection effi-
ciency with momentum. In Section 4, the experiments are conducted to verify the partitions
and test our proposed algorithm for change-point detection. The conclusions are drawn in
Section 5.

2. Conformal Test Martingale

We first introduce conformal test martingale following [17]. (z1, z2, . . .) denote a
sequence of test data and an inductive nonconformity measure is a measurable function A,
which maps any zi to a real number αi = A(zi). αi is known as the nonconformity score
and measures the strangeness of zi compared with a dataset S. In the literature, A is often
related to training data, and accordingly, αi measures the difference of zi from training data.
After obtaining zn, the p-value of zn can be calculated based on the existing collected test
data (z1, . . . , zn) as follows,

pn =
|{i|αi > αn}|+ θn|{i|αi = αn}|

n
, (1)

where i ranges over {1, . . . , n}. θn is a random number independent of (z1, . . . , zn) and
distributed uniformly on [0, 1]. If (z1, z2, . . .) satisfy IID assumption, then the p-values
(p1, p2, · · · ) are independent and uniformly distributed on [0, 1]. Based on this property,
conformal test martingales Sn can be constructed by

Sn = F(p1, . . . , pn), n = 0, 1, . . . ,

where F : [0, 1]∗ → [0, ∞] is a measurable function named betting martingale and [0, 1]∗

denotes the set containing the sequences of any length whose elements taking values
in [0, 1]. Also, by definition, F maps empty sequence to 1 and for each n ≥ 1 and each
sequence (u1, . . . , un−1) ∈ [0, 1]n−1, there holds∫ 1

0
F(u1, . . . , un−1, u)du = F(u1, . . . , un−1).

One effective betting martingale is the Simple Jumper proposed in [17], whose defini-
tion is as follows,

F(u1, . . . , un) =
∫ n

∏
i=1

fεi (ui)µ(d(ε1, ε2, . . .)),

where
fε(p) = 1 + ε(p− 0.5)

and µ is the probability measure on {−1, 0, 1}∞ defined by a Markov chain with state
space {−1, 0, 1} and parameter J. The martingale constructed above is summarized in
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Algorithm 1, which is the conformal test martingale with a simple jumper.

Algorithm 1: Conformal test martingale with a simple jumper.
Input: The p-values p1, p2, . . . defined by Formula (1) and the parameter J.
Output: Conformal test martingale S1, S2, . . ..
1: Set S0 = 1, C−1 = C0 = C1 = 1

3 and C = 1.
2: for n = 1, 2, . . . do
3: for ε ∈ {−1, 0, 1} do
4: Cε = (1− J)Cε + (J/3)C
5: end for
6: for ε ∈ {−1, 0, 1} do
7: Cε = Cε fε(pn)
8: end for
9: C = C−1 + C0 + C1

10: Sn = C
11: end for

Conformal test martingales are martingales by mathematical definition, since they
satisfy the following equation:

E(Sn|S1, . . . , Sn−1) = Sn−1.

Furthermore, by Ville’s inequality, for any constant c > 1, there holds

P(∃n : Sn ≥ c) ≤ 1
c

. (2)

Therefore, we can use Algorithm 1 to detect the change point [29,30]. Formally, sup-
pose that (z1, z2, . . .) are random variables, where the first θ − 1 variables, (z1, z2, . . . , zθ−1),
are each distributed according to f0(z) and the remaining variables (zθ , zθ+1, . . .) are each
distributed according to f1(z), i.e., the distribution changes from f0(z) to f1(z) at the
change-point θ. Thus, (z1, z2, . . . , zθ−1) come from one domain and (zθ , zθ+1, . . .) come
from another domain. To test whether the distribution of (z1, z2, . . .) satisfies the IID as-
sumption, one can set c = 20 to make a false alarm rate no more than 5%. After the
change-point θ, Sn can become very large as the violation of IID assumption, and the
change can be detected when Sn ≥ 20.

3. Method

In this section, we first propose using clustering to partition the remote sensing dataset
to different domains, since there lacks the datasets for domain adaptation research for
geospatial object detectors. Then, we introduce a nonconformity measure based on the
existing research about domain adaptation, which indicates how to measure the domain
difference for different domain samples. At last, we develop a transformation of the original
CTM to accelerate the change-point detection process based on the idea of momentum.

3.1. Partitions for Different Domains

We partition the dataset released in [28] by image quality or illumination, since
these two indicators can be defined properly by mathematics, which avoids subjectiv-
ity in partitions.

Clear Domain vs. Blur Domain: We employ a Laplace operator to obtain the blur
length for each image [31] and use K-mean algorithms with K = 2 to cluster the blur
lengths of all of the images, which leads to the clear domain (6278 samples) and blur
domain (11,909 samples) in this paper.

Bright Domain vs. Dark Domain: The illumination intensity cannot be defined prop-
erly as a single value like blur length, since the dark or bright background may dominate
the calculation. Thus, we propose using the distribution of illumination intensity to parti-
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tion. We employ L values of images in LAB (Lightness, Red/Green Value, Blue/Yellow
Value) color space [32] to define the illumination intensity for every pixel. For each image,
all of the L values can be seen as its distribution of illumination intensity. To describe the
distribution, we use the 0.1, 0.2, . . . , 1.0 quantiles to form the ten-dimensional feature vector.
After vectorization of all of the images, we also use K-mean algorithms to cluster them with
K = 2 and the final partition leads to the bright domain (8159 samples) and dark domain
(10,028 samples) in this paper.

3.2. Nonconformity Measure with Image- and Instance-Level Representations

The nonconformity measure is of great importance to efficient change-point detection,
since it measures the strangeness between the current test datum and the obtained data,
which is the key to increasing Sn after the change point. Existing works about domain
adaptive object detectors mainly use the hidden feature map output by the base convolu-
tional layers as the image-level representation of the original input image, and all of the
final output vectors with high confidence of objects as the corresponding instance-level
representation [7]. Building on those representations, the domain adaptation algorithms
are called to decrease the gap in the representations between domains. In this spirit, we
propose using the two representations to calculate the nonconformity measure, since the
representations between two domains are different before the domain adaptation process.

Our notations follow [7], which both concerns the image-level representation and
instance-level representation. Define φu,v(zi) as the activation at position (u, v) of the
feature map of the ith image zi output by the backbone, and let pi,j be the output vector of
the jth object of ith image detected by the object detector. Following [7], we construct the
image-level representation φ̄(zi) and the instance-level representation p̄(zi) as follows:

φ̄(zi) =
1

Nφ
∑
u,v

φu,v(zi),

p̄(zi) =
1

Npi
∑

j
pi,j,

where Nφ is the total number of pixels of the feature map, Npi is the total number of detected
objects and p̄(zi) is set to zero vector if Npi = 0. Finally, our whole representation vector
v(zi) of each image is the concatenation of φ̄(zi) and p̄(zi). After this vectorization of each
image, we calculate the nonconformity score of zi as

αi = A(zi) = min
j

√
(v(zi)− v(zval

j ))2 (3)

where zval
j represents the jth sample in the source validation set and j ranges over {1, . . . , Nv}

with Nv being the validation size. This nonconformity measure is the 1-nearest neighbor
nonconformity measure mentioned in [17], which measures the mathematical distance
between v(zi) and the point set {v(zval

1 ), . . . , v(zval
Nv)} with the fact that larger αi is related

to stranger zi compared with the source validation data.

3.3. Accelerating Change-Point Detection with Momentum

According to the existing research in the literature [23,24,29] and our empirical imple-
mentation, before the change point, Sn tends to decrease to a low value. As a result, after the
change point, the Sn needs many steps to recover from the low value to the significant value
c in Formula (2). To reduce the delay and accelerate the detection process, two methods
based on the transformations of the original CTMs have been proposed. One method [23]
is to restrict Sn such that it will not take values below some preset threshold. The other
method [24] first sets Sn = 1 when there is not enough evidence available to reject the IID
assumption, and then starts the process of conformal test martingales when the evidence
is sufficient.
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To address this issue, we propose a novel transformation method considering the
variation of the martingale values. The motivation of our method is from the observation
that after the change point, the martingale values Sn tend to increase and exceed the value
c. To make this process efficient, we construct a transformation based on the idea that if the
change in Sn is positive, one should make Sn increase faster, which can be realized using
momentum [27]. Specifically, let δn = Sn − Sn−1 be the current change. To bring in the idea
of momentum, one can employ a new process S∗n with the following iteration equations:

δ∗n = δn + rn × δ∗n−1,

S∗n = S∗n−1 + δ∗n,

where rn is the momentum parameter of the iterations. However, this performs poorly since
the momentum both accelerates the increases and decreases of the original Sn and S∗n can
also be a small value. Therefore, we introduce Algorithm 2 below, where a ∨ b = max{a, b}
and S∗n only concentrates on the non-negative part of the momentum. Also, S∗n is always no
less than S0 for all n.

Algorithm 2: The transformation of conformal test martingale with momentum.
Input: The p-values p1, p2, . . . defined by Formula (1), the momentum parameters

r1, r2, . . . and the parameter J.
Output: The transformation process S∗1 , S∗2 , . . ..
1: Set S0 = 1, C−1 = C0 = C1 = 1

3 , C = 1, S∗0 = 1 and δ∗0 = 0.
2: for n = 1, 2, . . . do
3: Calculate δn using Algorithm 1.
4: Calculate δ∗n = δn + rn × (δ∗n−1 ∨ 0).
5: Obtain S∗n = (S∗n−1 + δ∗n) ∨ S0.
6: end for

This transformation in Algorithm 2 can significantly accelerate the detection speed if
the momentum parameters are chosen or calculated properly. Based on the experimental
observation that the rolling mean of the p-values are close to or far away from 0.5 before
or after the change point, we further propose a method to calculate rn with p-values in
Section 4.2. Although the output of Algorithm 2 is not a martingale theoretically, which
might violate the validity of the original CTM, our experiments empirically demonstrate
the practicability and efficiency of this method for fast change-point detection.

4. Experiments

This section conducts experiments for empirically testing the proposed methods in
Section 3. We first verify the partition of the dataset based on the performance drop of
YOLOv3 (You Only Look Once Object Detector, Version 3) [33]. Then we explore the
proposed algorithms from clear to blur domain to visualize their characteristics. Finally,
we demonstrate the performance of different methods to show the improvement in our
momentum-based approaches.

4.1. Verification of the Partitions

To verify the partitions proposed in Section 3.1 and prepare the datasets to test the
algorithms in this paper, we split each domain into training, validation, and test sets with
the ratio being 6:2:2. For each domain pair, we trained YOLOv3 with learning rate being
0.0001 and epoch number being 120 on the source training set and used the total loss
in the source validation set to choose the final model. All chosen models were tested
on the test sets from source and target domains, respectively, to see whether there is a
detection precision drop between the domains. The mAP (Mean Average Precision) for
each test set is summarized in Table 1. The large drop of the mAP verifies our partition for
different domains.
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Table 1. Mean Average Precision of YOLOv3.

Domain Shift Case Source mAP Target mAP

From Clear to Blur Domain 94.15% 69.62%
From Blur to Clear Domain 95.34% 91.69%

From Bright to Dark Domain 87.48% 80.87%
From Dark to Bright Domain 95.54% 88.64%

4.2. Exploratory Experiments of CTM

We explore Algorithm 1 from clear to blur domain to see whether it can detect change-
point. The YOLOv3 trained on the training set of the clear domain is used to calculate the
p-values based on the conformity measure defined by Formula (3). The first group data
(1256 samples) of the test data stream is the shuffled test data from the clear domain, and the
remaining data stream is the shuffled test data from the blur domain, i.e., the change-point
θ is 1257. The parameter J is set to 0.01 according to [17] and c is set to 20 to make the false
alarm rate no more than 5%, referring to Formula (2). The rolling mean of the p-values is
shown in Figure 2 and Sn output by Algorithm 1 is shown in Figure 3, which demonstrate
that the rolling mean is close to and running away from 0.5 before and after the appearance
of the change point, and the martingale Sn increases considerably after the change point.
This phenomenon was also shown in [14], since the p-values are distributed uniformly on
[0, 1] if the test data are IID based on the theory analysis of conformal prediction.

Figure 2. The rolling mean of the p-values obtained with the nonconformity measure defined in
Section 3.2, whose window size is 100.

Figure 3. The logarithms of outputs by Alg.1 and Alg.2(Adaptive). The domain shift is detected after
the change point without false alarms. Due to momentum, the outputs of Alg.2(Adaptive) increase
much faster than those of Alg.1.
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Based on the observations from Figures 2 and 3, we propose using the rolling mean of
the p-values to calculate the momentum parameter rn in Algorithm 2. Denote the rolling
mean of the p-values at step n as γn. We propose calculating the momentum parameters of
Algorithm 2 as follows,

rn =

{
0, i f γn − 0.5 ≥ R
M, i f γn − 0.5 < R

(4)

where R is the threshold to decide whether to accelerate the increase of the process and M
is the momentum for acceleration. The reason for setting rn = 0 for large γn is that Sn can
increase a little at the first few steps and a positive rn can cause false alarms of the change
point. We set the window size of the rolling mean as 100 in this paper, so the first 99 ris are
set to 0. This transformation process from clear to blur domain is also shown in Figure 3.
By comparison, it can be seen that the transformation process can detect the change point
more quickly than the original conformal test martingale.

4.3. Comparison Experiments

The comparison experiments were conducted for all of the four domain shift cases
proposed in Section 3.1. For each domain shift case, the test data from the source domain
came sequentially, followed by the test data from the target domain, and ten experiments
were conducted by shuffling the order of the samples within each domain. The experimental
results are recorded in Tables 2–5, where Mean Delay refers to the mean value of the delay
steps to raise the first true alarm of domain shift [23]. POD and POFD are widely used
indicators for detection in statistics [34], where POD represents probability of detectionand
POFD represents probability of false detection. All of the input features are v(zi) introduced
in Section 3.2. Alg.1 is the conformal test martingale calculated by Algorithm 1, whose
nonconformity measure is Formula (3) and parameter J is set to 0.01 according to [17].
CTM-C is a recently proposed transformation process of CTM based on a cautious betting
strategy, which takes the evidence of violating IID assumption into account [24]. CTM-C is
also a martingale theoretically whose performance is close to or even better than existing
well-performed change-point detection techniques. Therefore, CTM-C is the state-of-the-art
approach of CTM-based methods. The parameter ε of CTM-C is the threshold related to
the evidence of violating IID assumption, and we set it as 5, 10, or 15 in the comparison
experiments and denote the algorithms as CTM-C(ε = 5), CTM-C(ε = 10) and CTM-
C(ε = 15), respectively. Alg.2 is the transformation of the outputs of Alg.1 based on
Algorithm 2, where Alg.2(rn = a) means rn = a for any n. Alg.2(Adaptive) is Alg.2 with rn
calculated by Formula (4), where R = −0.1, M = 10. Since we focus on the detection speed
of each algorithm, the lowest Mean Delay is shown in bold and underlined in the Tables.

Table 2. Change-Point Detection From Clear to Blur Domain.

Algorithm Mean Delay POFD POD

Alg.1 41.3 0.0003 0.9827
CTM-C(ε = 5) 37.3 0.0000 0.9843
CTM-C(ε = 10) 33.5 0.0000 0.9855
CTM-C(ε = 15) 34.7 0.0000 0.9854
Alg.2(rn = 0) 41.2 0.0003 0.9827
Alg.2(rn = 0.1) 40.8 0.0007 0.9829
Alg.2(rn = 0.5) 30.5 0.1806 0.9872
Alg.2(Adaptive) 34.5 0.0003 0.9855

The lowest Mean Delay is shown in bold and underlined.
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Table 3. Change-Point Detection From Blur to Clear Domain.

Algorithm Mean Delay POFD POD

Alg.1 53.6 0.0008 0.9573
CTM-C(ε = 5) 46.0 0.0000 0.9633
CTM-C(ε = 10) 37.3 0.0000 0.9703
CTM-C(ε = 15) 37.5 0.0000 0.9700
Alg.2(rn = 0) 53.5 0.0008 0.9574
Alg.2(rn = 0.1) 48.6 0.0949 0.9613
Alg.2(rn = 0.5) 37.4 0.2493 0.9702
Alg.2(Adaptive) 31.0 0.0008 0.9753

The lowest Mean Delay is shown in bold and underlined.

Table 4. Change-Point Detection From Bright to Dark Domain.

Algorithm Mean Delay POFD POD

Alg.1 40.0 0.0000 0.9801
CTM-C(ε = 5) 27.1 0.0002 0.9864
CTM-C(ε = 10) 26.6 0.0000 0.9867
CTM-C(ε = 15) 27.9 0.0000 0.9860
Alg.2(rn = 0) 40.0 0.0000 0.9801
Alg.2(rn = 0.1) 39.9 0.0000 0.9801
Alg.2(rn = 0.5) 37.7 0.0000 0.9812
Alg.2(Adaptive) 26.0 0.0000 0.9870

The lowest Mean Delay is shown in bold and underlined.

Table 5. Change-Point Detection From Dark to Bright Domain.

Algorithm Mean Delay POFD POD

Alg.1 51.1 0.0003 0.9687
CTM-C(ε = 5) 41.6 0.0002 0.9745
CTM-C(ε = 10) 36.7 0.0000 0.9774
CTM-C(ε = 15) 37.8 0.0000 0.9768
Alg.2(rn = 0) 50.8 0.0003 0.9689
Alg.2(rn = 0.1) 48.6 0.0153 0.9702
Alg.2(rn = 0.5) 42.9 0.0970 0.9737
Alg.2(Adaptive) 31.8 0.0003 0.9805

The lowest Mean Delay is shown in bold and underlined.

In Table 2, we can see that the performance of Alg.1 and Alg.2(rn = 0) is nearly the
same, which indicates that only limiting the lower bound of S∗n cannot improve much. By
increasing rn, the change point can be detected quickly, whereas larger rn leads to more false
alarms. By setting rn = 0.5, the violation of validity with Algorithm 2 is observed, since the
POFD is higher than the 5% significance level. This implies that the momentum parameter
of Algorithm 2 should be chosen properly for empirical validity. Finally, our proposed
Alg.2(Adaptive) has low POFD and Mean Delay simultaneously, as it only accelerates the
increase of S∗n when the distribution of p-values is far away from uniformity on [0, 1], i.e.,
the rn is far away from 0.5. In comparison, the Mean Delay of CTM-C is really low and
CTM-C(ε = 10) performs best, since it achieves the lowest Mean Delay with the POFD
lower than 5%. In this domain shift case, our proposed Alg.2(Adaptive) is close to the
performance of CTM-C(ε = 10).

With similar analysis, the experimental results shown in Tables 3–5 demonstrate that
Alg.2(Adaptive) performs best for the other three domain shift cases, which confirms
the effectiveness and efficiency of our proposed transformation process with adaptive
momentum. Since Mean Delay is the most important indicator under the premise of low
POFD, we also show Mean Delay in Figure 4 for visualization.
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Figure 4. Visualization of Mean Delay for all algorithms with conformal test martingales. Since
Alg.2(rn = 0.5) has high POFD, CTM(ε = 10) performs best from Clear to Blur Domain and
Alg.2(Adaptive) achieves the best performance in the other three domain shift cases.

All of the experiments demonstrate the worth of introducing conformal test martingale
to the detection of change-point for geospatial object detection with few false alarms,
and the proposed Alg.2(Adaptive) can achieve equivalent and in some cases superior
performance to the state-of-the-art CTM-based methods for change-point detection. The
experimental results also show that although the proposed approach violates validity, it
empirically performs well in most cases with proper momentum parameters. Besides, since
Alg.1 can test IID assumption with a theoretical basis, the experimental results of Alg.1 also
verify our partition for different domains proposed in Section 3.1 statistically.

5. Conclusions

This paper focuses on the problem of detecting domain shift for geospatial object
detectors automatically with few false alarms. To do so, we first partition our released large-
scale remote sensing dataset using clustering analysis, which attempts to build different
domains for geospatial object detection. After this preparation, the original CTM and its
transformation are tested for four different domain shift cases. The experimental results
confirm the effectiveness and efficiency of our proposed algorithms, and the variant with
adaptive momentum parameters demonstrates equivalent and in some cases superior
performance to the state-of-the-art CTM-based methods for change-point detection. In
addition, since CTM is a standard statistical hypothesis testing for detecting domain shift
and all four domain shift cases are detected by CTM, we can reject the null hypothesis of the
IID assumption and verify the partitions for different domains statistically. Our methods of
constructing the domain shift datasets and detecting change-point are valuable for research
on geospatial object detection in practice.
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Abbreviations
The following abbreviations are used in this manuscript:

CTM Conformal Test Martingale
IID Independent and Identically Distributed
LAB Lightness, Red/Green Value, Blue/Yellow Value
YOLOv3 You Only Look Once Object Detector, Version 3
mAP Mean Average Precision
POD Probability of Detection
POFD Probability of False Detection
Alg.1 Algorithm 1
Alg.2 Algorithm 2
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