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Abstract: Thermal barrier coatings (TBCs) play a crucial role in safeguarding aero-engine blades
from high-temperature environments and enhancing their performance and durability. Accurate
evaluation of TBCs’ porosity is of paramount importance for aerospace material research. However,
existing evaluation methods often involve destructive testing or lack precision. In this study, we pro-
posed a novel nondestructive evaluation method for TBCs’ porosity, utilizing terahertz time-domain
spectroscopy (THz-TDS) and a machine learning approach. The primary objective was to achieve
reliable and precise porosity evaluation without causing damage to the coatings. Multiple feature
parameters were extracted from THz-TDS data to characterize porosity variations. Additionally, cor-
relation analysis and p-value testing were employed to assess the significance and correlations among
the feature parameters. Subsequently, the dung-beetle-optimizer-algorithm-optimized random forest
(DBO-RF) regression model was applied to accurately predict the porosity. Model performance was
evaluated using K-fold cross-validation. Experimental results demonstrated the effectiveness of
our proposed method, with the DBO-RF model achieving high precision and robustness in porosity
prediction. The model evaluation revealed a root-mean-square error of 1.802, mean absolute error
of 1.549, mean absolute percentage error of 8.362, and average regression coefficient of 0.912. This
study introduces a novel technique that presents a dependable nondestructive testing solution for
the evaluation and prediction of TBCs’ porosity, effectively monitoring the service life of TBCs and
determining their effectiveness. With its practical applicability in the aerospace industry, this method
plays a vital role in the assessment and analysis of TBCs’ performance, driving progress in aerospace
material research.

Keywords: thermal barrier coatings; porosity characterization; terahertz time-domain spectroscopy;
nondestructive evaluation; multi-feature fusion; machine-learning-based prediction; aerospace materials

1. Introduction

Thermal barrier coatings (TBCs), due to their excellent high temperature resistance, low
thermal conductivity, corrosion protection, and anti-wear properties, are considered crucial
protective layers. They have been extensively applied in the aerospace industry for hot-
section components such as aero-engine blades [1,2]. Blades are exposed to extreme service
environments, such as the impact of high-temperature combustion gases, oxidizer erosion,
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and thermal stresses. These factors lead to increased blade surface temperature and material
thermal expansion, resulting in issues such as thermal fatigue, oxidation, and mechanical
failure [3]. The application of TBCs has effectively mitigated these detrimental effects on the
blades, enhancing their heat resistance, corrosion resistance, and mechanical strength [4].
They have played a crucial role in reducing surface temperatures, improving component
durability, and extending service life. With the rapid development of the aerospace industry
and increasing demands for engine performance, the quality and performance of TBCs have
become a focal point of attention [5]. TBCs have typically been applied with a thickness
ranging from 100 to 600 µm and consisting of three layers: a topcoat (TC) comprising
an yttria-stabilized zirconia (YSZ) ceramic material, a band coat (BC) made of MCrAlY
(where M represents Ni, Co, or other materials) as the metallic bond layer, and a high-
temperature nickel-based alloy substrate. The topcoat possesses a low thermal conductivity
and high thermal resistance, effectively reducing heat conduction and mitigating the surface
temperature of the blades. The bond coat acts as an intermediary layer, providing adhesion
and overall stability between the TBCs and the blade substrate [6]. However, as thermal
barrier coatings are exposed to harsh operating conditions for prolonged periods, they
might experience various forms of failure due to factors such as thermal fatigue, thermal
stress mismatch, coating oxidation and corrosion, and particle impact [7–9]. As the TBCs
are subjected to service conditions, the formation of thermal growth oxides (TGOs) occurs
between the top ceramic layer and the bond coat [10]. Nevertheless, the presence of pore
structures in TBCs is closely associated with various factors. The formation of these pores
could be attributed to processes such as high-temperature spraying and sintering, which
could result in particle accumulation and melting. Under thermal cycling conditions,
TBCs experience complex effects such as temperature gradients, thermal stresses, and
mechanical loads, leading to the formation of microcracks and delamination within the
coating and subsequently generating pores. The porosity of TBCs significantly influences
their performance. TBCs have typical porosity values which range from 3 to 20 vol%.
Increasing the porosity of the coating is advantageous as it reduces its thermal conductivity,
thereby enhancing its thermal insulation capabilities. The existence of air within the pores
leads to a reduced effective thermal conductivity, acting as a thermal barrier and impeding
the heat transfer through the coating. Nevertheless, excessive porosity could negatively
impact the mechanical integrity and durability of the coating, rendering it susceptible to
cracking and delamination [11,12]. Therefore, the accurate evaluation of porosity in TBCs
is of crucial importance to ensure coating quality, performance, and reliability.

Accurate determination of the porosity assessment in TBCs has emerged as a key issue
in research [13–17]. Various methods have been proposed to assess the porosity of these
coatings, leading to significant research progress. Surface or cross-sectional observations
and analyses of the coatings can be performed using a scanning electron microscope
(SEM) [18] or transmission electron microscope (TEM) [19]. Quantitative measurements of
pore size, shape, and distribution can be obtained through image processing and analysis
techniques, enabling the calculation of porosity. However, these microscopic observation
methods are considered destructive, requiring sample embedding and polishing procedures.
Therefore, nondestructive testing (NDT) methods present a superior choice. NDT is a vital
technology that could be applied to the evaluation of various materials and components.
Utilizing various testing techniques detects surface and internal defects, damages, or
structural changes without causing sample destruction. Due to its ability to provide
timely and accurate information, NDT has found extensive applications in industries such
as aerospace, automotive, marine, nuclear, and construction, facilitating quality control
and fault diagnosis, as well as ensuring preventive maintenance, structural safety, and
reliability [20,21]. Furthermore, NDT methods hold significant potential for the evaluation
of porosity in TBCs. For instance, NDT of the coatings can be achieved using ultrasonic
waves [22], infrared thermography [23], and X-rays [24]. These methods offer advantages
such as rapid assessment, non-contact measurement, and comprehensive evaluation of the
coatings. However, they still encounter complex challenges in signal processing and data
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analysis during practical application. Ultrasonic testing has limited resolution and cannot
accurately detect micro-sized pores. Infrared thermography requires thermal cycling of
the samples, which can affect the detection results. As the sample undergoes heating and
subsequent cooling cycles, it experiences expansion and contraction, which can affect its
thermal conductivity, heat capacity, and thermal diffusivity. X-ray technology involves
radiation and poses certain safety risks to operators. Despite these challenges, the methods
utilized for NDT of thermal barrier coatings are still quite accurate. In recent years, many
scholars have employed machine learning techniques to further enhance the accuracy of
NDT for thermal barrier coatings. Utilizing machine learning in NDT has further improved
accuracy, enabling more efficient and precise evaluation of critical components such as
TBCs in aerospace applications [25–27]. Therefore, combining a superior NDT method with
machine learning techniques enables higher accuracy in detecting the TBCs’ porosity.

The terahertz time-domain spectroscopy (THz-TDS) technique offers unique advan-
tages in the evaluation of TBCs’ porosity [28,29]. When the terahertz pulse interacts with
the sample, it undergoes changes in amplitude and phase due to the sample’s material
properties, such as its refractive index and absorption characteristics. The altered tera-
hertz pulse is then combined with the reference pulse at the detector, and the resulting
electric field is measured as a function of time. Operating within the frequency range of
0.1 THz to 10 THz, corresponding to wavelengths ranging from 30 µm to 3 mm, terahertz
waves occupy an intermediate position between infrared light and microwaves. This
nondestructive technique provides high resolution, sensitivity, and real-time capabilities
and the ability to conduct comprehensive analyses of multiple parameters. Moreover, it
can penetrate non-metallic ceramic layers without causing material damage or altering
their properties, making it suitable for continuous and repeatable testing of TBCs. For
instance, Davit et al. [30] proposed a nondestructive evaluation method using THz-TDS
to assess the dielectric constant of Al2O3 ceramic samples, allowing for the evaluation of
critical parameters such as porosity, grain size, and impurity content. This demonstrates the
potential application of terahertz radiation in the field of ceramics with high dielectric con-
stants. Some researchers have already started exploring the application of machine learning
as an advanced signal-processing method in the field of nondestructive testing [31,32].
Ye et al. [33,34] utilized THz-TDS to detect TBCs’ porosity, employing effective medium
theory and a time-domain broadening ratio for porosity evaluation. Additionally, methods
based on machine learning and image processing have been applied to assess the quality of
thermal barrier coatings. Li et al. [35,36] conducted analysis and processing of terahertz
time-domain data using data-driven models and machine learning algorithms, facilitating
feature extraction and classification for the evaluation of TBCs. This represented a major
leap forward in combining machine learning with signal processing. The potential of
THz-TDS combined with machine learning algorithms was emphasized to improve the
accuracy of detecting TBCs, thus promoting the development of the field of NDT.

In summary, the current methodologies employed for assessing TBCs’ porosity us-
ing THz-TDS present opportunities for improvement. The porosity of such coatings is
influenced by multiple factors, demanding the comprehensive consideration of various
key feature parameters. To achieve a thorough evaluation and prediction of porosity, this
research conducted a detailed analysis of terahertz time-domain data, extracting vital
information regarding the porosity structure. Section 2 elaborates on the extraction pro-
cedures for multiple feature parameters from terahertz time-domain data, encompassing
correlation and significance analyses. Additionally, dung-beetle-optimization-algorithm-
optimized random forest (DBO-RF) prediction models and cross-validation techniques
are presented. In Section 3, an exploration of the visual representation of the correlation
between multiple feature parameters and porosity is undertaken, integrating these fused
feature parameters as inputs for the machine learning model to predict porosity. The
model’s superior performance is evidenced through evaluation indicators. The prediction
accuracy is over 90%.
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The primary focus of this study is to develop an effective approach for the nonde-
structive assessment and prediction of TBCs’ porosity. By combining multiple feature
parameters obtained from terahertz data and employing advanced machine learning al-
gorithms, this research aims to establish a practical method for the quality control and
evaluation of TBCs, particularly in the application of coating materials on aero-engine
blades. The proposed approach holds significant potential for enhancing the understanding
of TBCs’ porosity and ensuring the performance and reliability of these coatings in criti-
cal engineering applications. Through this interdisciplinary investigation encompassing
materials science and information sciences, we aim to contribute to the advancement of
nondestructive evaluation methods for TBCs, enhancing their performance and reliability
in critical aerospace applications.

2. Materials and Methods
2.1. Preparation of Thermal Barrier Coatings

To obtain thermal barrier coating samples with varying porosity, atmospheric plasma
spraying (APS) equipment was used to deposit TBCs onto carbon steel disc substrates [37,38].
The diameter of the substrate was 25.4 mm, and the thickness was 3 mm. Yttria-stabilized
zirconia (8% Y2O3-ZrO2, 8YSZ) was selected as the material for TBCs, known for its
excellent thermal stability and suitability for high-temperature applications. Additionally,
8YSZ exhibited a reduced susceptibility to phase transformation, particularly the tetragonal-
to-monoclinic phase transformation, which could lead to microcracking and degradation
of the coating under thermal cycling conditions. The incorporation of yttria (Y2O3) as
a stabilizing agent effectively inhibited this phase transformation, thereby enhancing
the overall mechanical durability and longevity of the TBCs. By utilizing 8YSZ as the
ceramic powder, we aimed to ensure the long-term reliability and performance of the TBCs,
especially in high-temperature aerospace applications. Moreover, the excellent thermal and
mechanical properties of 8YSZ were conducive to achieving the desired porosity levels
and microstructural characteristics essential for our research on nondestructive evaluation
and prediction of TBCs’ porosity. The ceramic powder had two different particle sizes, as
shown in Figure 1, namely 25–55 µm and 45–106 µm. These specific particle sizes were
selected based on their relevance to the porosity evaluation, as they could influence the
formation of pores during the spraying process. TBC porosity samples were controlled
by varying the spraying parameters. Specifically, the spraying distance and power were
adjusted. The spraying distance refers to the distance between the nozzle of the plasma
spraying system and the substrate, and different spraying distances of 50 mm, 70 mm,
90 mm, 110 mm, and 130 mm were chosen. The spraying power levels were at the rates
of 33 kW, 38 kW, and 40 kW. These parameter variations effectively regulated the TBCs’
porosity. The justification for these choices lay in the need to investigate the impact of
different spraying parameters on the resulting porosity levels of the TBCs. By systematically
varying the spraying distance and power, we could better understand the relationship
between the porosity and the process parameters, providing valuable insights for quality
control and evaluation.

For quantitative characterization of TBC samples with varying porosities, scanning
electron microscopy (SEM) was utilized to capture cross-sectional images of the samples.
The SEM images facilitated the examination of the microstructure and pore distribution
of TBCs. Figure 2 shows an SEM image of the TBC cross-section sprayed by ceramic
powder with different particle sizes at the same spraying distance. It is clear that with the
increase in powder particle size, the number of pores in the thermal barrier coating increases
significantly, and the pore size also increases. This proves that it was valid to obtain samples
containing different porosities by adjusting spraying parameters. To accurately assess the
porosity, ImageJ module was employed for image analysis and processing, providing
a set of image processing tools that enable the measurement of pore area fraction and
calculation of the corresponding porosity. By employing the experimental preparation
and quantitative characterization methods described above, TBC samples with different
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porosities were obtained and then utilized for subsequent THz-TDS detection, allowing
for precise evaluation and predictive analysis of the porosity of TBCs. In this study, a
total of 20 kinds of samples containing different porosities, ranging from 6.94 to 22.09%,
were prepared.
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2.2. Terahertz Time-Domain Spectroscopy

Terahertz time-domain spectroscopy (THz-TDS) is a novel NDT technique [39,40]
known for its strong penetration capability, transparency to various materials, and non-
ionizing nature when applied to non-metallic materials. In this study, a reflection-based
THz-TDS technique was utilized to examine the thermal barrier coating samples, aiming
to obtain THz time-domain data. The propagation of reflected terahertz waves within the
thermal barrier coating is shown in Figure 3.
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The fundamental principles of THz-TDS involve observing the propagation of short-
pulsed electromagnetic waves within the tested object, as shown in Figure 4. To generate
broad-spectrum terahertz pulses, femtosecond lasers and optical pulse sources are com-
monly used as light sources, employing nonlinear optical mechanisms. These pulses
propagate through the sample under the guidance of terahertz optical components, interact-
ing with the object being tested. The test sample exhibited distinct absorption, transmission,
and reflection characteristics toward terahertz waves, which were closely linked to their
physical, chemical, and structural properties. Consequently, analyzing the interaction be-
tween terahertz waves and the test sample allowed for the retrieval of valuable information
about the sample. Subsequently, the terahertz pulses passed through the sample and their
changes in amplitude and phase were measured using a detector.
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The propagation and interaction of terahertz waves within the TBCs were influenced
by factors such as the coating’s porosity, distribution of material composition, and mi-
crostructure. Hence, THz-TDS offered a highly sensitive approach to detecting the TBCs’
porosity and its reflective properties at different frequencies [41]. In this study, THz-TDS
was employed to investigate the TBCs’ porosity on aero-engine blades, with a focus on
obtaining time-domain data. Specifically, the obtained terahertz time-domain data were
subjected to fast Fourier transform (FFT) to obtain frequency-domain spectra, phase spec-
tra, and reflectance spectra. Subsequently, data analysis and extraction of characteristic
parameters were conducted on these spectra.

2.3. Terahertz Time-Domain Data Processing and Spectral Analysis

THz-TDS allowed for the characterization of the material’s electromagnetic wave
propagation in the terahertz frequency range. However, to further investigate the influence
of porosity on terahertz wave propagation, additional analysis of the time-domain data
was required. In this study, as shown in Figure 5a–d, FFT was employed to convert
the terahertz time-domain spectrum into frequency-domain spectrum, phase spectrum,
and reflectance spectrum [42,43]. Different porosity levels correspond to varying energy
losses and absorption characteristics in the frequency spectrum, resulting in distinct energy
distribution patterns at different frequencies. Changes in porosity modify the propagation
velocity and phase delay of terahertz waves within the TBCs, manifested as variations
in the slope of the phase spectra. Pores present in the coating increase scattering and
multiple reflections at interfaces, resulting in modifications to the intensity and shape of
the reflectance spectra. Frequency-domain spectra, phase spectra, and reflectance spectra
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all provide insights into the variation of porosity in the thermal barrier coating samples.
Analyzing the characteristics of these spectra allows for obtaining quantitative or qualitative
information about the porosity of the thermal barrier coating, which assists in further
evaluating the quality and performance of the coating.
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Figure 5. Results of terahertz time-domain data analysis: (a) time-domain spectrum; (b) frequency-
domain spectrum; (c) phase spectrum; (d) reflectance spectrum.

The detailed steps are as follows.
The frequency-domain signal T(w) is obtained by fast Fourier transform of terahertz

time-domain signal E(t).
T(w) = FFT(E(t)) (1)

The amplitude spectrum and phase spectrum of the frequency-domain signal are
calculated as follows:

A(w) = |T(w)| (2)

φ(w) = tan−1
(

J{T(w)}
R{T(w)}

)
(3)

where A(w) represents the amplitude spectrum of the signal in the frequency domain, J
and R represent the real and imaginary parts, respectively, and φ(w) represents the phase
spectrum of the signal in the frequency domain.
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The reflectance spectrum R(w) is calculated, and rs(θ) is the reflection coefficient:

rs(θ) =
n1cos(θ)− n2

√
1− ( n1

n2
sin( θ))

2

n1cos(θ) + n2

√
1− ( n1

n2
sin( θ))

2
(4)

where n1 and n2 are the refractive indices of air and sample, respectively.

Ei(w) =
1
2

E0(1 + cos(θ))e−ik(d+z0cos(θ)) (5)

Er(w) = −1
2

E0(1− cos(θ)rs(θ))e−ik(d−z0cos(θ)) (6)

Here, E0 is the incident field intensity, θ is the incident angle, d is the sample thickness,
and z0 is the free impedance.

Γ(w) =
Er(w)

Ei(w)
(7)

R(w) = |Γ(w)|2 (8)

Here, Ei and Er are the electric fields of terahertz entering and leaving the sample sur-
face, respectively, and Γ(w) is the reflectance coefficient in the complex frequency domain.

2.4. Feature Extraction and Multi-Feature Fusion Analysis
2.4.1. Extraction of Time-Domain Spectrum Features

THz-TDS, as an essential data source for characterizing the TBCs’ porosity, encom-
passes complex information. Processing and feature extraction were required in this study,
and the fast independent component analysis (Fast ICA) algorithm was employed to pro-
cess the terahertz time-domain data. The objective was to extract kurtosis as a parameter to
represent the variations in TBCs’ porosity [44]. Fast ICA was a statistical signal-processing
method used to extract independent components from mixed signals. THz-TDS was con-
sidered as mixed signals, with different components corresponding to distinct physical
processes and features. By applying the Fast ICA algorithm, these components can be
separated, and the kurtosis of each independent component vector can be computed.

Kurtosis, a statistical measure that quantifies the skewness of a probability distribution,
was a significant statistical feature used to describe the shape of signal data distribution.
A higher kurtosis value indicates a greater degree of skewness in the distribution. In this
study, kurtosis was utilized as a feature parameter to represent porosity. TBCs’ porosity
influenced the propagation of terahertz waves within the material. As porosity increased,
there was an enhanced occurrence of emission and scattering of the waves, resulting in
changes in peak positions and kurtosis in the THz-TDS. Specifically, by calculating the
kurtosis of each independent component vector, the degree and trend of porosity variations
in TBC samples can be indirectly reflected. This approach enabled the quantitative analysis
and comparison of variations among TBC samples with different levels of porosity.

The specific processing process is as follows.
It is assumed that the original terahertz signal data are x, M represents the number of

signal sampling points, and N represents the number of signals.

x =

 x1,1 · · · xM,1
...

. . .
...

x1,N · · · xM,N

 (9)
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Then, processing of time-domain data is centralized:

xc(t) = x(t)− 1
N

N

∑
i=1

xi (10)

where xc(t) is the time-domain data after centralization, t is the time, and xi is the column
i data.

The centralized time-domain data are processed by Fast ICA, and the independent
component vector s(t) is obtained:

s(t) = Axc(t) (11)

where A is the mixing matrix, representing the linear mixing process of the signal.
The kurtosis k of each independent component vector is calculated:

k =
1
T

∫ ∞

−∞

(
xc(t)

σ

)4
dt− 3 (12)

where T is the total time length of the signal, and σ is the standard deviation of the signal.
Kurtosis is used as the characteristic parameter of porosity. The feature parameter

vector is obtained:
T_parameter = [k1, k2, k3 . . . , kn] (13)

where n is the number of independent components, and kn is the kurtosis of the n-th
independent component vector. T_parameter is the feature parameter vector of time-
domain data.

2.4.2. Extraction of Frequency-Domain Spectrum Features

The porosity of TBCs influenced the terahertz frequency-domain signals, requiring
the extraction of spectral features for porosity characterization. Specifically, the center
frequency, bandwidth, and average power spectral density (APSD) were extracted from the
spectra for this purpose [45]. The center frequency corresponded to the peak frequency in
the spectrum data, indicating the primary energy distribution of the terahertz signal in the
frequency domain. The bandwidth represented the frequency range where the spectrum
decreased to a certain extent on both sides of the peak. By computing the bandwidth,
the impact of porosity on the extent of spectral broadening in the terahertz signal within
the TBC sample can be quantified. The average power spectral density (PSD) is obtained
by averaging the squared amplitude of the signal at each frequency point, reflecting the
changes in terahertz signal intensity. By extracting the center frequency, bandwidth, and
APSD as feature parameters, the effects of porosity variations in the thermal barrier coating
sample on the frequency characteristics of terahertz signals can be explored. The trends
exhibited by these parameters will offer essential insights for subsequent prediction and
analysis of porosity in TBCs.

The specific processing process is as follows.
Smoothing of frequency spectrum data is performed:

smoothed_datai,j =
1
N

j+w

∑
k=j−w

f _datai,k (14)

where i is the i-th signal, j is the j-th frequency point, w is the size of the smoothing window,
N is the number of data points in the window, f _data is the frequency spectrum data, and
smoothed_data is the smoothed frequency spectrum data.

A Gaussian curve fit is performed for the i-th signal. Gaussian distribution is a
continuous distribution function that accurately describes the main characteristics of the



Appl. Sci. 2023, 13, 8988 10 of 26

spectral data. Gaussian fitting is performed on the smoothed spectral data to calculate their
center frequency and bandwidth:

yi = Aiexp
− (x−µi)

2

2σi
2 + bi (15)

where x is the frequency, Ai is the peak intensity, µi is the peak frequency, σi is the frequency
bandwidth, and bi is the constant term of the fitted curve.

Amplitude spectrum A( f ) is obtained by taking the absolute value of the original
frequency spectrum data f _data and squaring it.

A( f ) = | f _data|2 (16)

The average power spectrum is obtained by averaging the amplitude spectrum along
the frequency axis:

APSDi =
1
N

N

∑
j=1

Aij (17)

F_parameters =

 f req_center1
f req_bandwidth1

APSD1

f req_center2
f req_bandwidth2

APSD2

· · ·
· · ·
· · ·

f req_centeri
f req_bandwidthi

APSDi

 (18)

where APSDi is average power spectral density. The fitted µi is the center frequency
f req_center, and σi is the frequency bandwidth f req_bandwidth. F_parameters is the feature
parameter vector of frequency-domain data.

2.4.3. Extraction of Phase Spectrum Features

The frequency spectrum of a signal is comprised of the phase spectrum and amplitude
spectrum, which offer valuable insights into the signal’s frequency components, phase
information, and facilitating signal reconstruction. However, during the analysis of the
phase spectrum, the occurrence of phase jumps was a common issue. This phenomenon
arose from the periodic nature of the phase spectrum and the utilization of the Fourier
transform, which operated on periodic signals. Consequently, the phase spectrum may
demonstrate discontinuous jumps, referred to as phase wrapping or phase discontinuity,
which can present challenges in signal processing and analysis. To address this issue, a
frequently employed approach was phase unwrapping [46], also referred to as phase jump
removal, which aimed to transform the discontinuous points in the phase spectrum into
corresponding continuous points, thereby achieving a smoother phase spectrum curve that
was more amenable to analysis and processing.

The specific processing process is as follows.
Phase unwrapping was conducted on each dataset to extract the extremal points of

first-order and second-order derivatives. The first-order derivative was calculated as the
rate of change between adjacent sampling points, whereas the second-order derivative
was calculated as the acceleration of change between three adjacent sampling points.
The purpose was to capture the characteristics of phase transformations, specifically the
prominence and depression features in the phase spectrum, and to quantify the peak and
valley points in the phase spectrum. These measurements were utilized to assess the spatial
distribution characteristics of pore spaces, specifically examining their uniformity.

P_parametersi,j = ∑
pks>thre

pks + ∑
valleys<−thre

valleys (19)

Here, the characteristic parameter matrix P_parametersi,j contains the j-th derivative
extremum points of the i-th sample, pks and valleys are the points of the first-order and
second-order derivative extremum points, and thre is the set threshold.
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2.4.4. Extraction of Reflectance Spectrum Features

The reflectance spectrum was a set of data utilized to investigate the changes in
reflectance at different frequencies, providing insights into the optical, electrical, and
physical properties of materials. In this study, the reflectance spectrum served as an
informative source concerning the reflection characteristics exhibited by TBCs within the
terahertz frequency domain. Extracting feature parameters through statistical analysis
and examination of the reflectance spectrum aimed to uncover the underlying patterns of
reflectance variation across frequencies. Moreover, it enabled the evaluation of changes in
TBCs’ porosity, thereby facilitating inferences related to the heterogeneity and distribution
of porosity [47]. These derived feature parameters not only offer a feasibility basis for
evaluating TBCs but also lay the groundwork for exploring the relationship between
variations in porosity and other performance metrics associated with TBCs.

The extraction of the mean reflectance aimed to capture the average reflection per-
formance of the TBC sample across the entire frequency range. The reflectance standard
deviation quantified the dispersion of reflectance values, indicating the fluctuation of
reflectance in the frequency domain. The maximum and minimum reflectance values
represented the extreme reflection conditions observed in TBCs across different frequen-
cies. The reflectance peak highlighted the intense reflection characteristics of the TBC
sample at specific frequencies, thereby reflecting the frequency response of porosity to
terahertz signals.

The specific calculation formula is as follows:

R =

∫ wH
wL

R(w)dw∫ wH
wL

dw
(20)

σR =

√√√√ 1
N − 1

N

∑
i=1

(
Ri − R

)2 (21)

Rmax= max
w∈[wH,wL]

R(w) (22)

Rmin= min
w∈[wH,wL]

R(w) (23)

Rp= max
w∈[wH,wL]

{
R(w− ∆w) + R(w) + R(w + ∆w)

3

}
(24)

R_parameters =
[
R, σR, Rmax, Rmin, Rp

]
(25)

where wL and wH are the lowest and highest frequencies in the reflectivity spectrum, N is
the number of data points in the reflectivity spectrum, and ∆w is a small frequency- domain
interval for smoothing processing. R, σR, Rmax, Rmin, and Rp are the mean reflectance,
the standard deviation of reflectance, maximum reflectance, minimum reflectance, and
peak reflectance, respectively. R_parameters is the feature parameter vector of reflectance
spectrum data.

2.4.5. Analysis of Multi-Feature Fusion

In this section, a correlation analysis was conducted on the 11 feature parameters
extracted from the time-domain spectrum, frequency-domain spectrum, phase spectrum,
and reflectance spectrum [48]. The purpose of correlation analysis was to evaluate both the
strength and direction of the correlation among multiple feature parameters. This analysis
utilized a statistical method to quantify the linear relationship between variables. A cor-
relation heatmap was utilized to visualize the correlation levels between multiple feature
parameters. This approach facilitated a precise assessment of the strength and direction of
relationships between different variables, resulting in a comprehensive understanding of
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the interrelationships within the dataset. The application of a heatmap not only identified
linear correlations between variables but also revealed complex patterns of relationships
among multiple variables. The colors in the correlation heatmap indicated the strength of
the correlations, providing insights into the associations between different feature param-
eters. Positive correlation indicated similar changing trends between variables, negative
correlation indicated opposite changing trends, and no correlation indicated the absence of
a linear relationship between two variables.

The correlation heatmap was solely capable of illustrating the correlation between
variables and does not establish a causal relationship between them. Therefore, it was
necessary to consider other factors when making decisions or inferences. The p-value is a
crucial statistical indicator that measures the consistency between the observed data and
the null hypothesis. Additionally, p-value testing could be utilized to examine the signifi-
cant differences among the feature parameters, thereby indicating that the relationships
between these parameters are not coincidental and possess statistical significance. Hence,
by conducting correlation analysis and p-value testing, the revealed correlations among
multiple feature parameters hold essential significance in characterizing the heterogeneity
of porosity. Exploring the feature parameters within the dataset bears significant appli-
cation value for a comprehensive investigation of the porosity structural characteristics
of TBCs.

2.5. Machine Learning Prediction and Performance Evaluation
2.5.1. Dung Beetle Optimization Algorithm

Dung beetle optimizer (DBO) was an innovative swarm intelligence optimization
algorithm proposed in late 2022, primarily inspired by the dung beetle’s behaviors of ball
rolling, dancing, foraging, stealing, and breeding [49]. In nature, dung beetles have been
observed compacting feces into a spherical ball and utilizing celestial cues for navigation to
ensure the dung ball is rolled in a straight line. However, in the absence of any light source,
the trajectory of dung beetles deviates from a straight line.

To mimic the rolling ball behavior and employ solar navigation, the DBO algorithm
enables dung beetles to move in a predetermined direction across the entire search space.
Additionally, during the rolling process, the dung beetle’s position is updated using the
following formula:

xi(t + 1) = xi(t) + α× k× xi(t− 1) + b× ∆x (26)

∆x = |xi(t)− Xw| (27)

where t is the number of the current iteration, xi(t) is the position information of the i-th
dung beetle at the t iteration, kε(0, 0.2] is a constant representing the deflection coefficient,
bε(0, 1), α is the natural coefficient of 1 or −1, X is the global worst position, and ∆x is the
change in simulated light intensity.

When confronted with an obstacle, the beetle reorients itself. Therefore, the location
is updated:

xi(t + 1) = xi(t) + tan θ|xi(t)− xi(t− 1)| (28)

where |xi(t)− xi(t− 1)| is the difference between the t and t − 1 iterations of the i-th beetle.
Dung beetles will roll the dung ball to a safe location. As shown in Figure 6, a boundary

selection strategy is proposed to simulate the area where female dung beetles lay their eggs:

R = 1− t/Tmax (29)

Lb∗ = max(X∗ × (1− R), Lb) (30)

Ub∗ = min(X∗ × (1 + R), Ub) (31)
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where R is the scale coefficient, and Tmax is the maximum number of iterations. X is the
current local optimal location, and Lb∗ and Ub∗ are the lower and upper bounds of the
spawning area, respectively. Lb and Ub are the lower and upper bounds of the optimization
problem, respectively.
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During the iteration process, the position of the oocytes changes dynamically:

Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)−Ub∗) (32)

where Bi is the position of the oosphere, and b1 and b2 are random vectors of 1 × D
dimension.

The optimal feeding area is established, and the young dung beetles are guided to
forage. The optimal feeding area is defined as follows:

Lbb = max
(

Xb × (1− R), Lb
)

(33)

Ubb = min
(

Xb × (1 + R), Ub
)

(34)

xi(t + 1) = xi + C1 ×
(

xi(t)− Lbb
)
+ C2 ×

(
xi(t)−Ubb

)
(35)

where Xb is the global optimal position, Lbb and Ubb are the lower and upper bounds of
the optimal feeding area, respectively, and the position of little dung beetles is updated.
xi is the beetle’s position, C1 is a random number with a normal distribution, and C2 is a
random vector.

Assuming Xb is the best place to compete for food, the thieving beetles are updated.

xi(t + 1) = Xb + S× g×
(
|xi(t)− X∗|+

∣∣∣xi(t)− Xb
∣∣∣) (36)

All agents are randomly initialized, and the settings are distributed as shown in
Figure 7. According to the different types of agents, the positions of the rolling dung beetle,
the egg ball, the small dung beetle, and the thief are updated by choosing the appropriate
way. Finally, the optimal position Xb and its fitness value are output.
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2.5.2. Random Forest Algorithm

Random forest (RF) regression is an ensemble learning algorithm that constructs
multiple decision trees and integrates their predictions to perform regression tasks [50]. In
the random forest approach, each decision tree is constructed independently and trained
on randomly selected sub-samples, which effectively reduces the risk of overfitting. The
predictions of multiple decision trees in the random forest are then averaged or weighted
averaged to obtain the final regression result.

The fundamental principles of RF regression are outlined below (as shown in Figure 8).
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Random sample selection: A subset of samples from the original training set is ran-
domly selected to create a sub-sample. This ensures that each decision tree is trained on a
different subset of samples, thereby increasing the model’s diversity.

Random feature selection: For each node in every decision tree, when determining the
best feature for splitting, only a randomly selected subset of features is considered. This
prevents certain features from exerting excessive influence on the overall model, thereby
enhancing its robustness.

Decision tree construction: A decision tree algorithm (such as the CART algorithm)
is utilized to construct a decision tree on each sub-sample. During the growth process of
the decision tree, the best splitting feature is typically chosen recursively to partition the
dataset into subsets with minimal impurity.

Ensemble prediction: by averaging or weighted averaging the predictions of multiple
decision trees, the final regression result is obtained for new input samples.

2.5.3. Random Forest Model Optimized by Dung Beetle Optimization Algorithm

Dung beetle optimizer (DBO) algorithm is utilized to perform iterative searches for
finding the optimal solution. This algorithm simulates the interactions among dung beetles
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in the solution space, with the objective of striking a balance between global exploration and
local exploitation. The optimization process of the DBO algorithm focuses on optimizing
the parameters of the RF algorithm model. More precisely, the DBO algorithm improves
the performance and generalization capability of the random forest model by adaptively
modifying feature subset selection and the count of decision trees. By utilizing iterative
searching and interplays among dung beetle individuals, this algorithm can identify the
optimal combination of feature subsets and the number of decision trees, thereby enhancing
the accuracy and robustness of the model.

The specific optimization steps are as follows.

1. Initialization: The number of dung beetle individuals, maximum iteration count, and
relevant parameters (such as perception radius and step size) are set. The positions
and directions of each dung beetle individual are randomly initialized. Additionally,
the probability of information exchange needs to be determined, which dictates the
likelihood of information exchange among dung beetle individuals;

2. Fitness calculation: Using the positions of each dung beetle individual as parameter
configurations, the random forest model is trained to predict the porosity of thermal
barrier coatings. The fitness value of each individual is calculated by assessing the
difference between the predicted results and the actual porosity data. The fitness value
is a function of the prediction error, typically measured as the root-mean-square error
(RMSE);

3. Iterative update: In each iteration, each dung beetle individual can perceive the
positions and directions of neighboring dung beetle individuals. The dung beetle
individual’s position is adjusted based on the specified movement step size and
direction. The hyperparameters of the random forest, such as the number of decision
trees and the size of feature subsets, are adapted based on the final positions and
directions of the dung beetle individuals;

4. Updating the optimal solution: The fitness value of the new position is compared
with the fitness value of the current optimal solution. If the fitness value of the
new position is better than the current optimal solution, the current optimal solution
is updated to the new position, and the corresponding parameter configuration is
recorded. During the optimization process, the dung beetle optimization algorithm
progressively updates and iterates the optimal solution to search for an improved
RF model;

5. Iterative optimization process: Steps 2 to 4 are repeated until the predefined maximum
iteration count is reached or a stopping criterion is met. The stopping criterion can be
reaching the maximum iteration count or achieving a small change in fitness value
after consecutive iterations, indicating convergence to a stable optimal solution;

6. Outputting the optimal solution: Upon completion of the iterative optimization pro-
cess in the DBO algorithm, the obtained optimal solution corresponds to the optimized
parameter configuration of the RF algorithm. The RF model associated with this
optimal solution demonstrates enhanced performance and the ability to accurately
predict the TBCs’ porosity.

In this study, the DBO was employed to adjust and optimize the number of decision
trees and the size of feature subsets in a random forest model. More specifically, the internal
parameters of the random forest model were treated as adjustable variables, and the DBO
algorithm was iteratively applied to determine the optimal combination of these parameters.
Afterwards, the RF model was trained using the optimal parameter combination, leading
to a significant improvement in performance.

To summarize, the DBO algorithm primarily aimed at optimizing the internal param-
eters of the random forest model to enhance its predictive accuracy and stability. This
algorithm facilitated a global search for the optimal solution and improved the quality of
solutions by continuously updating the candidate solutions.
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2.5.4. Cross-Validation

Cross-validation was a statistical technique employed to assess the performance
of machine learning models and select appropriate parameters [51,52]. Among these
techniques, K-fold cross-validation was the most commonly utilized approach. The dataset
was randomly divided into K subsets, with K − 1 subsets used for training the model
and the remaining subset used for evaluating the model’s performance. This process was
repeated K times, during which each iteration employed a different subset as the validation
set. Finally, the results of the K evaluations were averaged to obtain the final performance
indicator.

The specific process is as follows (as shown in Figure 9).
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Figure 9. Cross-validation schematics.

Data partitioning: The procedure of K-fold cross-validation includes segregating the
training dataset into K subsets, wherein K = 5 is chosen in this study. Each subset is used as
a part of the validation set, while the remaining K − 1 subsets constitute the training set.

Model training and verification: For each iteration of cross-validation, the random
forest model optimized using the DBO optimization algorithm is trained. K − 1 subsets
are employed as the training set during each iteration, and one of the remaining subsets is
used as the validation set to assess the model’s performance.

Performance evaluation: For each cross-validation iteration, the performance metrics
of the model on the validation set, i.e., accuracy and precision, are recorded. Finally, the
results of the K evaluations are averaged to obtain the final performance metrics as the
evaluation results of the model.

Parameters tuning: Cross-validation can be utilized to select appropriate parameters.
By trying different parameter combinations and evaluating the model’s performance using
cross-validation results, the best-performing parameter combination can be chosen.

Using cross-validation performance metrics provided a more objective reflection of
the model’s generalization ability. It effectively avoided overfitting or underfitting issues
on local data and improved the model’s generalization ability and stability. In this study,
a 5-fold cross-validation method was employed, and the results from each iteration were
recorded and statistically analyzed to further validate the reliability and accuracy of the
constructed prediction model.

3. Results and Discussion
3.1. Nondestructive Evaluation of Porosity

In this study, the terahertz time-domain spectra were processed using the fast inde-
pendent component analysis (Fast ICA) algorithm, yielding a set of kurtosis values for
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20 samples. Kurtosis, a statistical metric quantifying the sharpness and peakedness of
signal waveforms, was employed to describe the signal characteristics. The extracted
kurtosis values were then analyzed in association with the corresponding porosity and
visually presented. As shown in Figure 10a, after ICA treatment of individual components,
it was observed that the waveform, amplitude, and frequency of each component were
significantly different. It was evident that these components exhibited complex and redun-
dant characteristics, making it challenging to discern clear patterns that could effectively
represent porosity. To address this issue, we proceeded to calculate the kurtosis of each
component, which served as a representative feature parameter for porosity assessment.
As shown in Figure 10b, a decreasing trend in kurtosis values was observed with increasing
porosity. This indicated that as the TBCs’ porosity increased, the waveform of its terahertz
time-domain spectra became smoother. This phenomenon can be attributed to the struc-
tural changes occurring within the thermal barrier coatings due to the increasing porosity,
which consequently led to variations in the internal permittivity and refractive indicators
of the samples.
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Figure 10. Results of Fast ICA: (a) ICA separation visualization; (b) kurtosis evaluation of porosity.

More precisely, the augmentation of voids and pore quantity caused the propagation
path of the terahertz signal within the coating to become more intricate and convoluted,
thereby diminishing the sharpness and steepness of the waveform. As the porosity varied,
the complexity and heterogeneity within the TBCs became more prominent, consequently
causing the interaction between the terahertz wave and the medium to exhibit a greater
degree of complexity and diversity. Correspondingly, the kurtosis feature parameter values
of the spectra also underwent changes. Hence, the fluctuations in kurtosis can serve as a
reflection and evaluation of the porosity.

Furthermore, as shown in Figure 11, the spectrum was subjected to a smoothing
process, followed by Gaussian fitting of the main peak to extract additional feature pa-
rameters, including center frequency, bandwidth, and APSD. These feature parameters
provided crucial information about the frequency components and energy distribution of
the signal, which were then correlated with the porosity. As shown in Figure 12a, where
the small figure was a curved representation of the smooth spectrum, it was another form
of Figure 11. The center frequency was the extreme point of the smoothed curve, and the
center frequency decreased with the increase in porosity. As shown in Figure 12b, the
frequency bandwidth was the frequency broadening when the peak dropped to half, and
the frequency bandwidth increased with the increase in porosity. The changes in center
frequency and frequency bandwidth with porosity showed strong regularity, which was
the result of Gaussian fitting. Figure 13a shows a single power spectrum used to calculate
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APSD. Figure 13b shows that the value of APSD decreased as a whole with the increase
in porosity.
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Figure 11. Frequency-domain smoothing: (a) original frequency spectrum; (b) smoothed frequency
spectrum.
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Figure 12. Gaussian fitting extraction: (a) center frequency; (b) frequency bandwidth.
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Figure 13. Average power spectral density extraction: (a) power spectral density; (b) APSD corre-
sponding to different porosity.
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More precisely, the variation in porosity led to changes in the dielectric properties
within the TBCs. As porosity increased, scattering effects were enhanced, resulting in a
decrease in the dielectric constant and a reduction in wave velocity. Consequently, the over-
all frequency decreased, causing the center frequency to shift towards lower frequencies.
Moreover, an increased porosity introduced more scattering and multipath effects, making
the signal transmission more complex. This broadened the signal spectrum, indicating a
wider distribution of energy across a range of frequencies, thus increasing the bandwidth.
Additionally, the enhanced heterogeneity of the TBCs due to increased porosity led to
THz signal scattering and attenuation, thereby reducing the overall energy and result-
ing in a decrease in APSD. By extracting features from the frequency-domain data, the
frequency-response characteristics and energy distribution of the TBCs could be quanti-
tatively analyzed. The parameter variations associated with porosity provided insights
into the internal structure and physical properties, thereby offering crucial information for
performance assessment and optimization of the thermal barrier coatings.

Subsequently, the occurrence of phase jumps was attributed to the periodic and
discontinuous nature of the signal. To mitigate these jumps, a phase unwrapping method
was applied to the phase spectrum, as shown in Figure 14a, resulting in a reconstructed
phase curve that was continuous and smooth. Additionally, feature parameters were
derived from the number of extremal points in the first-order and second-order derivatives.
As shown in Figure 14b, a slight decrease in the number of extremal points was observed
with increasing porosity.
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Figure 14. Feature extraction of phase spectrum: (a) removal of the phase jump; (b) extreme points of
the first and second derivatives.

More precisely, despite the limited significance of the number of extremal points in
the first-order and second-order derivatives in reflecting the variation pattern of the phase
curve with increasing porosity, the feature parameters still provided information regarding
the rate of change in the phase curve. As porosity increased, the phase curve tended to
exhibit a greater number of local extremal points. Although these extremal points might
be affected by the complexity of the phase curve, they still captured the overall trend and
characteristics of the phase curve. Therefore, the investigation of porosity evaluation using
terahertz analysis remained necessary as it served as a strong foundation for terahertz
signal analysis. By combining these feature parameters with others, more comprehensive
and integrated information was obtained to collectively characterize the changes in porosity
within the TBCs. Such a comprehensive analysis contributed to a more accurate assessment
of the performance and characteristics of TBCs.

Reflectance spectrum contained essential information regarding the material’s elec-
tromagnetic response and exhibited a certain level of sensitivity towards porosity. The
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extracted feature parameters, including average reflectance, reflectance standard devia-
tion, maximum reflectance, minimum reflectance, and reflectance peak, were employed to
quantitatively characterize the variations in porosity. Furthermore, these parameters were
visually represented to showcase their correlation with porosity, as shown in Figure 15a–e.
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Figure 15. Feature extraction of reflectance spectrum: (a) average reflectance; (b) reflectance standard
deviation; (c) maximum reflectance; (d) minimum reflectance; (e) reflectance peaks.

More precisely, increasing porosity resulted in greater attenuation of the terahertz
signal within the coating, leading to a decrease in overall reflectance. The reflectance
standard deviation measured the degree of variation between individual reflectance values
and the average reflectance in the reflectance spectrum. As porosity increased, the internal
structure and composition of the coating became more complex and heterogeneous, causing
greater fluctuations and differences in the terahertz signal reflectance, thus increasing the
reflectance standard deviation. The maximum reflectance exhibited a decreasing trend,
while the minimum reflectance showed an increasing trend. With increasing porosity, the
dielectric interface of the coating increased, and the synergistic effect of multiple interfaces
affected the terahertz reflection properties. This increased the reflection and scattering,
causing a decrease in the maximum reflectance. Simultaneously, in the porous regions, the
penetration capability of the terahertz signal was enhanced, resulting in an increase in the
minimum. With increasing porosity, the reflectance peak became smoother and displayed
a lower peak intensity at specific frequencies, indicating a weakened characteristic of
strong reflection.

The correlation heatmap was employed to visually depict the relationships among
multiple terahertz feature parameters by representing the correlation coefficients between
corresponding variables. The color intensity in each cell indicated the magnitude of the
correlation coefficient, with darker colors indicating stronger correlations and lighter colors
indicating weaker correlations. The elongation of the elliptical shape denoted higher
correlation strength, with leftward tilting indicating negative correlation and rightward
tilting indicating positive correlation. Additionally, the significance of the relationships
between feature parameters was assessed using p-value tests: p < 0.05 indicated a probability
of occurrence of the feature parameter samples of less than 5%, signifying a significant
statistical difference; p < 0.01 indicated a highly significant difference; p < 0.001 indicated
an extremely significant difference, as shown in Figure 16.
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Figure 16. Correlation and significance analysis of multi-feature fusion. T1 is kurtosis; F1 is center
frequency; F2 is frequency bandwidth; F3 is APSD; P1 and P2 are the first and second derivatives;
R1, R2, R3, R4, and R5 are average reflectance, reflectance standard deviation, maximum reflectance,
minimum reflectance, and reflectance peaks, respectively.

According to the outcomes of the correlation analysis, noticeable correlations were
found among multiple feature parameters, and these correlations demonstrated significant
statistical differences. The results of the correlation analysis demonstrated the feasibility of
utilizing multiple feature parameters to describe and characterize variations in porosity,
and differences were not attributable to random factors. Furthermore, these correlated
feature parameters provided effective input features for subsequent machine learning
prediction models, resulting in more accurate porosity predictions. Additionally, the
correlation analysis served as a foundation for exploring the complex relationships between
the feature parameters, allowing for further in-depth investigations into the mechanisms of
their interactions.

3.2. Machine Learning Prediction of Porosity

In order to predict the TBCs’ porosity using machine learning, the dung beetle op-
timizer algorithm was employed to optimize the random forest regression model. More
precisely, the previous sections involved conducting correlation analysis among the THz
multi-feature parameters through the construction of a correlation heatmap and conduct-
ing p-value tests. The purpose of the correlation analysis was to determine the rela-
tionships between the feature parameters, identify the influential features for porosity
prediction, and eliminate any potential redundant information among them. This approach
effectively reduced the feature dimensionality, leading to improved model efficiency and
predictive capability.

During the porosity prediction process, the random forest regression model was
optimized using the dung beetle optimizer algorithm. The DBO, which simulated the
foraging behavior of fireflies, was employed to search for the optimal solution through
an adaptive search and iterative update process. By optimizing the model parameters,
the RF model was able to fit the porosity data more accurately. This optimization aimed
to improve the RF model’s ability to predict porosity and enhance its predictive perfor-
mance. Subsequently, the 11 extracted features were merged as input, and the optimized
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RF regression model was utilized to predict porosity. Figure 17 shows the three curves
depicting the test values of porosity and the predicted values of the RF model and DBO-RF
model, respectively. Comparing these curves, it was evident that the predicted values of the
DBO-RF model closely matched the test values, while the RF model exhibited significantly
lower predictive accuracy compared to the DBO optimized model. This observation clearly
demonstrated the remarkable optimization effect of the DBO algorithm, which led to a
substantial improvement in predictive accuracy.
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Figure 17. Prediction of porosity by DBO-RF model.

Following the feature extraction, correlation and significance analysis, and model
optimization, an optimized model was obtained for porosity prediction. To objectively
evaluate and validate the performance of the model, K-fold cross-validation was employed.
Cross-validation was a prevalent approach for assessing model performance that mitigated
dependence on a single training and testing set to split, thereby enhancing the model’s
stability and reliability. In this study, five-fold cross-validation was implemented to evaluate
the model’s consistency and generalization ability.

Figure 18 exhibited the iteration diagram for each fold, allowing for the assessment of
the convergence behavior and performance metrics of the DBO-RF model. The figure high-
lighted that the five folds attained convergence after 159, 274, 154, 262, and 237 iterations,
respectively, underscoring a relatively swift convergence rate. After cross-validation, the
accuracy and robustness of the DBO-RF prediction model need to be evaluated. Through
evaluation indicators, root-mean-square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and regression coefficient (R2) were used to measure
the performance of the model. Additionally, Table 1 provides a comprehensive evaluation
indicator, including performance metrics for each fold and the overall average evaluation
index of DBO-RF-Crossvalind. Obviously, the prediction error of each fold was very small,
and the regression coefficient was about 0.9. The mean error values of RMSE, MAE, and
MAPE were 1.802, 1.549, and 8.362, respectively. The mean regression coefficient was 0.912.
The model has excellent prediction accuracy.

By performing statistical analysis and examination of the iteration counts and predic-
tion results for each fold, a more comprehensive, accurate, and reliable predictive model
was obtained. Within the five-fold cross-validation, this approach demonstrated high
accuracy and robustness, providing strong support for practical applications. Additionally,
the analysis of evaluation indicators indicated the superiority of the DBO-RF model for
porosity prediction in TBCs. These analytical findings will serve as important references
for further model optimization and predictive applications.
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Table 1. DBO-RF-Crossvalind model performance evaluation.

K-Fold RMSE MAE MAPE R2

K1 1.077 0.962 6.108 0.942

K2 3.329 3.219 10.261 0.872

K3 1.211 0.982 7.052 0.928

K4 1.764 1.375 9.725 0.906

K5 1.629 1.205 8.665 0.911

Average 1.802 1.549 8.362 0.912

Based on the analysis of terahertz signals, it was observed that the TBCs’ porosity was
influenced by multiple feature parameters to varying extents. In the model construction
phase, multi-feature fusion parameters were adopted as the input, and the random forest
model was trained and optimized using the DBO algorithm. Compared to the predic-
tive models relying on single feature parameters, the predictive model incorporating the
multi-feature feature parameters allowed for a more comprehensive exploration of the
relationship between porosity and several other parameters, leading to enhanced prediction
accuracy and stability.

Through the application of terahertz spectroscopy, terahertz multi-feature parameters
were obtained and utilized as inputs to construct a DBO-RF prediction model for accurately
predicting the TBCs’ porosity. Experimental validation was conducted, yielding reliable
and precise prediction results. The five-fold cross-validation methodology was employed to
evaluate the model, and performance evaluation metrics such as RMSE, MAE, MAPE, and
R2 were utilized. The results demonstrated that the constructed DBO-RF prediction model
exhibited high accuracy and robustness during the five-fold cross-validation, as indicated
by the attainment of favorable levels of average RMSE, MAE, and MAPE. Furthermore, the
regression coefficients provided evidence of the model’s excellent fitting performance.

Our study incorporates multiple terahertz feature parameters to enable precise evalu-
ation of porosity in TBCs. Furthermore, when combined with machine learning models,
this approach facilitates accurate porosity prediction. Unlike some researchers who rely
solely on single feature parameters to characterize porosity, our approach provides a more
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comprehensive representation. Additionally, machine learning models offer broader appli-
cability compared to the limitations of linear fitting and regression for porosity calculations.
They have consistently demonstrated outstanding performance and robustness, providing
valuable insights for enhancing the performance and quality control of TBCs. Furthermore,
our research contributes to the interdisciplinary field by integrating THz-TDS technology
with machine learning algorithms from materials science and information science. This
comprehensive approach paves the way for future studies in nondestructive testing and
porosity evaluation across various materials, offering a promising avenue for research.

4. Conclusions

In this study, an efficient solution was proposed for the nondestructive evaluation and
prediction of TBCs’ porosity, based on the terahertz multi-feature fusion and machine learn-
ing approach. The extraction of multiple terahertz feature parameters was carried out, and
subsequent correlation and significance analyses facilitated the fusion of these parameters
for the nondestructive evaluation of porosity variations. Moreover, a robust random forest
regression model, optimized using the dung beetle algorithm, was successfully developed
to ensure accurate prediction of TBCs’ porosity.

Based on the analysis of the experimental results, it was observed that the approach
of terahertz multi-feature fusion comprehensively characterized the TBCs’ porosity and
effectively revealed the internal pore structure’s characteristics. Subsequently, the DBO-RF
model was employed, utilizing the fused feature parameters as inputs and porosity as the
output. The experimental findings demonstrated the precise prediction of TBCs’ porosity.
Furthermore, through the implementation of five-fold cross-validation and analysis of
evaluation indicators, the superior performance of the DBO-RF model in porosity prediction
was confirmed. The mean error values of RMSE, MAE, and MAPE were 1.802, 1.549, and
8.362, respectively. The mean regression coefficient was 0.912, indicating the model’s high
accuracy and robustness in accurately predicting porosity in TBCs.

In conclusion, our study proposes an efficient solution for the nondestructive evalua-
tion and prediction of TBCs’ porosity. This solution is based on a quantitative characteriza-
tion method that integrates terahertz multi-feature fusion and machine learning. The results
demonstrate a porosity prediction accuracy exceeding 90%, highlighting its significant
potential for practical applications in evaluating and analyzing the microstructure of TBCs.
This method enables effective monitoring of the thermal barrier coating’s service life and
determination of its validity. Additionally, our research paves the way for expanding the
application of this method to assess other aerospace materials, contributing to the advance-
ment of materials science and related fields. Looking ahead, the continuous development
and refinement of nondestructive techniques for evaluating various materials hold great
promise. Further research in this direction has the potential to drive advancements in
material characterization methodologies and contribute to a more scientific understanding
of material performance and reliability.
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