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Abstract: During the last two decades, hyperspectral imaging (HSI) has been one of the most studied
and applied techniques in the field of nondestructive monitoring systems for the fruit and vegetable
supply chain. This review provides HSI technical aspects (i.e., device features) and data analysis
approaches (i.e., data processing and qualitative/quantitative modeling) for fresh-cut products,
focusing on the different applications which the literature offers and the possible scale-up for process
monitoring. Moreover, new frontiers in the development of possible process analytical technologies of
cost-effective and hand-held HSI devices are presented and discussed. Even though the performance
of these new proximal sensing tools needs to be carefully evaluated, new applicative research
perspectives in the development of a proximal sensing approach based on HSI sensor networks are
ready to be studied and developed for finding field applications (i.e., precision agriculture, food
processing, and more) and enabling faster and more convenient analysis while maintaining the
accuracy and capabilities of traditional HSI systems.

Keywords: proximal sensing; image processing; sensors; machine learning; pre- and postharvest;
agri-food sector

1. Introduction

Fresh-cut products are a food preparation conditioned in such a way as to provide
a whole series of services to the consumer (including cleaning, hulling, washing, cutting
into units or subunits ready to use), while maintaining the characteristics of the freshness
and authenticity of the fresh products [1]. However, they are not stable over time due
to metabolic processes during the pre- and postharvest stages which cause a variable
nutritional value, appearance, and taste [2]. Hence, to ensure consumer satisfaction, food
quality, and safety, both the agricultural and food industries have introduced rapid and
objective inspection systems throughout the entire product chain.

Human inspection is obviously limited in terms of operator speed and subjectivity
and the low amount of product investigated [2], while analytical chemical methods are
destructive, time-consuming, labor intensive, often unrepresentative, and environmentally
unsustainable [3,4].

Over the last two decades, the development of nondestructive sensing technologies for
the automated quality evaluation and safety inspection of agricultural and food products
has made substantial progress [3]. Although spectroscopy is considered a powerful tool
in this context, it provides a punctual measurement method that is not able to analyze a
heterogeneous bulk of samples with sufficient accuracy [3]. For this reason, industries are
pointing toward methods that have the process advantages of spectroscopy techniques
with the addition of spatial information. This approach, also defined as hyperspectral
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imaging (HSI), is nowadays widely applied in the food chain, becoming one of the key
elements of process control within the new concept of Industry 4.0.

The increasing number of scientific studies pointing toward a production process
control in real-time have pushed to summarize HSI technical aspects and the analysis of
the data from such devices to bring the laboratory to the field/production line. The need to
have highly customizable tools available at different points in the production process has
favored the need to review the literature by focusing on a product category that requires a
high degree of quality control, i.e., fresh-cut fruits and vegetables. Therefore, the potential
of using this technology along the entire production chain of fresh-cut products emerges,
but the limits are also highlighted and represented. Moreover, a discussion on the new
frontiers in the development of cost-effective, portable, and hand-held HSI devices, which
could open new applicative research perspectives, is presented.

The literature search was performed using the keywords “hyperspectral imaging”,
“fruit and vegetables”, and “quality” and led to the identification of 4509 papers published
between 2001 and 2023 (Scopus, 2023). Then, the search was narrowed using the keywords
“fresh-cut”, and “postharvest”, and 104 publications between 2010 and 2023 were identified
(Figure 1a—in orange). The same bibliographic search was also performed on the Web of
Science platform, obtaining 115 papers published between 2004 and 2023 (Figure 1a—in
blue). Both the literature and articles used in this review (Figure 1b) show a general increase
in publications over time, particularly in recent years.
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2. HSI: Basic Concepts

HSI started to be used in the 80s in remote sensing for agriculture, forestry, geology,
environment, ocean, atmosphere, climate change, defense, and security and law enforce-
ment [5,6]. Then, during the 90s, HSI became important also in proximal sensing as a
chemical imaging used in food science [7] and postharvest research [8,9] for chemical
composition mapping and categorization.

2.1. HSI: Device Components
2.1.1. Light Source

The light source has to be as homogeneous as possible without damaging the sample.
The choice of the type of light source (e.g., halogen lamps, light-emitting diodes (LEDs),
lasers) depends on the optical range which the latter is able to cover. Halogen lamps operate
in ultraviolet (UV), visible (Vis), and infrared (IR) spectral regions, covering a wide spectral
range (340–2500 nm) [10]. A filament produces an incandescent emission, which generates
a broadband illumination with a smooth continuous spectrum. However, this kind of light
source has a few disadvantages, such as a short duration and high heating that can damage
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the sample or cause a shift in the spectral peaks, and they can also have an unstable output
due to voltage changes and sensitivity to vibrations [4].

LED is a cheap alternative radiation source. This semiconductor light source can pro-
duce both narrowband light (at various wavelengths in the ultraviolet, visible, and infrared
spectral regions) and high-intensity broadband light. Compared to halogen lamps, LEDs
are low-cost components which are compact and durable with low energy consumption,
low heat generation, and fast response [4].

While halogen lamps and LEDs are applied in reflectance and transmittance HSI
devices, lasers are a directional, narrowband, monochromatic light source widely used in
fluorescence and Raman applications, as well as LEDs [2].

2.1.2. Wavelength Dispersion Systems

Wavelength dispersion systems split the incident broadband light or the reflected
radiation from the sample into different wavelengths before reaching the detector. De-
pending on the application, device cost, and sensitivity, different systems like filter wheels,
electronically tunable filters (ETFs), and imaging spectrographs (i.e., diffraction grating)
can be used.

A filter wheel is a set of discrete bandpass filters mounted on a wheel generally used
in multispectral imaging systems (usually able to detect up to 10 wavelengths). They are
sensitive to vibration, slow wavelength switching, unchangeable spectral resolution, and
image unmatching owing to filter movement. However, they are cost-effective and simple
to implement [4].

Concerning ETFs, they disperse the wavelengths one at time (like a bandpass filter)
with a moderate spectral resolution (5–20 nm) and broad wavelength range (400–2500 nm).
Differently from filter wheels, such filters can be easily customized in an array, reducing
mechanical vibration issues [4,10].

Instead, diffraction gratings split instantaneously the broadband light into different
wavelengths without moving parts. They are an optical surface composed of a series
of closely packed grooves that have been engraved or etched into the grating’s surface.
Diffraction gratings can be either transmissive or reflective. As light transmits through or
reflects off a grating, the grooves cause the light to diffract, dispersing the light into its
component wavelengths [4,11].

2.1.3. Detectors

After interacting with the sample, the light carrying the useful information will be
acquired by the detector. Detectors convert photons into electrical signals so that the
spectral signature can be interpreted. The most common solid-state detectors are charge-
coupled devices (CCDs) and the complementary metal-oxide-semiconductor detectors
(CMOS). CCD and CMOS sensors comprise many light-sensitive units (photodiodes)
whose composition changes (silicon—Si, germanium—Ge, indium gallium arsenide—
InGaAs, and mercury cadmium telluride—HgCdTe) according to the spectral range of
detection [4,10].

Ge and InGaAs detectors have a suitable energy bandgap for detecting optical signals
between 1000 and 1600 nm and 900 and 1700, respectively. Finally, HgCdTe detectors can
cover a variety of infrared wavelength ranges, including short/mid- and long-wavelength
IR. This versatility makes them suitable for applications ranging from remote sensing
to thermal imaging. Silicon detectors are sensitive to UV, visible, and shortwave NIR
spectra regions (400–1000 nm), they are cheap, can be miniaturized, and allow high-speed
measurements with low noise and a good spectral response. For these reasons, silicon-
based CCD cameras have been widely used in hyperspectral imaging systems for the
inspection of agricultural products and food quality [4,12].
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2.2. Image Sensing and Acquisition Modes

Before reaching the detector, the light radiation interacts with the chemical (activating
vibrational effects on molecule functional groups) and physical (light-scattering effects)
nature of the sample, and a part can be absorbed (and so turned into heat energy that will
never reach the detector), reflected, or transmitted. These interaction processes enable
HSI to be implemented in different sensing (Table 1 and Figure 2) and acquisition modes
(Figure 3) depending on the sample size and the acquisition time available to perform the
analysis, respectively.

Table 1. Imaging sensing mode summary.

Sensing Mode Description

Diffuse reflectance
(Figure 2a)

The detector and the light source are generally
positioned above the sample, and the reflected light
from the illuminated area is acquired by the detector.

This mode is applied to evaluate external quality
properties, such as size, shape, color, surface texture, and

physical defects.

Transmittance
(Figure 2b)

The sample is placed between the detector and light
source, and the radiation which crosses over it is

measured. This method is generally used to evaluate
internal quality features such as internal defects or
chemical compound concentration. However, the

sample thickness has an impact on the signal, which
decreases as thickness increases.

Interactance
(Figure 2c)

The imaging area is isolated from the light source by a
predetermined angle or distance. The measured light

passes through a little layer of tissue beneath the surface.
Thus, it is possible to obtain more information from the

inside of the sample than with the reflectance mode.

Fluorescence
(Figure 2d)

It measures the radiation emitted by the sample after
excitation by absorbing light radiation at a high energy
level. The emission is in two main spectral ranges, from

blue to green (450–550 nm) and from red to far red
(690–740 nm), and it is characterized by three peaks in

the blue, red, and far-red bands. In fluorescence imaging,
the light source and the detector are positioned at the

same side of the sample. Generally, the light excitation
sources used are Xenon arc lamps, lasers, or LEDs.

Raman scattering (Figure 2e)

It requires a block of the excitation light from the
detection end and an intense excitation light source
coupled with a high-performance detector to ensure
adequate signal quality. The excitation is typically

performed with diode lasers at 785 or 830 nm. As the
Raman signals are very weak, commercial Raman

imaging systems typically have small imaging areas at
the millimeter scales or less (for microscopic

applications).
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3. Software and Image Processing

The hypercube contains the spatial (Sx and Sy) and spectral information (Sλ). The cube
composition shows contiguous subimages, one per wavelength (according to the camera
resolution) (Figure 4).

Given the three dimensions (Sx, Sy, and Sλ), the hypercube can be handled by unfold-
ing the 3D matrix in a 2D matrix and then refolding after mathematical preprocessing and
modeling [13]. Due to the large amount of data (wanted/unwanted information and noise)
contained in the hypercube, a statistical approach is needed to explore and analyze the
information contained.

For this purpose, different graphical user interfaces (GUIs) are available on program-
ming platforms like MATLAB, Python, or R. Mobaraki and Amigo (2018) proposed an
open-source MATLAB-based GUI for hyperspectral image analysis (HYPER-Tools) which
integrates fundamental types of spectral and spatial preprocessing methods as well as
the main chemometric tools (exploratory data analysis, clustering, regression, and classi-
fication) combined with an intuitive process workflow [14]. Thanks to the presence of a
powerful visualization provided by MATLAB, such a GUI allows to represent (graphically)
a significant amount of information and analyze the results at a glance. An open-source
library is available on Python (PyHAT) designed to enable the visualization, thematic
image derivation, and spectral analysis of planetary spectral data in a cross-platform [15].
Stand-alone commercial software like ENVI, Unscrambler, and SPSS are also available.
ENVI is a powerful remote sensing image processing software that integrates various image
processing tools to enhance efficiency. It is preferred for quickly and accurately extracting
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information from hyperspectral images and performing spectral analysis. Unscrambler is a
software for multivariate data analysis and experimental design, supporting various anal-
yses, data preprocessing, and real-time visualization. SPSS is used for statistical analysis
operations, data mining, and the predictive analysis of hyperspectral data [16].
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In order to pick the useful information, the analytical software has to provide the
possibility of pretreating the images in order to simultaneously minimize or eliminate
unwanted sources of variability (background, redundant information, and artifacts) and
maximize information extraction.

Firstly, dead pixels and spectra spikes have to be recognized and harmonized. They
are generally due to punctual anomalies of the detector that generate pixels that do not
record the correct information. Dead pixels are present as missing or zero values, and
they can be present singly, in full lines, at specific wavelengths, or throughout the entire
spectrum signal. Detecting missing scan lines and dead pixels can be achieved using
different algorithms with major or minor complexity (like thresholding techniques, genetic
or evolutionary algorithms, or a minimum volume ellipsoid (MVE)). Instead, spikes are
unexpected and with high intensity peaks of the signal, and they are usually substituted
with the mean or median of a spectral window with the spike point at its center. Once the
missing scan lines, dead pixels, and spikes have been detected, one straightforward manner
to replace them is using the mean or median of the spectral of the neighboring pixels [17].

Then, the regions of interest (ROI) have to be identified. If the sample does not cover
the entire scanned area, the scanned area has to be isolated from the background and the
presence of shadows caused by the sample and light source position. Several techniques
like (i) manual selection, (ii) predeterminate single wavelength, (iii) principal component
analysis (PCA) and (iv) cluster analysis can be used in order to create a “mask” capable of
isolating the ROI [14] as reported in Figure 5.
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Finally, spectra may need to be preprocessed to reduce the noise associated with the
data, minimize artifacts, and amplify the information. In principle, well-known spectral
preprocessing methods applied to spectroscopy are also used in hyperspectral imaging.
However, preprocessing techniques must be handled with care, taking into account the pos-
sible loss of some information, resulting in a decrease in spatial and/or spectral resolution,
and the final goal of the analysis. Figure 6 graphically summarizes the most common math-
ematical pretreatments performed on NIR spectra labeled according to the percentage of
moisture content (MC %) of the samples (Figure 6a shows the raw spectra). Many smooth-
ing methods (e.g., Gaussian filter, moving average, median filter, and Savitzky–Golay
(SG) smoothing) are used as a filter to reduce spectral noise. Additive and multiplicative
effects are very common in optical data, influencing the global intensity (typically arising
from unwanted light scattering) and/or producing baseline vertical shifts (offsets). For
these reasons, treatments like standard normal variate (SNV, Figure 6b) transform or the
multiplicative scatter correction (MSC Figure 6c) are generally applied. Derivation methods
(usually first and second derivative, Figure 6d) are also used to enhance the resolution
and minimize the spectra offset and drifts. Finally, different column-wise normalization
and/or scaling treatments (like mean centering, autoscaling, range scaling, Pareto scaling,
etc.) become fundamentals to homogenize the data to perform a correct explorative and
modeling phase (Figure 6e). Since the variance values depend on the scale of the variables,
it becomes difficult to compare and impossible to combine information from variables of
different nature, unless properly normalized [18–20]. Moreover, different combinations of
these methods applied simultaneously can also be used for signal processing [21].
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3.1. Multivariate Statistical Analyses

After image preprocessing, multivariate statistical analysis is needed to extract useful
information and easily show the relationship between hyperspectral data and the feature of
the sample under evaluation. Multivariate analyses can be divided into two main groups:
unsupervised and supervised methods.

3.1.1. Unsupervised Methods

Unsupervised methods give qualitative information of the analyzed data. Without
any prior assumption, they allow to (i) group samples sharing similar features, (ii) identify
outliers or anomalous data trends, and (iii) identify correlations among variables and
interactions between samples and variables. Principal component analysis (PCA) is one
of the most common unsupervised methods applied to HSI to extract useful information.
PCA seeks a linear combination of the original variables (wavelength) to produce new
variables (the principal components, PCs) orthogonal to each other which account for
the variance of the original ones in a new space of projection. Furthermore, it describes
the sample distribution highlighting trends and groups, it permits to understand any
variable correlation, and to sort and select variables according to relative importance [13].
Instead, other methods find potential clusters in the data in a nonhierarchical or hierarchical
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manner [22]. The former includes k-means clustering that divides the observations into
a predetermined number of groups (k clusters), and a sample is placed in a cluster with
the nearest barycenter. On the contrary, hierarchical techniques create a hierarchy of
clusters using the distance between pairs of samples, and it is typically displayed as a
dendrogram [4].

3.1.2. Supervised Methods

Supervised classification and regression techniques (Table 2) can be used according
to the specific application to predict qualitative or quantitative features by finding a rela-
tionship between a set of independent variables (optical outputs) that describes the objects
(predictors) studied and a set of measured responses for the same objects [23,24].

Multivariate classification methods define the existing relation between the experi-
mental variables (X matrix, the hypercube) and a qualitative variable that identifies the
belonging class (y vector, response variable). Many methods like linear discriminant analy-
sis (LDA), k-nearest neighbor (KNN), soft independent modeling of class analogy (SIMCA),
support vector machine (SVM), and partial least square regression–discriminant analysis
(PLS-DA) are used to define the membership of each sample to its appropriate class [25].

Multivariate regression methods calculate the mathematical model for the relation
between the X matrix and the y vector of the quantitative response [26]. The regression
model design using HSI data is different from developing a traditional spectroscopic
model, where each spectrum (Xi) has a corresponding measured variable (yi). Indeed, in
hyperspectral images, there can be found thousands of spectra for the same measured
variable, and a spectrum that represents the sample is calculated. The mean spectra for each
sample are combined to create the data set (X), which is used with regression techniques
to predict the corresponding observed values (y) [27]. For these purposes, methods like
multiple linear regression (MLR), principal component regression (PCR), partial least
square regression (PLSR), support vector machine regression (SVR), or artificial neural
networks (ANNs) are broadly used [28].

Table 2. Overview of the classification and regression algorithms used for fresh-cut fruit and vegetable
analysis.

Method 1 Reference

Classification

PLS-DA Diezma et al. [29], Everard et al. [30], Rady et al. [31], Pu et al. [32], Zhu et al. [33], Babellahi et al. [34]

LDA Lee et al. [35], Delwiche et al. [36]

KNN Rady et al. [31], Pu et al. [32],

SIMCA Pu et al. [32], Ríos-Reina et al. [37]

SVM Cen et al. [38], Zhu et al. [33], Bai et al. [39]

Regression

PCR van Roy et al. [40], Xu et al. [41]

PLSR
Rady et al. [31], van Roy et al. [40], Yan et al. [42], Amodio et al. [43], Mo et al. [44], Zhu et al. [45],

Rahman et al. [46], Ramos-Infante et al. [47], Chaudhry et al. [48], Xiao et al. [49], Babellahi et al. [34],
Shrestha et al. [50], Eshkabilov et al. [51], Wang et al. [52], Li et al. [53], Lan et al. [54], Xu et al. [41]

MLR Lu and Peng [55], Peng and Lu [56], Rajkumar et al. [57], Zhu et al. [45]

ANNs Siripatrawan et al. [58], Li et al. [53]

SVR Zhang et al. [59], Chen et al. [60], Pang et al. [61]

LS-SVM Zhu et al. [45], Xiao et al. [49]
1 PLS-DA = partial least square–discriminant analysis; LDA = linear discriminant analysis; KNN = k-nearest
neighbor; SIMCA = soft independent modeling of class analogy; SVM = support vector machine; PCR= principal
component regression; PLSR = partial least square regression; MLR = multiple linear regression; ANNs = artificial
neural networks; SVR = support vector regression; LS-SVM = least square support vector machine.
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4. HSI in Fresh-Cut Product Quality Assessment

Fresh-cut products are generally characterized by high quality levels, but they deterio-
rate faster than intact items as a result of damage caused by minimum processing, which
speeds up various physiological changes that lead to a decrease in product quality and
shelf life. Discoloration-increased oxidative browning at cut surfaces, flaccidity due to
water loss, and lower nutritional value are all signs of produce deterioration. Moreover,
the damaged tissues are a good growing medium for some pathogenic microorganisms
and harmful to human health [62] (Table 3). So, the quality assessment of fresh-cut foods is
one of the most important goals of the highly competitive food industry [63] and, in recent
years, the evaluation of these characteristics is one of the principal applications of HSI [64].

Table 3. Description of quality features for fresh-cut products.

Qualitative Features Description

Ex
te

rn
al

fe
at

ur
es

Color

First element of quality monitoring and conveys consumer choice. It is an
indirect indicator of features like freshness, desirability and variety, maturity,
and safety, which are related to the physical, chemical, or microbial changes
that occur in ripeness and the postharvest processing and handling
stages [65].

Defects

Surface defects

Mainly due to mechanical injuries, insects, diseases, and over- or
under-ripeness. Damaged products should be selected and removed, during
postharvest processing, to reduce losses by avoiding secondary
contaminations [66].

Physiological
disorders

Appear during postharvest after internal or external stresses, like nutritional
deficiency, senescence, suppressed respiration, and extreme temperature [2].

Chilling injury
Caused mainly by postharvest storing at low temperatures which produces
internal browning, deteriorated texture, juiciness deficiency, and
unpleasantness [64].

In
te

rn
al

fe
at

ur
es

Texture

Capacity to withstand deformation actions like biting, chewing, and
grinding, with an impact on food acceptability and consumer
preferences [64]. Firmness is an indicator of the maturity stage and shelf life.
Firmness loss in fruits is primarily caused by the enzymatic degradation of
pectin present in the intercellular space and cell wall [62].

Nutritional value Represented by the caloric intake or elements that are important from a
nutritional point of view.

Sa
fe

ty

Absence of antinutritional substances
e.g., nitrates and nitrites, pesticide residues, insect or pest infestation, fecal
contamination, naturally occurring undesirable compounds, and plant
growth regulators [2,67].

Absence of pathogenic microorganisms
e.g., Escherichia coli, Salmonella spp., and Listeria monocytogenes whose
presence is caused by soil or manure contamination, irrigation water,
inappropriate packaging, and inadequate storage temperatures [68].

Table 4 summarizes (according to each product category) the main HSI applications of
the last decade to identify and evaluate the critical quality parameters of fresh-cut products.
In general, while various products have been examined, the literature demonstrates plenty
of applications using HSI devices that retrieve qualitative optical data (within 400–1000 nm)
useful to develop qualitative and/or quantitative predictive models with significative
applicative performance. In this context, another essential factor is the possibility of
transfer calibration models among different devices. On this topic, punctual spectroscopy
finds a well described literature, while much less research is available on the calibration
transferability between HSI devices which may have different imaging and/or lighting
configurations. Hence, forthcoming research is needed focusing on enhancing data mining
and calibration transfer techniques to fully harness the future needs and perspectives
described in Section 5.
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4.1. Fresh-Cut Green Leafy Vegetables
4.1.1. Lettuce

Mo et al. (2015) applied a Vis-NIR (400–1000 nm) HSI device in reflectance to discrimi-
nate sound and discolored lettuce areas on both abaxial and adaxial surfaces. A one-way
ANOVA was used to determine the optimal wavelengths for discrimination purposes. Two
indexes were developed (waveband ratio imaging, RI, and subtraction imaging, SI) to im-
prove classification accuracy. In particular, the best classification performances (prediction
accuracy, sensitivity, and specificity > 99.9%) were achieved by RI between 552 and 701 nm
(RI552/701) and SI for 557–701 nm (SI557–701) [69].

Again, Mo et al. (2017) proposed an on-line detecting system based on reflectance
HSI (Figure 7) (400–1000 nm) to discriminate contaminants (i.e., slugs and worms) from
sound lettuce. SI was used to classify slugs, resulting in a classification accuracy of 97.5%,
sensitivity of 98.0%, and specificity of 97.0%, while RI was used to discriminate worms,
achieving classification accuracy, sensitivity, and specificity rates of 99.5%, 100.0%, and
99.0%, respectively [70].
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Fresh-cut lettuce can be sold in modified atmosphere packaging (MAP), but the tissue
decay can begin a few days later after processing. Simko et al. (2015) proposed two lettuce
decay indexes (LEDIs) to identify both tissues damaged by cold temperatures and lettuce
deterioration (LEDICF, based on the maximum and minimum level of chlorophyll fluores-
cence, and LEDI4, based on reflectance imaging using 677, 744, and 904 nm), achieving
about a 97% accuracy in categorizing tissue as being fresh or decayed without removing
the MAP [71].

Instead, Eshkabilov et al. (2021) applied reflectance HSI (400–1000 nm) and devel-
oped a multivariety model to quantify micro- and macronutrients (i.e., nitrate, calcium,
potassium, and soluble solid content (SSC)), pH, and chlorophyll concentration. Two bands
were selected as the most informative, 506–601 nm and 634–701 nm, and used to build PLS
models with a good prediction capability for all parameters (R2

p = 0.78–0.99) [51].
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Concerning safety assessment, Cho et al. (2018) applied fluorescence HSI on romaine
lettuce leaves to detect four animal (dairy cattle, pigs, chickens, and sheep) fecal species
contaminations. For discriminating feces from the four animal species, single fluorescence
wavebands were found, F641 nm, F505 nm, F633 nm, and F645 nm, respectively, for dairy
cattle, pig, chicken, and sheep feces, and the ratio between F692 and F668 was used to
identify any fecal trace with an accuracy from 80% to 100% according to the fecal dilution
level [72].

4.1.2. Spinach Leaves

Zhu et al. (2019) investigated the adequacy of hyperspectral imaging for the evaluation
of the freshness of spinach leaves during storage at different temperatures. They applied
visible-SWNIR (380–1030 nm) and NIR reflectance (874–1734 nm) HSI systems. After
data preprocessing and wavelength selection, the following models were applied and
evaluated: PLS-DA, SVM, and ELM (extreme learning machine). All three models achieved
good results, with above 92% accuracies for both spectra. Although good results were
achieved, the data processing techniques were time-consuming, which is a barrier to
practical deployment. Moreover, to improve the models’ robustness, the sample size
should be increased, and new types of samples should be used in future investigations [33].

Siripatrawan et al. (2011) proposed an HSI device (400–1000 nm) to measure the
contamination degree of Escherichia coli in packaged fresh spinach. PCA was applied for
wavelength selection, and ANNs were used to predict the number of colonies of E. coli
(R2

p = 0.97) and obtain a prediction map of the microorganism number to pixel spatial
information, allowing a rapid and useful data interpretation [58].

Instead, Everard et al. (2014) used both reflectance (Vis-NIR) and fluorescence (UV and
violet) HSI devices to detect fecal contamination (in different concentrations) on spinach
leaves. PLS-DA and two indexes based on wavelength ratio were used to compare the
two HSI devices (Figure 8). The results showed that UV and violet fluorescence had better
performances (from 87% to 100% accuracy depending on the degree of dilution) than
the Vis/NIR reflectance device, where the accuracy decreased sharply with increasing
dilution [30].
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4.1.3. Rocket

Generally, rocket has a shelf life of 7 to 14 days, depending on the combination of
different factors (i.e., raw material conditions, manipulation, processing and storage tem-
perature). In 2018 and 2020, Chaudhry et al. proposed a multivariate approach based on
PCA and PLS scores for a shelf-life estimation (multivariate accelerated shelf-life testing)
and concentration mapping of the vitamin C (Figure 9), ascorbic acid, and phenols of stored
rocket leaves. Vis/NIR and NIR his devices were used to reach these goals, showing the ca-
pability to use spectra as a quality attribute to simulate a degradation kinetic using the PCA
principal components and quantify vitamin C (R2 = 0.76 and RMSEP = 10.90 mg/100 g),
ascorbic acid (R2 = 0.73 and RMSEP = 10.24 mg/100 g), and phenols (R2 = 0.78 and
RMSEP = 13.81 mg gallic acid/100 g) [48,73].
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4.2. Fresh-Cut Tubers
Potatoes

Color, water, and starch content are quality indicators of fresh-cut potatoes [49,52].
Also, in this case, Vis/NIR HSI systems were demonstrated to be effective tools to build
prediction maps (Figure 10) for the distribution of such qualitative indicators using different
modeling approaches (PLS, SVM, and LS-SVM). Indeed, for color and water content
prediction, an R2 about 0.8 was obtained using any of the modeling methods [49], while
Wang et al. (2021) extracted a bulk of characteristic wavelengths (about 10 to 30 wavelengths
according to the applied selection method) to build a PLS model for the starch content
prediction (R2 = 0.95 and RMSEP of 1.63 g kg−1) [52].

However, one of the major problems related to fresh-cut potatoes is the foodborne
contamination of Escherichia coli [53]. Tao et al. (2019) proposed a curcumin-based pho-
todynamic treatment to deactivate the E. coli proliferation on the surface of stored fresh-
cut products [74]. In this case, HSI was used by Li et al. 2021 to explore the illumi-
nation time of the photodynamic treatment with the best inactivation effect. A back-
propagation neural network approach was used to develop quantitative predictive models
for colony quantification using both full spectrum and selected wavelengths (R2 = 0.97, 0.88;
RMSEP = 0.065 log CFU g−1, 0.142 log CFU g−1, respectively), identifying 20 min as the
optimum treatment time [53].
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4.3. Fresh-Cut Fruits
4.3.1. Tomato

Tomatoes are one of the major fresh-cut vegetables consumed, and the detection of
cracking defects is very important to avoid any development of pathogenic microbes that
may have harmful consequences on consumer health. Thus, Lee et al. (2011) applied
HSI (1000–1700 nm) to detect damaged tomatoes. The authors applied PCA on the full
spectrum and four selected wavelengths (1078 nm, 1194 nm, 1425 nm, and 1642 nm) to
extract and compare PC images for crack detection. Finally, LDA was applied for improving
the discriminant ability between sound and cracked tomatoes, showing a classification
accuracy of 91.7% (using full NIR spectrum) and 80.6% (using only four wavelengths) [35].

4.3.2. Cucumber

Cen et al. (2016) applied reflectance (500–675 nm) and transmittance (675–1000 nm)
hyperspectral imaging to detect chilling injuries, using an on-line HSI system developed by
Ariana and Lu (2008) and Lu and Ariana (2013) [75,76]. Supervised classification models
were developed using selected wavelengths (obtained using different wavelength selection
methods) to classify in two (i.e., safe and damaged) and three classes (i.e., safe, lightly
damaged, and severely damaged) based on the spectral and image analysis at specific
two-band ratios. SVM resulted as the best classifier method, allowing to achieve a total
classification accuracy of 100% for the two-class classification, and an overall accuracy of
90.5% for the three-class classification [38].

4.3.3. Green Bell Pepper

Storage chilling injuries were evaluated also on green bell peppers by Babellahi et al.
(2020) with HSI (400−2500 nm). A PLS-DA model was developed to distinguish cold-
stored fruit (4 ◦C) from fresh fruit and fruit stored at higher temperatures (12 ◦C) using
selected Vis-NIR (694, 719, 751, 813, 886, and 973 nm) or NIR variables (1138, 1244, 1379,
and 1642 nm). The model in the Vis-NIR achieved an 83% NER (nonerror rate) in cross-
validation, while the model with NIR wavelengths reached a cross-validation NER equal
to 81%. Moreover, a PLSR model was developed to predict days of storage at 4 ◦C, in
order to take any corrective action to avoid further damage. The model was built based on
the data extracted from Vis-NIR HSI and using selected wavelengths from VIP (variable
importance in projection) scores. Good predictive performances were obtained (R2

CV = 0.79,
and RMSECV = 0.5 days of storage at 4 ◦C), demonstrating that it is a good option for the
early detection of CI of green bell peppers and also for industrial on-line applications [34].

4.3.4. Apple

Fresh-cut apple processing can lead to browning reactions that strongly influence the
purchase of the end consumer. Browning is the consequence of a series of biochemical
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reactions under the polyphenol-oxidase enzyme’s activity. In this case, HSI can be used to
detect these damages beforehand [77]. The development of brown pigments is common
in fresh-cut and dried apple slices. Shrestha et al. (2020) demonstrated that polyphenol-
oxidase activity was mainly detectable around 677 nm, proposing a robust detection
algorithm independent from cultivars and treatments [50].

Moreover, nutritional features are another important indicator of acceptability, espe-
cially in fresh-cut apples. NIR-HSI (1000–2500 nm) was applied by Lan et al. (2021) to
evaluate the contents of dry matter, total sugar content, fructose, glucose, sucrose, malic
acid, and polyphenols. NIR-HSI images were acquired on the surface of apple slices, and
PLS models were developed and successfully used to describe the dry matter (R2

CV = 0.83,
RMSE = 9.7 g kg−1) and total sugar content (R2 = 0.81, RMSE = 8.4 g kg−1) distribution, as
shown in Figure 11 [54].
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4.4. Fresh-Cut Vegetables
4.4.1. Celery

Fresh-cut celeries, one of the most widely consumed vegetables, are very rich in fibers.
Yan et al. (2017) applied an HSI device (380–1000 nm) to quantify the soluble and insoluble
dietary fiber in celery, and their spatial distribution was visualized at 0, 7, 14, 21, and
28 days of storage (Figure 12). Celeries showed interesting spectral variability values
in the shortwave near-infrared region (from 780 to 1008 nm). Different PLS prediction
models were developed using a variant of the PLS method (the genetic synergy interval
partial least square, GA-Si-PLS) to select the optimal wavelengths with minimal redundant
information. The obtained models showed high prediction performance for both (R2 equal
to 0.96 and 0.97 and RMSE of 1.18 g/100 g and 0.34 g/100 g, respectively) insoluble and
soluble fiber [42].
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4.4.2. Cabbage, Carrot, Green Onion, Onion, Potato, Radish, and Zucchini

Fresh-cut vegetables can contain foreign materials (FMs) such as small plastic pieces
or biological contaminants (i.e., bugs, worms), and helpful methods of detecting FMs in
industrial processing operations are required. Therefore, Tunny at al. (2023) evaluated
the performances of three HSI techniques (Vis/NIR, SWIR, and fluorescence) combined
with a PLS-DA model to identify different types of FMs in various fresh-cut vegetables.
The results showed a good performance with an accuracy of 99% with SWIR, followed
by Vis/NIR (89%), and fluorescence (64%). Moreover, from the SWIR data were selected
ten wavelengths (912, 935, 965, 1082, 1188, 1288, 1417, 1576, 1770, and 1858 nm), and the
obtained accuracy of the new PLS-DA model was similar to that of the original one (99%),
suggesting the suitability of this HSI technique to be applied in an industrial context [78].

Table 4. Hyperspectral imaging applications in fresh-cut quality.

Fresh-Cut
Product Quality Features Spectral Range Sensing Mode Modeling

Method Performances Reference

Lettuce

Color 400–1000 nm Reflectance Classification
SI and RI

Accuracy, sensitivity, and
specificity > 99.9% Mo et al. [69]

Color–Browning 400–1000 nm Reflectance
ANOVA,

Classification
SI and RI

Accuracy = 97.0–100.0% Mo et al. [79]

Decay 380–1012 nm
Reflectance and

Chlorophyll
Fluorescence

Classification Accuracy = 97.0% Simko et al.
[71]

Relative water
content,

chlorophyll, and
carotenoid

400–1000 nm Reflectance Wavelength ratio – Shurygin
et al. [80]

Nutrient levels:
NO3

−, Ca2+, K+,
SSC, pH, SPAD

400–1000 nm Reflectance PLSR, PCA R2 = 0.78–0.99
Eshkabilov
et al. [51]

Fecal
contamination 400–800 nm Fluorescence Classification

RI Accuracy = 80.0–100.0% Cho et al. [72]
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Table 4. Cont.

Fresh-Cut
Product Quality Features Spectral Range Sensing Mode Modeling

Method Performances Reference

Foreign
substances (slugs

and worms)
400–1000 nm Reflectance Classification

SI and RI

Accuracy = 97.5%,
sensitivity = 98.0%, and

specificity = 97.0% with SI
Accuracy = 99.5%,

sensitivity = 100.0%, and
specificity = 99.0% with RI

Mo et al. [70]

Foreign
substances
(worms)

400–1000 nm,
980–1700 nm Reflectance Classification

SI and RI

Accuracy of 97.0% for
Vis/NIR imaging and

100.0% for NIR imaging
Mo et al. [81]

Spinach leaves

Shelf life 400–1000 nm Reflectance
Classification

SAM, PLS-DA,
and LEVE index

Over 95.0% of the leaves
were classified into the same

quality class by SAM and
LEVE index

Diezma et al.
[29]

Shelf life and
freshness

(under plastic
film)

400–1000 nm Reflectance PCA + ANOVA Freshness characterization
over time

Lara et al.
[82]

Shelf life and
freshness

380–1030 nm,
874–1734 nm Reflectance PLS-DA, SVM,

ELM Accuracy > 92.0% Zhu et al. [33]

Escherichia coli 400–1000 nm Reflectance ANN R2 = 0.97
Siripatrawan

et al. [58]

Fecal
contamination

456–950 nm
464–800 nm

Reflectance
Fluorescence PLS-DA

Fluorescence had the best
results with accuracy from

87.0% to 100.0%

Everard et al.
[30]

Rocket

Shelf life 400–1000 nm Reflectance PLSR R2 = 0.73–0.95
Chaudhry
et al. [73]

Vitamin C
and phenols

400–1000 nm
900–1700 nm Reflectance PLSR

• Vitamin C: R2 = 0.76
and RMSEP = 10.90
mg/100 g

• Phenols: R2 = 0.78 and
RMSEP = 13.81 mg
gallic acid/100 g

Chaudhry
et al. [48]

Green
amaranth

leaves

Chlorophyll
content 400–1000 nm Reflectance PLSR R2 = 0.834

RMSE = 0.067%
Mardhiyatna

et al. [83]

Potato slices

Color and water
content 400–1000 nm Reflectance PLS, SVM, and

LS-SVM

LS-SVM had the best
performances with R2 above

0.80 for the prediction of
both parameters

Xiao et al.
[49]

Starch content 380–1000 nm Reflectance PLSR
R2 = 0.95

RMSEP = 1.63 g kg−1

RPD = 2.95

Wang et al.
[52]

Escherichia coli 400–1000 nm Reflectance PLSR, BP-NN

BP-NN model reached the
best performances using

both the full spectrum (R2 =
0.97; RMSEP = 0.065 log
CFU g−1) and selected
wavelengths (R2 = 0.88;

RMSEP =0.142 log
CFU g−1)

Li et al. [53]
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Table 4. Cont.

Fresh-Cut
Product Quality Features Spectral Range Sensing Mode Modeling

Method Performances Reference

Sulfur dioxide
residue 975–1646 nm Reflectance SVM Classification accuracy of

95.0% Bai et al. [39]

Tomato

Color 325–985 nm Reflectance PLSR, PCR
For a*, hue, and L*,

R2 > 0.86; for b* and chroma,
R2 = 0.4–0.5

van Roy et al.
[40]

Cracking defects 1000–1700 nm Reflectance LDA

Accuracy of 91.7% (using
full NIR spectrum) and of

80.6% (using only 4
wavelengths)

Lee et al. [35]

Cracking defects 400–700 nm Fluorescence ANOVA + PCA Accuracy >99.0% Cho et al. [84]

Firmness and
sweetness 1000–1550 nm Reflectance PLSR

• Firmness: R2
p = 0.76;

SEP = 1.01 N
• Sweetness: R2

p = 0.81;
SEP = 0.33

Rahman et al.
[46]

Firmness, color,
pH, and SSC

400–1000 nm,
900–1700 nm Reflectance PLSR

Good performances in
prediction were achieved:

• SSC, firmness, and pH:
R2

p > 0.85; RPD > 3.0
• Color: RPD > 2.0

Ramos-
Infante et al.

[47]

Cucumber Chilling injury 500–675 nm
675–1000 nm

Reflectance
Transmittance NB, SVM, KNN

SVM was the best, achieving
an accuracy from 90.5% to

100%
Cen et al. [38]

Green bell
pepper

Shelf life 464–799 nm Fluorescence LDA

LDA was successful in
distinguishing the storage

time at 0, 7, 14, and 21 days
after cutting

Delwiche
et al. [36]

Chilling injury 400–1000 nm,
1000–2500 nm Reflectance

PLS-DA

NERCV = 83% with Vis-NIR
model.

NERCV = 81% with NIR
model Babellahi

et al. [34]

PLSR R2
CV = 0.79, RMSECV = 0.5
days of storage at 4 ◦C

Apple

SSC 400–1000 nm Reflectance PLSR

The best-performing models
were

• Case I: R2 = 0.802 and
RMSE = ±0.674◦Brix

• Case II: R2 = 0.871 and
RMSE = ±0.524◦Brix

• Case III: R2 = 0.876
and RMSE =
±0.514◦Brix

Mo et al. [44]

DMC, TSC 1000–2500 nm Reflectance LOO-PLS

• Dry matter: R2
CV =

0.83, RMSECV = 9.7 g
kg−1, RPD = 2.39

• TSC: R2
CV = 0.81,

RMSECV = 8.4 g kg−1,
RPD = 2.20

Lan et al. [54]
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Table 4. Cont.

Fresh-Cut
Product Quality Features Spectral Range Sensing Mode Modeling

Method Performances Reference

Browning–PPO
activity 400–1000 nm Reflectance PLSR

An indirect detection of
PPO activity was performed,
and the results showed that
the changes in the enzyme

activity were mainly at
wavelengths around

677 nm

Shrestha et al.
[50]

Celery Dietary fiber 378–1008 nm Reflectance PLS, Si-PLS,
GA-Si-PLS

GA-Si-PLS had the best
performances:

• For IDF: R2
p = 0.96;

RMSEP = 1.18.
• For SDF: R2

p = 0.97;
• RMSEP = 0.34

Yan et al. [42]

Fennel
SSC, phenol and

antioxidant
activity, sugars,

and organic acids

400–1000 nm,
900–1700 nm Reflectance

PLSR

• SSC: R2
p = 0.77;

RMSEP = 0.51◦Brix;
• Phenols: R2

p = 0.77;
RMSEP = 3.042 mg
kg−1

Amodio et al.
[43]

PLS-DA NERP = 88.57%

Bamboo shoots Dietary fiber 400–1000 nm,
900–1700 nm Reflectance PLSR, PCR

SNV-PCA-PLSR achieved
good prediction

performances with R2
p =

0.902 and RMSEP = 0.135

Xu et al. [41]

Onion,
zucchini,

garlic, and
carrot

Foreign objects 420–730 nm Fluorescence,
Reflectance

Wavelength ratio
classification

method

Accuracy of 90.0–97.0% to
detect different kinds of

foreign materials
Cho [85]

Cabbage,
carrot, green
onion, onion,
potato, radish,
and zucchini

Foreign materials

400–1000 nm,
1000–2500 nm Reflectance

PLS-DA
Accuracy of 99.0% with

SWIR, 89.0% with Vis/NIR,
and 64.0% with fluorescence

Tunny et al.
[78]

400–1000 nm Fluorescence

5. Conclusions and Perspectives

Since 2000, hyperspectral imaging technology has been demonstrating great potential
in postharvest quality and safety assessment, introducing another element to bridge the gap
between analysis in the lab and in the production process as a process analytical technology
(PAT). This is playing a key role in the fourth industrial revolution where interest in the im-
provement of monitoring systems through the development of new interconnected sensors
networks (IoT) is steadily growing. The fusion of different combinations of sensors leads to
a multivariate statistical process control (MSPC) which provides (for each critical point)
several highly correlated variables (optical and not) that can be handled by multivariate
projection methods (e.g., PCA), enabling a reduction in data dimensionality by taking
advantage of the correlated structure [86].

An optimized MSPC in fruit and vegetable fresh-cut production monitoring could
solve the common shelf life problems of early decay, spoilage, etc., improving product
standardization. Moreover, in some cases, the multivariate monitoring process could be
extended from the maturation/growth process in the greenhouse to the various postharvest
product processing steps, guaranteeing a complete supply-chain quality control.

However, the HSI devices currently on the market are laboratory instruments and
portable devices where the cost remains a limit for the real application of these tools [87].
The cost limitations are not strictly related to the device itself but to the specific application.
Indeed, even though the hyperspectral imaging technique can collect a large amount of



Appl. Sci. 2023, 13, 9740 20 of 27

data, the application of only one device (in some cases) is not enough to cover all the
critical points (after each processing step), the whole sample surface (big samples and/or
stacked products), and detect foreign substances covered by the mass of a product (as in
leafy fresh-cut samples, Section 4.1). In these circumstances, considering the application of
several hyperspectral devices, the costs become prohibitive for most companies.

Currently, cost reduction is challenging and one of the main topics in HSI research
studies. The first solution has been to build low-cost multispectral systems based on
selected wavelengths identified by preliminary studies. Such an approach, although
effective, extremely reduces the versatility of the instrument (which needs a recustomization
if applied on different products and/or parameters) and the capability to refine the model.
For these reasons, further studies have to continue in order to develop compact and cost-
effective HSI devices to exponentially increase the versatility of applications.

In the last ten years, thanks to technological advancement and the development of
silicon detectors used for the mass production of photographic instruments (i.e., commer-
cial cameras and smartphones), researchers started to develop snapshot-based systems
since they own a high optical throughput associated with an absence of artefacts due to
scanning motion and an increased compactness due to no moving components. Since the
optical range covered by silicon detectors (about 400–1000 nm) is the most used in the
literature (Table 4) for fresh-cut production purposes, this technique offers a very promising
solution to pre- and postharvest real-time imaging. However, the lower spatial and spectral
resolution provided is still a key element to be studied.

One of the first works was proposed by Habel et al. (2012). The authors proposed a
low-cost and compact spectral imaging Vis/NIR camera (design based on an unmodified
consumer camera, Figure 13) with a mid-resolution hyperspectral mode that allows the
spectral measurement of a whole image, with up to 5 nm spectral resolution and 120 × 120
spatial resolution. This “snapshot” system is based on the principles used in computed
tomography. Computed tomography imaging spectrometers (CTISs) use a transmissive
diffraction grating to split the incoming light into a number of spectral projections onto
a single image plane. Then, spectra are recovered by solving an underdetermined linear
system [88].
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Figure 13. HSI device proposed by Habel et al. (2012): (a) assembled CTIS camera objective;
(b) prototype camera objective (top) and principal optical path (bottom). Reprinted with permission
from Ref. [88]. 2012, Elsevier.

On the same wave, Salazar-Vazquez and Mendez-Vazquez in 2020 took advantage
of modern small-size high-resolution cameras (Raspberry PI NoIR camera), electronics,
and optics to develop a robust low-cost HSI device (Figure 14), which weighs up to 300 g,
detects wavelengths from 400 nm–1052 nm, and generates up to 315 different wavebands
with a spectral resolution up to 2 nm and a spatial resolution of 116 × 110 pixels.
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Although the authors proposed a very interesting plug-and-play HSI solution com-
bined with a user-friendly GUI, the system shows a low-spectral outcome in the SWNIR 
region (750–1000 nm), suggesting a reduced analytical capability in food quality inspec-
tion. The use of this type of transmissive holographic double-axis diffraction grating (Fig-
ure 14) guarantees a significant cost reduction with a consistent loss of information in the 
SWNIR region. 

However, such devices could be used to develop new applicative solutions using a 
fleet of distributed HSI sensors able to collect hyperspectral information from different 
checking spots [89]. 

Finally, recent advances in smartphone technologies have opened the door to the de-
velopment of accessible highly portable HSI systems (Figure 15) capable of accurate, la-
boratory- and field-based hyperspectral data collection, providing a solid foundation for 
future developments of customized HSI tools for practical applications (i.e., quality in-
spection by operators in real-time) [90]. 

Figure 14. HSI device proposed by Salazar-Vazquez and Mendez-Vazquez (2020): (1) Case; (2) Front
lens holder; (3) Square aperture; (4) Spacer 1; (5) Spacer 2; (6) Transmissive diffraction grating;
(7) Camera holder; (8) Spacer 3; (9) Extension; (10) Lid; (11) Raspberry Pi 3 B+; (12) Raspberry Pi NoIR
V2 Camera 8 Megapixels; (13) Power Supply Connector; (14) Power On/Off Switch; (15) +10 Macro
52 mm Lens; (16) Lens 35 mm C Series. Edmund Optics, model 59872. Reprinted with permission
from Ref. [89]. 2020, Elsevier.

Although the authors proposed a very interesting plug-and-play HSI solution com-
bined with a user-friendly GUI, the system shows a low-spectral outcome in the SWNIR
region (750–1000 nm), suggesting a reduced analytical capability in food quality inspec-
tion. The use of this type of transmissive holographic double-axis diffraction grating
(Figure 14) guarantees a significant cost reduction with a consistent loss of information in
the SWNIR region.

However, such devices could be used to develop new applicative solutions using a
fleet of distributed HSI sensors able to collect hyperspectral information from different
checking spots [89].

Finally, recent advances in smartphone technologies have opened the door to the
development of accessible highly portable HSI systems (Figure 15) capable of accurate,
laboratory- and field-based hyperspectral data collection, providing a solid foundation
for future developments of customized HSI tools for practical applications (i.e., quality
inspection by operators in real-time) [90].

In this case, the authors adopted a linear transmissive diffraction grating which
requires a movement system to analyze the entire sample and build the hypercube. Also, in
this case, the spectral device is capable of covering the visible range (400–700 nm). Although
the used diffraction grating has an efficiency of 20% in the SWNIR region, coupling this
component with commercial smartphone cameras reduces the detectable optical range
due to the presence of IR filters (used to reduce optical noise due to infrared radiation and
improve image quality) commonly mounted in front of the camera detector.

However, the possibility to develop cost-effective systems able to cover a wider
spectral range (from 400 to 1000) is ongoing, even though the performance of these tools still
needs to be carefully evaluated (both in controlled and operative conditions) to demonstrate
real applicability within the complex production realities from pre- to postharvest. Indeed,
the capability to retrieve visible information (from 400 to 750) is an interesting starting
point to solve different issues (raised in Table 4) like color–browning, chilling injuries, shelf
life, and chlorophyll content.
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tral range (from 400 to 1000) is ongoing, even though the performance of these tools still 
needs to be carefully evaluated (both in controlled and operative conditions) to demon-
strate real applicability within the complex production realities from pre- to postharvest. 
Indeed, the capability to retrieve visible information (from 400 to 750) is an interesting 
starting point to solve different issues (raised in Table 4) like color–browning, chilling in-
juries, shelf life, and chlorophyll content. 

The arrival of this instrumentation in the scientific literature is the basis for the de-
velopment of further real-time monitoring applications that allow the final introduction 
of this technology within the Industry 4.0 concept. The development of new, simple, and 
interconnected optical HSI systems (coupled with fast computing technologies based on 
parallel computing) would allow for the creation of the remote storage of optical data-
bases, allowing for the continuous updating and refinement of the prediction performance 
of predictive models with the aim of continuously upgrading the control services at dif-
ferent and crucial steps from pre- to postharvest. 

Author Contributions: S.V.: conceptualization, formal analysis, methodology, investigation, data 
curation, figure preparation, writing—original draft. A.T.: conceptualization, formal analysis, 

Figure 15. Schematic diagram proposed by Stuart et al. (2021) of a hyperspectral smartphone
mounted to the translation stage: (A,B) show the front and rear views, respectively; (C) shows
the hyperspectral smartphone attachment prior to connection with a smartphone, highlighting the
location of the spectral optics; (D) shows a cross section of the smartphone spectrometer system and
how the marginal and chief rays travel through the system. Reprinted with permission from Ref. [90].
2021, Elsevier.

The arrival of this instrumentation in the scientific literature is the basis for the de-
velopment of further real-time monitoring applications that allow the final introduction
of this technology within the Industry 4.0 concept. The development of new, simple, and
interconnected optical HSI systems (coupled with fast computing technologies based on
parallel computing) would allow for the creation of the remote storage of optical databases,
allowing for the continuous updating and refinement of the prediction performance of
predictive models with the aim of continuously upgrading the control services at different
and crucial steps from pre- to postharvest.
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Abbreviations

ANN Artificial Neural Network NIR Near-infrared
ANOVA Analysis of Variance PAT Process Analytical Technology
AOTF Acousto-Optic Tunable Filter PC Principal Component
CCD Charge-Coupled Device PCA Principal Component Analysis
CFU Colony-Forming Unit PCR Principal Component Regression
CMOS Complementary Metal-Oxide-Semiconductor PLS-DA Partial Least Square–Discriminant Analysis
CTIS Computed Tomography Imaging Spectrometer PLSR Partial Least Square Regression
DMC Dry Matter Content PPO Polyphenol-Oxidase
ELM Extreme Learning Machine R2 Coefficient of Determination
ETFs Electronically Tunable Filters R2CV Coefficient of Determination in Cross-Validation
FMs Foreign materials R2p Coefficient of Determination in Prediction
GA-Si-PLS Genetic Synergy Interval Partial Least Square RI Ratio Imaging
Ge Germanium RMSE Root Mean Square Error
HSI Hyperspectral Imaging or Hyperspectral Image RMSECV Root Mean Square Error in Cross-Validation
IDF Insoluble Dietary Fiber RMSEP Root Mean Square Error in prediction
InGaAs Indium Gallium Arsenide ROI Region of Interest
InSb Indium Antimonite SAM Spectral Angle Mapper
IoT Internet of Things SDF Soluble Dietary Fibre
KNN K-Nearest Neighbor SG Savitzky–Golay
LCTF Liquid Crystal Tunable Filter SI Subtraction Imaging
LDA Linear Discriminant Analysis Si Silicon
LEDI Lettuce Decay Index SIMCA Soft Independent Modeling by Class Analogy
LEDs Light-Emitting Diodes Si-PLS Synergy Interval–Partial Least Square
LEVE Leafy Vegetable Evolution SNV Standard Normal Variate
LOO-PLS Leave-One-Out Partial Least Square SPAD Soil Plant Analysis Development
LS-SVM Least Square Support Vector Machine SSC Soluble Solid Content
MAP Modified Atmosphere Packaging SVM Support Vector Machine
MLR Multiple Linear Regression SVR Support Vector Machine Regression
MSC Multiplicative Scatter Correction SWIR Shortwave Infrared
MSPC Multivariate Statistical Process Control TSC Total Sugar Content
MTC or HgCdTe Mercury Cadmium Tellurium UV Ultraviolet
MVE Minimum Volume Ellipsoid VIP Variable Importance in Projection
NB Naïve Bayes Vis Visible
NER Non Error Rate

References
1. Colelli, G.; Elia, A. Physiological and technological aspects of fresh-cut horticultural products. Italus Hortus 2009, 16, 55–78.
2. Lu, Y.; Saeys, W.; Kim, M.; Peng, Y.; Lu, R. Hyperspectral imaging technology for quality and safety evaluation of horticultural

products: A review and celebration of the past 20-year progress. Postharvest Biol. Technol. 2020, 170, 111318. [CrossRef]
3. Lu, Y.; Huang, Y.; Lu, R. Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: A

review. Appl. Sci. 2017, 7, 189. [CrossRef]
4. Wu, D.; Sun, D.W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and

assessment: A review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [CrossRef]
5. Siche, R.; Vejarano, R.; Aredo, V.; Velasquez, L.; Saldana, E.; Quevedo, R. Evaluation of food quality and safety with hyperspectral

imaging (HSI). Food Eng. Rev. 2016, 8, 306–322. [CrossRef]
6. Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture.

Remote Sens. 2020, 12, 2659. [CrossRef]
7. Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging–an emerging process analytical tool for

food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [CrossRef]
8. Martinsen, P.; Schaare, P. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy. Postharvest

Biol. Technol. 1998, 14, 271–281. [CrossRef]

https://doi.org/10.1016/j.postharvbio.2020.111318
https://doi.org/10.3390/app7020189
https://doi.org/10.1016/j.ifset.2013.04.014
https://doi.org/10.1007/s12393-015-9137-8
https://doi.org/10.3390/rs12162659
https://doi.org/10.1016/j.tifs.2007.06.001
https://doi.org/10.1016/S0925-5214(98)00051-9


Appl. Sci. 2023, 13, 9740 24 of 27

9. Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and
vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [CrossRef]

10. Amigo, J.M.; Grassi, S. Configuration of hyperspectral and multispectral imaging systems. In Data Handling in Science and
Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 17–34.

11. Lodhi, V.; Chakravarty, D.; Mitra, P. Hyperspectral imaging system: Development aspects and recent trends. Sens. Imaging 2019,
20, 35. [CrossRef]

12. Qin, J. Hyperspectral imaging instruments. In Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press:
Cambridge, MA, USA, 2010; pp. 129–172.

13. Marini, F.; Amigo, J.M. Unsupervised exploration of hyperspectral and multispectral images. In Data Handling in Science and
Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 93–114.

14. Mobaraki, N.; Amigo, J.M. HYPER-Tools. A graphical user-friendly interface for hyperspectral image analysis. Chemom. Intell.
Lab. Syst. 2018, 172, 174–187. [CrossRef]

15. Laura, J.R.; Gaddis, L.R.; Anderson, R.B.; Aneece, I.P. Introduction to the Python Hyperspectral Analysis Tool (PyHAT). In
Machine Learning for Planetary Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 55–90.

16. Jiang, H.; Yoon, S.C.; Zhuang, H.; Wang, W.; Li, Y.; Lu, C.; Li, N. Non-destructive assessment of final color and pH attributes of
broiler breast fillets using visible and near-infrared hyperspectral imaging: A preliminary study. Infrared Phys. Technol. 2018, 92,
309–317. [CrossRef]

17. Amigo, J.M.; Santos, C. Preprocessing of hyperspectral and multispectral images. In Data Handling in Science and Technology;
Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 37–53.

18. Biancolillo, A.; Marini, F. Chemometrics applied to plant spectral analysis. In Comprehensive Analytical Chemistry; Elsevier:
Amsterdam, The Netherlands, 2018; Volume 80, pp. 69–104.

19. Boulet, J.C.; Roger, J.M. Pretreatments by means of orthogonal projections. Chemom. Intell. Lab. Syst. 2012, 117, 61–69. [CrossRef]
20. Oliveri, P.; Malegori, C.; Simonetti, R.; Casale, M. The impact of signal pre-processing on the final interpretation of analytical

outcomes–A tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [CrossRef]
21. Rinnan, Å. Pre-processing in vibrational spectroscopy–when, why and how. Anal. Methods 2014, 6, 7124–7129. [CrossRef]
22. Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric strategies for spectroscopy-based food authentication. Appl.

Sci. 2020, 10, 6544. [CrossRef]
23. Maimon, O.; Rokach, L. Introduction to supervised methods. In Data Mining and Knowledge Discovery Handbook; Springer: Boston,

MA, USA, 2005; pp. 149–164.
24. Nasteski, V. An overview of the supervised machine learning methods. Horizons. b 2017, 4, 51–62. [CrossRef]
25. de la Ossa, M.Á.F.; Amigo, J.M.; García-Ruiz, C. Detection of residues from explosive manipulation by near infrared hyperspectral

imaging: A promising forensic tool. Forensic Sci. Int. 2014, 242, 228–235. [CrossRef] [PubMed]
26. Torres, I.; Amigo, J.M. An overview of regression methods in hyperspectral and multispectral imaging. Data Handl. Sci. Technol.

2019, 32, 205–230.
27. Amigo, J.M.; Martí, I.; Gowen, A. Hyperspectral imaging and chemometrics: A perfect combination for the analysis of food

structure, composition and quality. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2013;
Volume 28, pp. 343–370.

28. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.
[CrossRef]

29. Diezma, B.; Lleó, L.; Roger, J.M.; Herrero-Langreo, A.; Lunadei, L.; Ruiz-Altisent, M. Examination of the quality of spinach leaves
using hyperspectral imaging. Postharvest Biol. Technol. 2013, 85, 8–17. [CrossRef]

30. Everard, C.D.; Kim, M.S.; Lee, H. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of
contaminants on spinach leaves. J. Food Eng. 2014, 143, 139–145. [CrossRef]

31. Rady, A.; Guyer, D.; Lu, R. Evaluation of sugar content of potatoes using hyperspectral imaging. Food Bioprocess Technol. 2015, 8,
995–1010. [CrossRef]

32. Pu, Y.Y.; Sun, D.W.; Buccheri, M.; Grassi, M.; Cattaneo, T.M.; Gowen, A. Ripeness classification of bananito fruit (Musa acuminata,
AA): A comparison study of visible spectroscopy and hyperspectral imaging. Food Anal. Methods 2019, 12, 1693–1704. [CrossRef]

33. Zhu, S.; Feng, L.; Zhang, C.; Bao, Y.; He, Y. Identifying freshness of spinach leaves stored at different temperatures using
hyperspectral imaging. Foods 2019, 8, 356. [CrossRef]

34. Babellahi, F.; Paliwal, J.; Erkinbaev, C.; Amodio, M.L.; Chaudhry, M.M.A.; Colelli, G. Early detection of chilling injury in green
bell peppers by hyperspectral imaging and chemometrics. Postharvest Biol. Technol. 2020, 162, 111100. [CrossRef]

35. Lee, H.; Kim, M.S.; Jeong, D.; Chao, K.; Cho, B.K.; Delwiche, S.R. Hyperspectral near-infrared reflectance imaging for detection
of defect tomatoes. In Sensing for Agriculture and Food Quality and Safety Iii; SPIE: Bellingham, WA, USA, 2011; Volume 8027,
pp. 148–156.

36. Delwiche, S.R.; Stommel, J.R.; Kim, M.S.; Vinyard, B.T.; Esquerre, C. Hyperspectral fluorescence imaging for shelf life evaluation
of fresh-cut Bell and Jalapeno Pepper. Sci. Hortic. 2019, 246, 749–758. [CrossRef]

37. Ríos-Reina, R.; Callejón, R.M.; Amigo, J.M. Feasibility of a rapid and non-destructive methodology for the study and discrimina-
tion of pine nuts using near-infrared hyperspectral analysis and chemometrics. Food Control. 2021, 130, 108365. [CrossRef]

https://doi.org/10.1016/j.postharvbio.2007.06.024
https://doi.org/10.1007/s11220-019-0257-8
https://doi.org/10.1016/j.chemolab.2017.11.003
https://doi.org/10.1016/j.infrared.2018.06.025
https://doi.org/10.1016/j.chemolab.2012.02.002
https://doi.org/10.1016/j.aca.2018.10.055
https://doi.org/10.1039/C3AY42270D
https://doi.org/10.3390/app10186544
https://doi.org/10.20544/HORIZONS.B.04.1.17.P05
https://doi.org/10.1016/j.forsciint.2014.06.023
https://www.ncbi.nlm.nih.gov/pubmed/25086347
https://doi.org/10.3390/s18082674
https://doi.org/10.1016/j.postharvbio.2013.04.017
https://doi.org/10.1016/j.jfoodeng.2014.06.042
https://doi.org/10.1007/s11947-014-1461-0
https://doi.org/10.1007/s12161-019-01506-7
https://doi.org/10.3390/foods8090356
https://doi.org/10.1016/j.postharvbio.2019.111100
https://doi.org/10.1016/j.scienta.2018.11.061
https://doi.org/10.1016/j.foodcont.2021.108365


Appl. Sci. 2023, 13, 9740 25 of 27

38. Cen, H.; Lu, R.; Zhu, Q.; Mendoza, F. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging
with feature selection and supervised classification. Postharvest Biol. Technol. 2016, 111, 352–361. [CrossRef]

39. Bai, X.; Xiao, Q.; Zhou, L.; Tang, Y.; He, Y. Detection of sulfite dioxide residue on the surface of fresh-cut potato slices using
near-infrared hyperspectral imaging system and portable near-infrared spectrometer. Molecules 2020, 25, 1651. [CrossRef]

40. van Roy, J.; Keresztes, J.C.; Wouters, N.; De Ketelaere, B.; Saeys, W. Measuring colour of vine tomatoes using hyperspectral
imaging. Postharvest Biol. Technol. 2017, 129, 79–89. [CrossRef]

41. Xu, X.Y.; Xie, W.G.; Xiang, C.; You, Q.; Tian, X.G. Predicting the dietary fiber content of fresh-cut bamboo shoots using a visible
and near-infrared hyperspectral technique. J. Food Meas. Charact. 2023, 17, 3218–3227. [CrossRef]

42. Yan, L.; Xiong, C.; Qu, H.; Liu, C.; Chen, W.; Zheng, L. Non-destructive determination and visualisation of insoluble and soluble
dietary fibre contents in fresh-cut celeries during storage periods using hyperspectral imaging technique. Food Chem. 2017, 228,
249–256. [CrossRef]

43. Amodio, M.L.; Capotorto, I.; Chaudhry, M.M.A.; Colelli, G. The use of hyperspectral imaging to predict the distribution of
internal constituents and to classify edible fennel heads based on the harvest time. Comput. Electron. Agric. 2017, 134, 1–10.
[CrossRef]

44. Mo, C.; Kim, M.S.; Kim, G.; Lim, J.; Delwiche, S.R.; Chao, K.; Lee, H.; Cho, B.K. Spatial assessment of soluble solid contents on
apple slices using hyperspectral imaging. Biosyst. Eng. 2017, 159, 10–21. [CrossRef]

45. Zhu, H.; Chu, B.; Fan, Y.; Tao, X.; Yin, W.; He, Y. Hyperspectral imaging for predicting the internal quality of kiwifruits based on
variable selection algorithms and chemometric models. Sci. Rep. 2017, 7, 1–13. [CrossRef]

46. Rahman, A.; Park, E.; Bae, H.; Cho, B.K. Hyperspectral imaging technique to evaluate the firmness and the sweetness index of
tomatoes. Korean J. Agric. Sci. 2018, 45, 823–837.

47. Ramos-Infante, S.J.; Suárez-Rubio, V.; Luri-Esplandiu, P.; Sáiz-Abajo, M.J. Assessment Of Tomato Quality Characteristics Using
Vis/Nir Hyperspectral Imaging and Chemometrics. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and
Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; IEEE:
Piscataway, NJ, USA; pp. 1–5.

48. Chaudhry, M.M.; Amodio, M.L.; Amigo, J.M.; de Chiara, M.L.; Babellahi, F.; Colelli, G. Feasibility study for the surface prediction
and mapping of phytonutrients in minimally processed rocket leaves (Diplotaxis tenuifolia) during storage by hyperspectral
imaging. Comput. Electron. Agric. 2020, 175, 105575. [CrossRef]

49. Xiao, Q.; Bai, X.; He, Y. Rapid screen of the color and water content of fresh-cut potato tuber slices using hyperspectral imaging
coupled with multivariate analysis. Foods 2020, 9, 94. [CrossRef]

50. Shrestha, L.; Kulig, B.; Moscetti, R.; Massantini, R.; Pawelzik, E.; Hensel, O.; Sturm, B. Comparison between hyperspectral imaging
and chemical analysis of polyphenol oxidase activity on fresh-cut apple slices. J. Spectrosc. 2020, 2020, 7012525. [CrossRef]

51. Eshkabilov, S.; Lee, A.; Sun, X.; Lee, C.W.; Simsek, H. Hyperspectral imaging techniques for rapid detection of nutrient content of
hydroponically grown lettuce cultivars. Comput. Electron. Agric. 2021, 181, 105968. [CrossRef]

52. Wang, F.; Wang, C.; Song, S. A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral
imaging. RSC Adv. 2021, 11, 13636–13643. [CrossRef] [PubMed]

53. Li, D.; Zhang, F.; Yu, J.; Chen, X.; Liu, B.; Meng, X. A rapid and non-destructive detection of Escherichia coli on the surface of
fresh-cut potato slices and application using hyperspectral imaging. Postharvest Biol. Technol. 2021, 171, 111352. [CrossRef]

54. Lan, W.; Jaillais, B.; Renard, C.M.; Leca, A.; Chen, S.; Le Bourvellec, C.; Bureau, S. A method using near infrared hyperspectral
imaging to highlight the internal quality of apple fruit slices. Postharvest Biol. Technol. 2021, 175, 111497. [CrossRef]

55. Lu, R.; Peng, Y. Hyperspectral scattering for assessing peach fruit firmness. Biosyst. Eng. 2006, 93, 161–171. [CrossRef]
56. Peng, Y.; Lu, R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids

content. Postharvest Biol. Technol. 2008, 48, 52–62. [CrossRef]
57. Rajkumar, P.; Wang, N.; EImasry, G.; Raghavan, G.S.V.; Gariepy, Y. Studies on banana fruit quality and maturity stages using

hyperspectral imaging. J. Food Eng. 2012, 108, 194–200. [CrossRef]
58. Siripatrawan, U.; Makino, Y.; Kawagoe, Y.; Oshita, S. Rapid detection of Escherichia coli contamination in packaged fresh spinach

using hyperspectral imaging. Talanta 2011, 85, 276–281. [CrossRef] [PubMed]
59. Zhang, H.; Paliwal, J.; Jayas, D.S.; White, N.D.G. Classification of fungal infected wheat kernels using near-infrared reflectance

hyperspectral imaging and support vector machine. Trans. ASABE 2007, 50, 1779–1785. [CrossRef]
60. Chen, S.; Zhang, F.; Ning, J.; Liu, X.; Zhang, Z.; Yang, S. Predicting the anthocyanin content of wine grapes by NIR hyperspectral

imaging. Food Chem. 2015, 172, 788–793. [CrossRef]
61. Pang, T.; Rao, L.; Chen, X.; Cheng, J. Impruved prediction of soluble solid content of apple using a combination of spectral and

textural features of hyperspectral images. J. Appl. Spectrosc. 2021, 87, 1196–1205. [CrossRef]
62. Francis, G.A.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors affecting quality and safety of

fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [CrossRef] [PubMed]
63. Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.U.A.N.; Cubero, S.; García-Navarrete, O.L.; Blasco, J. Recent advances and applications

of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 2012, 5, 1121–1142. [CrossRef]

https://doi.org/10.1016/j.postharvbio.2015.09.027
https://doi.org/10.3390/molecules25071651
https://doi.org/10.1016/j.postharvbio.2017.03.006
https://doi.org/10.1007/s11694-023-01845-4
https://doi.org/10.1016/j.foodchem.2017.02.010
https://doi.org/10.1016/j.compag.2017.01.005
https://doi.org/10.1016/j.biosystemseng.2017.03.015
https://doi.org/10.1038/s41598-017-08509-6
https://doi.org/10.1016/j.compag.2020.105575
https://doi.org/10.3390/foods9010094
https://doi.org/10.1155/2020/7012525
https://doi.org/10.1016/j.compag.2020.105968
https://doi.org/10.1039/D1RA01013A
https://www.ncbi.nlm.nih.gov/pubmed/35423868
https://doi.org/10.1016/j.postharvbio.2020.111352
https://doi.org/10.1016/j.postharvbio.2021.111497
https://doi.org/10.1016/j.biosystemseng.2005.11.004
https://doi.org/10.1016/j.postharvbio.2007.09.019
https://doi.org/10.1016/j.jfoodeng.2011.05.002
https://doi.org/10.1016/j.talanta.2011.03.061
https://www.ncbi.nlm.nih.gov/pubmed/21645699
https://doi.org/10.13031/2013.23935
https://doi.org/10.1016/j.foodchem.2014.09.119
https://doi.org/10.1007/s10812-021-01129-z
https://doi.org/10.1080/10408398.2010.503685
https://www.ncbi.nlm.nih.gov/pubmed/22530712
https://doi.org/10.1007/s11947-011-0725-1


Appl. Sci. 2023, 13, 9740 26 of 27
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