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Abstract: Breast cancer is one of the most common female diseases, posing a great threat to women’s
health, and breast ultrasound imaging is a common method for breast cancer diagnosis. In recent
years, U-Net and its variants have dominated the medical image segmentation field with their excel-
lent performance. However, the existing U-type segmentation networks have the following problems:
(1) the design of the feature extractor is complicated, and the calculation difficulty is increased; (2) the
skip connection operation simply combines the features of the encoder and the decoder, without
considering both spatial and channel dimensions; (3) during the downsampling phase, the pooling
operation results in the loss of feature information. To address the above deficiencies, this paper
proposes a breast tumor segmentation network, RMAU-Net, that combines residual depthwise sepa-
rable convolution and a multi-scale channel attention gate. Specifically, we designed the RDw block,
which has a simple structure and a larger sensory field, to overcome the localization problem of
convolutional operations. Meanwhile, the MCAG module is designed to correct the low-level features
in both spatial and channel dimensions and assist the high-level features to recover the up-sampling
and pinpoint non-regular breast tumor features. In addition, this paper used the Patch Merging
operation instead of the pooling method to prevent the loss of breast ultrasound image information.
Experiments were conducted on two breast ultrasound datasets, Dataset B and BUSI, and the results
show that the method in this paper has superior segmentation performance and better generalization.

Keywords: breast tumor segmentation; U-Net; residual depthwise separable convolution; multi-scale
channel attention gate

1. Introduction

Breast cancer is a common malignant tumor that poses a serious health risk to
women [1] and is known to be one of the deadliest cancers, causing the highest num-
ber of deaths globally [2], making early diagnosis and treatment crucial. Combining breast
ultrasonography with computer-aided diagnostic (CAD) systems [3] is one of the most
efficient and effective methods of cancer detection due to its painless, cost-effective, non-
invasive, and nonradioactive properties [4]. However, accurate breast ultrasound image
segmentation remains a challenging problem [5] due to the presence of artifacts and noise
in various breast ultrasound images, including high speckle noise [6], low signal-to-noise
ratios, and intensity inhomogeneities [7]. In clinical practice, the segmentation task is
usually accomplished via manual annotation by a medical professional, which is very time-
consuming, and the annotation accuracy varies widely. Therefore, it is of great significance
to study the automatic segmentation techniques of breast ultrasound images.

Traditional automatic segmentation algorithms for breast ultrasound typically work
directly on the images themselves, using methods such as image processing-based seg-
mentation algorithms [8,9]. While these approaches can achieve effective segmentation
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results for benign tumor regions with clear and well-defined boundaries, they often fall
short when confronted with the challenges posed by irregular tumor regions and blurred
boundaries. Similar traditional segmentation methods encompass threshold segmenta-
tion [10,11], cluster-based segmentation [12,13], watershed algorithm [14], graph-based
segmentation [15,16], and more. These techniques encounter similar challenges when
applied to the segmentation of complex ultrasound images of breast tumors.

With the continuous advancement of machine learning methods, artificial intelligence
has revolutionized traditional approaches to solving a wide range of problems across
various fields, particularly in the realm of biomedicine [17]. The utilization of artificial
intelligence algorithms allows for more precise and efficient solutions to challenges like
protein structure prediction, gene sequence data mutation recognition, diagnosis of bone
diseases [18,19], and organ lesion segmentation. The introduction of convolutional neural
networks (CNNs) has further catalyzed progress in biological research. CNNs are versatile
in handling diverse types of data. One-dimensional CNNs slide in a single direction and are
well-suited for data with only one spatial dimension, such as text or biological sequences. In
contrast, two-dimensional CNNs can process data with two spatial dimensions, such as CT
images, while 3D CNNs are designed for volumetric data like magnetic resonance imaging
scans. Biological data often exhibit a pronounced local structure, and the recognition of
these structures or patterns is crucial for analysis. CNNs inherently excel at capturing local
features and possess robust feature extraction capabilities. Consequently, the integration of
interdisciplinary knowledge and methods, along with the application of CNNs, is poised
to drive further breakthroughs and innovations in the field of biological research.

The diagnosis and treatment of breast cancer is an important application in biomedical
research. Through automatic segmentation of breast ultrasound images, doctors can evalu-
ate disease conditions more efficiently and give diagnostic opinions. At present, more and
more studies are combining CNNs to achieve segmentation of breast ultrasound images.
The research shows that the image segmentation method based on deep neural networks
has better performance in automatic feature extraction and segmentation accuracy [20,21].
Full Convolutional Networks (FCNs) [22], Semantic Segmentation Networks (SegNet) [23],
and U-net networks [24] are commonly used image segmentation methods. U-Net network,
in particular, has achieved great success in the field of medical image segmentation. It is an
encoder–decoder network architecture which uses standard convolution and continuous
downsampling to complete image feature extraction, as well as up-sampling operation and
skip connection to complete feature image recovery and finally produce binary segmenta-
tion results. It only needs a small amount of medical data to achieve a good segmentation
effect and has become a benchmark in the field of medical image segmentation. In recent
years, many U-Net-based medical segmentation networks have been proposed, such as
U-Net++ [25], Attention U-Net [26], ResU-Net [27], MultiResUNet [28], Unet3+ [29], and
UNeXt [30]. However, these U-shaped networks still have the following problems: (1) the
design of the feature extractor is complicated, and the calculation difficulty is increased;
(2) the skip connection operation simply combines the features of the encoder and the
decoder, without considering both spatial and channel dimensions; (3) during the down-
sampling phase, the pooling operation results in the loss of feature information. In addition,
some Transformer-based [31] networks have also been applied to medical image segmenta-
tion tasks [32–34]; however, the Transformer model is not suitable for breast ultrasound
image segmentation due to its high demand for medical data and large computational
consumption due to its attention mechanism.

Therefore, basing itself on the Unet model and aiming at the shortcomings of the
above U-shaped networks, this paper proposes a breast tumor segmentation network,
RMAU-Net, which combines residual depthwise separable convolutions and multi-scale
channel attention gates. This work has the following contributions:

(1) The feature extraction module RDw block was designed, which is simple in structure
and can capture more global breast tumor feature information.
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(2) It proposes a multi-scale channel attention gate module to better localize irregular
breast tumors by portraying low-level features in both spatial and channel dimensions.

(3) It uses the Patch Merging operation for downsampling so that breast ultrasound
image information will not be lost.

(4) Experiments were conducted on two breast ultrasound datasets, Dataset B and BUSI,
and the results show that the method in this paper has superior segmentation perfor-
mance and better generalization.

2. Related Work

With the continuous development of deep learning, more and more deep learning
models have been used to achieve breast ultrasound image segmentation. To solve various
problems in breast ultrasound images, researchers have designed many segmentation
networks. In order to accurately segment small tumors from breast ultrasound images,
Shareef et al. [35] designed a small tumor perception network. This method uses different
multi-scale convolutional blocks to integrate the context information of breast tumors with
high-resolution features, thus improving the accuracy of small breast tumor segmenta-
tion. Lei et al. [36] proposed a boundary-regularized deep convolutional encoder–decoder
network to alleviate the challenge of whole breast ultrasound image segmentation. Xue
et al. [37] developed a deep CNN with a global guide block and a breast lesion boundary
detection module to enhance breast lesion segmentation. Huang et al. [38] proposed a
boundary rendering network for breast lesion segmentation through the differentiable
boundary selection module and the GCN-based boundary rendering module. However,
obtaining accurate boundaries from heavily cascaded or shaded areas remains challenging.
Tong et al. [39] used residual convolutional blocks instead of AttU-net convolutional blocks
to segment breast tumors, and then Zhuang et al. [40] introduced extended convolutional
layers on this basis to capture features under different acceptance fields. Se Woon et al. [41]
proposed a multi-stage breast tumor segmentation technique based on ultrasound image
classification and segmentation, which firstly classifies the images correctly and then uses
RFS-UNet to exclusively segment the images classified as abnormal. We summarize the
common problems of these U-shaped networks and design our breast tumor segmenta-
tion model from the perspective of reconstructing convolutional blocks and enhancing
skip connections.

2.1. Depthwise Separable Convolution

Depthwise separable convolution was proposed in Xception [42], which splits a com-
plete convolution operation into two steps, namely depthwise convolution and pointwise
convolution. Each convolution kernel is responsible for all channels, directly mixing in-
formation from each channel. Different from conventional convolution operations, each
convolutional kernel of depthwise convolution is only responsible for one channel, and
each convolutional kernel learns in its own feature space, failing to make effective use of the
feature information of different channels in the same spatial position. Therefore, pointwise
convolution is required to combine feature maps to generate new feature maps. Pointwise
convolution combines previous maps weighted in depth to generate new feature maps
to ensure the fusion of feature information. The decomposition of depthwise separable
convolution greatly saves the calculation cost and reduces the number of parameters, which
newly enlightens the design and reconstruction of convolutional blocks. Dar et al. [43] pro-
posed EfficientU-Net, which used depthwise separable convolution to minimize training
parameters and capture relevant texture features to accurately locate tumor boundaries in
the breast feature extraction module of this paper. The breast feature extraction module in
this paper is also based on depthwise separable convolution.

2.2. Skip Connection

The reason why U-Net performs well in medical segmentation tasks is the skip con-
nection operation. Based on the encoder–decoder structure, the skip connection is designed
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to merge the upper convolutional feature layer with the lower convolutional feature layer
with richer semantic information. In the process of network communication, as the network
goes deeper and deeper, the receptive field of the corresponding feature map becomes
larger and larger, but less and less detailed information is retained. For semantic segmen-
tation tasks, spatial domain information is very important, and only features containing
high-level semantic information can generate an accurate segmentation mask. With skip
connection, shallow convolution layer features can be introduced. These features have
higher resolution and a shallower level and contain relatively rich low-level information,
which can help high-level semantic features generate more accurate masks. Attention
U-Net [26], MultiResU-Net [28], and other networks extend skip connection and achieve
a good segmentation effect. This module is also improved to meet the needs of breast
tumor segmentation.

3. Method

As shown in Figure 1, the RMAU-Net is structured as a U-shaped encoder–decoder
network. In the encoder stage, the input image has dimensions of 256 × 256 × 3. After
undergoing five RDw operations and four Patch Merging operations, the output size is
adjusted to 16 × 16 × 1024. In the decoder stage, the process begins with an up-sampling
operation, which reduces the number of channels by half while doubling the resolution.
Subsequently, the features from the MCAG module are fused with the up-sampled features
in the channel dimension, facilitating precise localization of breast lesions. This fusion
is repeated four times through consecutive up-sampling layers, ultimately restoring the
feature map to its original size. Finally, the output is fed into a softmax layer for binarization,
producing the breast lesion segmentation results.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 13 
 

tumor boundaries in the breast feature extraction module of this paper. The breast feature 
extraction module in this paper is also based on depthwise separable convolution. 

2.2. Skip Connection 
The reason why U-Net performs well in medical segmentation tasks is the skip con-

nection operation. Based on the encoder–decoder structure, the skip connection is de-
signed to merge the upper convolutional feature layer with the lower convolutional fea-
ture layer with richer semantic information. In the process of network communication, as 
the network goes deeper and deeper, the receptive field of the corresponding feature map 
becomes larger and larger, but less and less detailed information is retained. For semantic 
segmentation tasks, spatial domain information is very important, and only features con-
taining high-level semantic information can generate an accurate segmentation mask. 
With skip connection, shallow convolution layer features can be introduced. These fea-
tures have higher resolution and a shallower level and contain relatively rich low-level 
information, which can help high-level semantic features generate more accurate masks. 
Attention U-Net [26], MultiResU-Net [28], and other networks extend skip connection and 
achieve a good segmentation effect. This module is also improved to meet the needs of 
breast tumor segmentation. 

3. Method 
As shown in Figure 1, the RMAU-Net is structured as a U-shaped encoder–decoder 

network. In the encoder stage, the input image has dimensions of 256 × 256 × 3. After 
undergoing five RDw operations and four Patch Merging operations, the output size is 
adjusted to 16 × 16 × 1024. In the decoder stage, the process begins with an up-sampling 
operation, which reduces the number of channels by half while doubling the resolution. 
Subsequently, the features from the MCAG module are fused with the up-sampled fea-
tures in the channel dimension, facilitating precise localization of breast lesions. This fu-
sion is repeated four times through consecutive up-sampling layers, ultimately restoring 
the feature map to its original size. Finally, the output is fed into a softmax layer for bina-
rization, producing the breast lesion segmentation results. 

 
Figure 1. Overview of the proposed RMAU-Net architecture. 

  

Figure 1. Overview of the proposed RMAU-Net architecture.

3.1. RDw Block

As illustrated in Figure 2a, when conducting feature operations on the same feature
graph, depthwise separable convolution entails approximately one-third of the parameters
and computational workload compared to conventional convolution. This property allows
neural networks employing depthwise separable convolution to become deeper and larger
while maintaining the same number of parameters. However, it is not recommended to
entirely substitute standard convolution with depthwise separable convolution. This is
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because depthwise separable convolution computes features for spatial and channel dimen-
sions independently, which can lead to the loss of certain spatial interaction information.
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Figure 2. (a) Depthwise separable convolution. (b) Residual depthwise separable convolution.

To address this limitation, we have made modifications to the depthwise separable
convolution, as depicted in Figure 2b.

The residual depthwise separable convolution first deeply convolved the input fea-
tures. Instead of using a 3 × 3 convolution kernel, we used a 7 × 7 convolution kernel to
have a larger receptive field during feature extraction, which can effectively alleviate the
locality of the convolution operation and allow us to see more comprehensive features of
breast tumors. Then, the features went through the normalization operation and activation
function. Here, we no longer directly carried out point-to-convolution but introduced resid-
ual operation to connect the features with the original residual input, reduce the spatial
interaction information lost via deep convolution, and make the training results proceed in
a more stable direction without degradation. Finally, point-to-convolution fusion channel
information was carried out. In addition, we used LeakyReLU instead of ReLU to avoid
negative inputs causing the neural network to not learn, making the network have a more
stable gradient. The whole process is shown in Equations (1) and (2), which represents the
LeakyReLU activation function.

X1 = σ1(BN(DepthwiseConv(X))) (1)

X2 = σ1(BN(PConv(X + X1))) (2)

As shown in the extended part of Figure 1, the RDw block was formed by a separable
convolutional stack of L residuals depth, and the numbers of L we set were (2,2,3,3) from
top to bottom.

3.2. Multi-Scale Channel Attention Gate

One of the key reasons for the excellent performance of U-Net in medical segmentation
tasks is the skip connection operation, which concatenates low-level features with high-
level features along the channel dimension. This fusion assists in feature recovery by
incorporating essential low-level spatial information. However, since channels in the
feature maps contain redundant and diverse feature information, there is a desire to
emphasize the information most crucial for feature recovery. To address this concern, the
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SE (Squeeze-and-Excitation) attention mechanism was introduced as a solution [44]. The
structure of the SE attention mechanism is depicted in Figure A1 (Appendix A).

The input features X ∈ RH×W×C are first turned into features of size 1 × 1 × C after
global average pooling, and then the number of feature channels is reduced to 1/r through
a fully connected layer Fc1. Then, after function ReLU activation, the fully connected layer
FC2 is used to recover the feature channels, the attention coefficients are normalized through
the sigmoid layer, and finally, the attention weights are multiplied by the input features X
to obtain the attention-weighted feature map X′. The SE attention calculation process is
shown in the following equation:

X′ = X⊗ Sigmoid(FC2(ReLU(Fc1(AvgPooling(X))))) (3)

Nevertheless, breast tumors exhibit varying sizes and irregular shapes, and simply
enhancing attention in the channel dimension may not suffice. To address this, we have
designed the MCAG (Multi-scale Channel Attention Gate) module, the structure of which
is depicted in Figure 3.
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Figure 3. The architecture of the multi-scale channel attention gate.

Our approach starts by conducting a multi-scale fusion of breast tumor features
across various spatial locations. Subsequently, we obtain multi-scale coefficients λ after
normalization and applying an activation function. These coefficients are then multiplied
with the initial features, followed by a residual operation. This process enables the initial
features to learn the spatial scale information that is most relevant for the task. Finally,
we filter the valuable information within the channel dimension, further enhancing the
segmentation network’s adaptability to irregular breast tumor lesions. The calculation
process for the MCAG module is outlined in Equations (4) and (5).

λ = Sigmoid(PConv(σ1(concat{BN{(DConv(Xi)), (PConv(Xi)), (SConv(Xi))}}))) (4)

X′i = SE(Xi + λXi) (5)

3.3. Patch Merging

Image segmentation networks frequently employ average pooling or maximum pool-
ing for feature downsampling. However, these operations inevitably result in the loss of
resolution information. If a deep network struggles to learn effective features, it can signifi-
cantly impair the model’s performance. Taking inspiration from the Swin-Transformer [45],
we adopted the Patch Merging operation to guarantee that no information was sacrificed
during the downsampling process. This approach enabled us to adjust the number of
network channels while decreasing resolution, as illustrated in Figure 4.
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Since each downsampling operation reduced the resolution by half in both the row
and column directions, we adopted a specific approach. We selected every other element at
a 2-pixel interval in both directions and combined them to form new patches. These patches
were then concatenated to create a unified tensor. Next, each patch was expanded in each
channel, resulting in a fourfold increase in the original channel dimensions. Afterward, we
applied a normalization operation to the tensor. Finally, we adjusted the channel dimen-
sions back to twice the original size through a fully connected layer. This process ensured
that we preserved resolution while simultaneously incorporating spatial information. This
enables us to make full use of pixel feature information, especially in grayscale images like
breast ultrasound scans.

3.4. Loss Function

The loss function we used was a hybrid loss function consisting of Binary Cross
Entropy (BCE) loss and Dice loss, both of which are widely used loss functions in im-
age segmentation tasks. Dice loss focuses on global observation while BCE loss focuses
on micro-pixel by pixel comparison, and the two complement each other. When the
segmentation content is unbalanced, such as a 512 × 512 picture with a 10 × 10 and a
200 × 200 segmentation example, Dice loss tends to learn large samples while ignoring
small samples, but BCE still learns small samples, so it is necessary to combine the two for
loss calculation.

The weights of BCE loss and Dice loss were 0.5 and 1, which were consistent with the
results of breast tumor segmentation networks such as unext. To be fair, we did not adjust
parameters separately for their specific weights. It was defined as follows:

L = 0.5BCE(ŷ, y) + Dice(ŷ, y) (6)

4. Experiment and Analysis
4.1. Dataset and Preprocessing

In this paper, two widely used public breast ultrasound datasets are used to evalu-
ate the performance of segmentation networks. The first is Dataset B, collected by Yap
et al. [46]. The second breast ultrasound dataset used in this paper is BUSI, constructed by
Al-Dhabyani et al. [47], with specific information shown in Table 1.

The dataset was split into 80% for training and 20% for validation. During the data
preprocessing stage, we resized all images to a 256 × 256 resolution. To address the sample
imbalance between benign and malignant tumor data, we applied data augmentation tech-
niques specifically to the tumor samples. This augmentation involved contrast stretching



Appl. Sci. 2023, 13, 11362 8 of 13

and flipping operations. You can see the results of the data augmentation for breast tumor
ultrasound in the Figure 5.

Table 1. Details of the Dataset B and BUSI.

Equipment Benign Malignant Total

Dataset B Siemens ACUSON Sequoia C512 110 53 163
BUSI LOGIQ E9 and LOGIQ E9 Agile 437 210 647
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4.2. Experimental Settings

In this experiment, we utilized the Adam optimizer to optimize our network. We
set the initial learning rate to 0.0001 and employed a momentum value of 0.9. The batch
size was configured to 8, and we ran the training for a total of 300 epochs. Our network
was executed on a system running Ubuntu 20.04 with Python version 3.8, PyTorch version
1.11.0, and powered by NVIDIA RTX 3090 GPUs.

We show the training flow of our proposed segmentation network in detail in Algorithm 1,
and the algorithm pseudo-code is shown as follows.

Algorithm 1. The detailed training process of the RMAU-Net
Input: Augmented training sample S = {X1, X2, . . . Xn}, where X ∈ R256×256×3

1. Begin
2. Randomly initialize the model parameters
3. While ε have not converged do
4. For epoch = 0, 1, . . . , 300 do
5. The parameters were retrained on the target dataset
6. The Adam optimizer was used to update the weights, as expressed by

εc+1 = εc − α× ŝc
(
√

r̂c+θ)

α (learning rate), ŝc (the first corrected bias), r̂c (the second corrected bias)
7. The BDice loss function was used to update the weights, as expressed by

Gε ← ∇εLossBDice(S) , where “BDice” means BCE Loss and Dice Loss
8. Apply the cosine annealing strategy to adjust α
9. Continuously update the weighs using the S
10. ε← ε− µGε

11. End for
12. End while
13. End
Output: the best weight parameter εbest

4.3. Evaluation Indicators

In this paper, five commonly used segmentation metrics are used to evaluate the
effectiveness of different methods for the segmentation of breast lesions; they are Dice,
IoU, recall, precision, and accuracy. IoU and Dice are the two most important indexes of
the image segmentation task. Recall refers to the proportion of all foreground pixels in
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the ground truth that are correctly segmented as the foreground by the model, precision
refers to the proportion of pixels in the segmentation result that are correctly segmented as
foreground, and accuracy refers to the proportion of pixels in the segmentation result that
are correctly segmented as foreground or hard ground.

4.4. Results and Discussion

To validate the effectiveness of our network, we conducted a comparison with current
open-source and widely used medical image segmentation networks, including U-Net,
UNet++, SegNet, Attention U-Net, UNeXt, and ResU-Net. All models were deployed and
executed locally, with all experimental variables being consistent except for the network
architecture.

Figure 6 showcases the outcomes of breast tumor segmentation alongside actual
manual annotations. When assessing the segmentation results as a whole, our model
demonstrates the capability to accurately locate lesion regions and determine their shape
and size. In terms of segmentation intricacies, our model outperforms manual annotations,
delivering more detailed and refined results. Notably, even in the case of fuzzy and unclear
tumor regions, as highlighted in the red box, our model still achieves precise segmentation.
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The experimental data further validate the efficacy of our model. Results from various
models tested on both Dataset B and the BUSI dataset are summarized in Tables 2 and 3.
Notably, on the Dataset B dataset, our model exhibits a 1.72% improvement in IoU and a
0.84% improvement in the Dice score. On the BUSI dataset, the improvements are even
more pronounced, with a 2.25% increase in IoU and a significant 2.58% improvement in
the Dice score. While our model may not have achieved the highest scores in individual
metrics, overall, it has achieved a notably high level of segmentation quality. Importantly,
our model excels in the two most critical segmentation indicators, Dice and IoU, which
underscores its effectiveness in accurately delineating breast tumor lesions.

Table 2. Comparison results with other models on Dataset B.

Model Dice IoU Recall Precision Accuracy

U-Net [24] 86.28 75.89 87.15 85.75 99.15
U-Net++ [25] 83.84 72.20 85.17 82.79 98.99
SegNet [23] 83.51 71.86 80.33 87.49 99.05

Attention U-Net [26] 84.27 72.86 84.46 84.70 99.05
UNeXt [30] 81.09 68.57 80.09 81.66 98.81
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Table 2. Cont.

Model Dice IoU Recall Precision Accuracy

ResU-Net [27] 84.37 73.71 85.35 83.98 99.04
Ours 87.12 77.61 86.04 88.55 99.22

Table 3. Comparison results with other models on BUSI.

Model Dice IoU Recall Precision Accuracy

U-Net [24] 75.65 62.33 71.97 81.90 95.95
U-Net++ [25] 75.03 61.59 69.50 85.15 96.04
SegNet [23] 77.21 64.72 72.10 86.81 96.33

Attention U-Net [26] 74.65 61.52 68.85 85.60 95.99
UNeXt [30] 72.77 58.59 67.57 82.05 95.67

ResU-Net [27] 75.20 61.72 69.69 84.09 95.95
Ours 79.79 66.97 79.63 84.77 96.43

The visual comparison results for breast tumor ultrasound segmentation can be ob-
served in Figures 7 and 8. When examining these visual results in conjunction with the
data presented in the table above, it becomes evident that our model excels in segmenting
tumor lesions with irregular and indistinct boundaries. It accurately delineates lesions of
varying scales. These findings underscore the effectiveness of our proposed multi-scale
channel attention gate.
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5. Conclusions

In this study, our paper addresses several issues related to the segmentation of breast
tumors using U-shaped networks. Firstly, U-shaped networks often suffer from a complex
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feature extraction module. Additionally, the skip connection operation fails to consider both
spatial and channel dimensions simultaneously, and pooling operations result in the loss
of valuable feature information. To tackle these challenges, we introduced a novel breast
tumor segmentation network known as RMAU-Net, which combines the power of residual
depthwise separable convolution and multi-scale channel attention gates. We have de-
signed the RDw block, which boasts a straightforward structure capable of capturing more
comprehensive global characteristics of breast tumors. Simultaneously, the MCAG block is
devised to rectify low-level features across both spatial and channel dimensions, aiding in
the effective learning of non-regular breast tumor features and facilitating high-level feature
recovery during up-sampling. Furthermore, our approach replaces traditional pooling
methods with Patch Merging operations to prevent the loss of critical breast ultrasound
image information. Our experimental results on two distinct datasets demonstrate that
RMAU-Net outperforms existing methods in terms of segmentation accuracy. In the future,
we plan to further enhance RMAU-Net to handle more challenging breast lesion images and
explore lightweight model designs to achieve more efficient breast tumor segmentation.
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S.Y.; writing—original draft preparation: S.Y., Z.Q., and P.L.; writing—review and editing: Z.Q., P.L.,
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version of the manuscript.
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