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Featured Application: In this study, the impact of errors and missing information in the inven-
tory data of highway–rail grade crossings (HRGCs) on the crash frequency prediction models
currently used in the US is investigated. Transportation authorities and safety regulators can
apply the insights gained from this research to enhance the accuracy of crash frequency predic-
tion models for HRGCs. By utilizing more accurate and complete inventory data, these models
provide more reliable crash frequency predictions, enabling better resource allocation and more
targeted safety interventions.

Abstract: The highway–rail grade crossings (HRGCs) crash frequency models used in the US are
based on the Federal Railroad Administration’s (FRA) database for highway–rail crossing inventory.
Inaccuracies or missing values within this database directly impact the estimated parameters of
the crash models and subsequent crash predictions. Utilizing a set of 560 HRGCs in Nebraska,
this research demonstrates variations in crash predictions estimated by the FRA’s 2020 Accident
Prediction (AP) model under two scenarios: firstly, employing the unchanged, original FRA HRGCs
inventory dataset as the input, and secondly, utilizing a field-validated inventory dataset for the same
560 HRGCs as input to the FRA’s 2020 Accident Prediction (AP) model. The findings indicated a
significant statistical disparity in the predictions made with the two input datasets. Furthermore, two
new Zero-inflated Negative Binomial (ZINB) models were estimated by employing 5-year reported
HRGCs crashes and the two inventory datasets for the 560 HRGCs. These models facilitated the
comparison of model parameter estimates and estimated marginal values. The results indicated that
errors and missing values in the original FRA HRGCs inventory dataset resulted in crash predictions
that statistically differed from those made using the more accurate and complete (validated in the field)
HRGCs inventory dataset. Furthermore, the crash prediction model estimated upon the corrected
inventory data demonstrated enhanced prediction performance, as measured by the statistical fitness
criteria. The findings emphasize the importance of collecting complete and accurate inventory data
when developing HRGCs crash frequency models. This will enhance models’ precision, improve
their predictive capabilities to aid in better resource allocation, and ultimately reduce HRGCs crashes.

Keywords: rail–highway intersections; grade crossing inventory data; data validation; transportation
safety data; generalized linear models

1. Introduction

Highway–rail grade crossings (HRGCs) hold significance within the transportation
network landscape due to their role in the intersection of rail and highway networks.
Traffic crashes at HRGCs are often more severe compared to crashes at other locations,
and they present the risk of multimodal traffic disruption (i.e., interruption of rail, motor
vehicle, bicyclist, and pedestrian traffic). The involvement of hazardous materials may
further aggravate crash consequences at HRGCs. The Federal Railroad Administration
(FRA) reported 2195 crashes at HRGCs in 2022 across the US, including 274 fatalities and

Appl. Sci. 2023, 13, 11537. https://doi.org/10.3390/app132011537 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132011537
https://doi.org/10.3390/app132011537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3850-0601
https://doi.org/10.3390/app132011537
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132011537?type=check_update&version=1


Appl. Sci. 2023, 13, 11537 2 of 21

810 injuries. Fatal crashes accounted for 12.48% of the total reported crashes [1]. Identi-
fication of the factors contributing to HRGCs crashes and their frequency are important
aspects to improve safety at these locations.

Different types of statistical and machine learning models are available for understand-
ing crash phenomenon and to predict future crashes at HRGCs. Transportation agencies
often use crash predictions from such models for the identification of problematic HRGCs,
further investigation, and allocation of safety improvement resources. These models in-
variably utilize reported crashes and HRGCs inventory characteristics, such as roadway
and track features, signage, train, and motor vehicle traffic volume. The main source
of HRGCs inventory data in the US is the FRA’s Office of Railroad Safety highway–rail
crossing database files [1]. The accuracy and completeness of the HRGCs inventory data
are important as they can affect the estimated model parameters and consequently crash
predictions from the estimated model [2].

The purpose of this research was to assess the effects of errors and missing information
in the FRA’s HRGCs inventory data on crash frequency model estimation and HRGCs crash
predictions. The research was based on the original (unaltered) FRA HRGCs inventory
dataset for 560 HRGCs located in Nebraska, and a field/site verified the HRGCs inventory
database for those 560 HRGCs obtained by comparing the unaltered FRA HRGCs inventory
data to on-site conditions and correcting any erroneous and/or missing data. This research
illustrates the importance of having accurate and complete HRGCs data by identifying
differences in crash predictions using the two datasets in the newly published FRA’s 2020
Accident Prediction (AP) model [3]. The two inventory datasets were utilized to estimate
two comparative Zero-inflated Negative Binomial (ZINB) models, and an examination of
model performance was conducted, considering fitness criteria such as Akaike Information
Criteria (AIC) and Bayesian Information Criteria (BIC). The following two hypothesis were
tested for this research: (1) there is no difference in the expected value of crashes (crash
predictions) estimated by utilizing FRA and field-validated data (α = 5%), and (2) there
is no statistical difference in the estimated parameters’ coefficients and performance of
new crash frequency prediction models based on the two datasets (FRA vs field-validated)
(α = 5%).

Figure 1 shows the approach used for this research and provides a framework to
explain data collection, the methodology employed, and the analysis conducted. It is
important to mention that this paper constitutes a segment of a doctoral dissertation [2],
with its primary focus centered on the analysis of the impacts of inaccuracies and missing
values within the HRGCs inventory data on the crash frequency and severity prediction
models; the research utilized the Federal Railroad Administration (FRA) and the field-
validated HRGCs inventory datasets.

The remainder of this paper is organized as follows. The next section presents a
review of the literature on crash frequency prediction models and methods to deal with
over-dispersion issues regarding HRGCs crashes. A section describing the inventory data
verification follows. The next section covers the methodology, including tested hypotheses,
a detailed explanation of the Zero-inflated Negative Binomial (ZINB) model, and the results
of the analysis, including model comparisons. The last section summarizes key results and
presents the study’s conclusions, along with its limitations and recommendations for future
research. This paper preferentially refers to train-involved collisions at HRGCs as crashes
but also uses accidents in certain contexts (e.g., Accident Prediction and Severity Model).
Additionally, the word “Data” is treated as a plural noun in this manuscript.
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Figure 1. Research framework for crash prediction analysis [2].

2. Literature Review

Crash modeling and prediction are critical for establishing systems for evaluating and
managing traffic safety [2–6]. Policymakers and traffic engineers often use these models
to analyze the performance of safety interventions and assess the safe functioning of the
transportation system. For highway intersections or segments, as well as HRGCs, the
links between vehicle crashes and geometric design, traffic characteristics, and engineering
factors have been well researched using statistical models. Train–vehicle crash injury and
mortality rates are greater than other forms of traffic crashes, mostly due to the significant
mass difference between trains and motor vehicles, making HRGCs just as significant as
highway intersections for crash modeling and prediction [2,6].

The Poisson regression model, including its variants, have served as examination
tools for vehicular crash frequency [7], as well as drivers’ unsafe maneuvers at HRGCs
in the presence of trains [8]. Negative Binomial (NB) and Zero-inflated Poisson (ZIP)
are two widely used Poisson model variations [9]. These models cope with issues like
data over-dispersion (when the sample variance is greater than the sample mean) and
prevalence of zeros in crash data. On occasion, crash data may be under-dispersed, i.e.,
sample variance is less than sample mean. Standard distributions such as Poisson and
Negative Binomial do not handle this well [10,11], but a family of Generalized Poisson (GP)
regression models are suitable in such situations [12]. To elucidate further, the published
literature provides several studies focused on crash modeling for HRGCs [13–18]. Table 1
presents an overview of the studies on HRGCs crash prediction models, including the
methodology used, data resources utilized, and explanatory variables considered in the
predictive modeling process.
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Table 1. Salient features of relevant HRGCs crash frequency modeling studies [2].

Year Authors No of Obser-
vations Data Type Location Context Method

Used

Types of
Explanatory

Variables

2003 Saccomanno
et al. [15]

10,456
HRGCs
crashes

Canadian
Public

HRGCs data
Canada

Collision
prediction
models for

highway–rail
grade

crossings in
Canada

Negative
Binomial

Regression

Female highway
users, higher
train speeds,

very old drivers,
open areas,

concrete road
surface types,
and railroad
equipment

striking highway
users before

crash.

2006 Oh et al. [7] Crash data of
162 HRGCs

1998–2002
Korean

National
Railroad
(KNR)

accident
database

South Korea

Accident
prediction
model for
railway–
highway
interfaces

Poisson
Model,

Gamma
model, and

Zero-inflated
Poisson
Model

Traffic volume,
average daily
train volumes,

the proximity of
crossings to
commercial
areas, time
duration

between the
activation of

warning signals
and gates, and
the distance of

the train detector
from crossings.

2006 Nam and Lee
[17]

100
highway–rail

grade
crossings
crash data

Korean
National
Railroad
accident
database

South Korea

Accident
frequency

model using
zero

probability
process

Zero-inflated
Models

Roadway
characteristics,

guardrails,
number of tracks,

control device
indicator,

warning time.

2010 Yan at al. [4]
6244

train–vehicle
crashes

27 years of
FRA HRGCs

database
(1980–2006)

United States

Using
hierarchical
tree-based
model to
predict

train–vehicle
crashes at

passive
HRGCs

Hierarchical
Tree-Based
Regression

Model

Crossbucks only,
and crossbucks
combined with
stop signs, and

Stop sign
treatment.
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Table 1. Cont.

Year Authors No of Obser-
vations Data Type Location Context Method

Used

Types of
Explanatory

Variables

2016 Lu and
Tolliver [11]

344 HRGCs
crash data

from 1996 to
2014 in North

Dakota

FRA HRGC
incident and

inventory
data

North
Dakota,

United States

Accident
prediction
model for

public
highway–rail

grade
crossings

Conway–
Maxwell–
Poisson
Model,

Bernoulli
model,
Hurdle
Poisson
Model

Warning devices,
highway

pavement
condition,

appearance of
pavement
markings,

appearance of
interconnection/

pre-emption,
smallest crossing

angle,
appearance of
pullout lane,

functional
classifications of
highway, train
traffic density,
highway user
types, weather

conditions, track
conditions,

highway traffic
density,

maximum train
speed, and

location.

2019 Khan et al.
[16]

Crash Data
from 2000 to
2016 in North

Dakota
Involving
HRGCs

North
Dakota DOT

crash data
United States

Developing a
Highway

Rail Grade
Crossing
Accident

Probability
Prediction
Model: A

North
Dakota Case

Study

Binary Logit
Regression

Model

AADT, exposure,
crossing angle,

gates, and
pavement
markings.

2019 Zheng et al.
[13]

Past 19 years
354 crashes

on 5713
HRGCs

FRA HRGCs
incident and

inventory
data

North
Dakota,

United States

Predicting
Highway–
Rail Grade
Crossing
Collision
Risk by
Neural

Network
Systems

Neural
Network

(NN) Model

AADT, presence
of flashing lights,

highway stop
signs, and

presence of
crossbuck signs.
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Table 1. Cont.

Year Authors No of Obser-
vations Data Type Location Context Method

Used

Types of
Explanatory

Variables

2020 Lu et al. [6]
Past 19 years

crashes on
5713 HRGCs

FRA HRGC
incident and

inventory
data

North
Dakota,

United States

A Gradient
Boosting

Crash
Prediction

Approach for
Highway–
Rail Grade
Crossing

Crash
Analysis

Gradient
Boosting (GB)

Model

Traffic exposure
factors such as,
highway traffic
volume, railway
traffic volume,

and train travel
speed.

2020 Keramati
et al. [18]

3310
HRGCs, with

475 crash
records

FRA HRGCs
incident and

inventory
data

North
Dakota,

United States

A Simultane-
ous Safety

Analysis of
Crash

Frequency
and Severity
for Highway–

Rail Grade
Crossings:

The
Competing

Risks
Method

Competing
Risks

Method

Crash
information,
type of train
service, train

detection,
availability of
commercial
power, and
distance to

nearby roadway
intersection.

2020 Brod et al. [3]

Crash and
Inventory

data of 9870
HRGCs

FRA HRGC
inci-

dent/accident
and

inventory
data

United States

New Model
for Highway–

Rail Grade
Crossing
Accident

Prediction
and Severity

Zero-inflated
Negative
Binomial

Model and
Ordered

Logit Model

Exposure,
average annual

daily traffic,
maximum

timetable train
speed, total

trains,
surface-type,

warning flashing
lights, and gates.

With the availability of machine learning methods, new strategies for modeling crash
predictions at HRGCs have emerged that overcome the limitations of Generalized Linear
Modeling (GLM) [13,14]. The Generalized Linear Modeling methods use a mathematical
formula to represent the relationship between dependent and independent variables. In
this regard, Zheng et al. [13] in a recent study used a Neural Network (NN) system to assess
train–vehicle crash risk at HRGCs to receive meaningful rankings of crash–contributory–
variable significance based on different criteria, as well as to produce dependent nonlinear
contributor–crash curves with all other contributors considered for a specific contributor
variable. Likewise, Zhang et al. [14] used Deep Neural Network (DNN) models to model
crash frequency and examined predictions and model interpretability in comparison to
Generalized Linear Models.

In the past, various transportation agencies have utilized the US Department of
Transportation’s Accident Prediction (AP) model, which was developed in 1986 (henceforth
referred to as the 1986 AP model), to assess the probability of accidents at HRGCs [3]. While
this model did include a severity prediction component, the primary focus of this research
was on predicting crash frequency. In 2020, the Federal Railroad Administration (FRA)
updated this model for several reasons, including low variance in the 1986 AP model’s
generated crossing ratings, the utilization of three distinct models for crash prediction
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based on the type of crossing, and the absence of a statistical evaluation of crash risk at
HRGCs [3]. The new model, henceforth referred to as the ‘FRA’s 2020 Accident Prediction
(AP) model, addresses various weaknesses in the 1986 AP model [2].

Below is the two-part FRA’s 2020 Accident Prediction (AP) model, with the first part as
a count model and second part as a zero-inflated model. Before considering the possibility
of excess zeroes, the count model is for predicted crashes [3]. The zero-inflation model
distinguishes amongst two types of HRGCs with zero crashes reported in any period: those
that are safe and will always have zero crashes and those that may have one of more crashes
in the future. The total number of trains is the explanatory variable for the zero-inflated
model; fewer trains at an HRGC gives greater probability of excess zeros.

NCount Predicted = e
[
β0 + β1 ∗ IExpo + β2 ∗ D2 + β3 ∗ D3 + β4 ∗ RurUrb + β5 ∗ Xsur f ID2s

+β6 ∗ IAADT + β7 ∗ IMaxTnSpeed
]

(1)

PIn f lated Zero =
z

1 + z
(2)

z = e[γ0+γ1∗ITotalTrains] (3)

N Predicted = N Count Predicted ∗
(

1− PIn f lated Zero

)
(4)

where N Count Predicted represents the predicted crashes of the count model; data for the left-
hand side of regression are HRGCs crash counts in a 5-year period (2014–2018). PIn f lated Zero
is the probability that the grade crossing is an “excess zero”, N Predicted are predicted crashes
after accounting for excess zeroes, β0, β1 . . . , β7 and γ0, γ1 are the estimated parameters’
coefficients of the two-part Zero-inflated Negative Binomial (ZINB) model, z indicates the
logit model to explain the zero-inflated component, the IExpo is the natural log-transformed
exposure, equal to average annual daily traffic times and daily trains, and D2 and D3 are
the indicator variables for warning-device-type lights and gates. RurUrb shows rural
or urban classification of the crossing road, Xsur f ID2s shows the type of surface used
(timber, asphalt concrete, rubber or their combination), IMaxTnSpeed indicates natural log-
transformed maximum timetable speed (integer value between 0 and 99), IAADT shows
natural log-transformed average annual daily traffic, and ITotalTrains shows natural log-
transformed total number of daily trains.

The FRA public HRGCs database is the basis for most of the HRGCs crash safety
research in the US [1,3]. However, this database contains dated data (e.g., AADT values
from the 1970′s), errors, and missing values [2,19]. Several studies have examined the
physical aspects of HRGCs to understand the causes of crashes. However, these studies
did not emphasize the accuracy of the data utilized for crash prediction modeling [20–24];
inaccuracies can impact crash model estimations and subsequent crash predictions, which
are critical for public safety. This necessitates a study based on accurate and up-to-date
inventory to identify factors associated with HRGCs crashes, thereby allowing for better
understanding of crash occurrence and more informed decisions on HRGCs safety.

3. Data

The research presented herein utilized data from the FRA inventory and crash databases.
Crash history and inventory records of 560 public HRGCs across nine counties in Nebraska
were extracted for the analysis. Additionally, a validated dataset was used from an NDOT
prior study where site visits were made to those 560 public HRGCs to verify physical
aspects in the FRA data. Each data element (e.g., roadway speed limit, number of train
tracks, pavement marking, storage distance) was carefully checked at the site using a paper
form; any erroneous FRA data were corrected along with the completion of any missing
FRA data [19]. Figure 2 presents the process of identifying HRGCs for field visits, using
Cass County as an example. Besides Cass County, the verification included HRGCs located
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in Lancaster, Douglas, Gage, Jefferson, Otoe, Saline, Sarpy, and Saunders counties. The
selection of these counties was based on railroad network considerations, urban/rural
location, traffic volumes, history of past crashes, county populations, and proximity to the
University of Nebraska–Lincoln campus.
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Figure 2. FRA HRGCs data filtration process of a sample county (Cass) [2].

The site verification of the FRA HRGCs inventory data resulted in the creation of a
new, corrected, and more complete HRGCs database that was used for comparative model
estimation and crash predictions. However, before model estimations and crash predic-
tions, each of these two datasets were integrated with the FRA HRGCs Accident/Incident
database using the unique FRA crossing ID. Crash data on the 560 HRGCs revealed
28 reported crashes during 2017–2021. These 28 crashes were 16.3% of all public HRGCs
crashes reported in Nebraska during the same five-year period. For this study, HRGCs
inventory data errors and missing information were the focus; such issues may also exist in
the FRA HRGCs Accident/Incident database; however, those were not part of this research.

Data validation is the process of ensuring that the data entered into a system are
accurate, complete, and consistent. It is an important step in the data management process
as it helps us to ensure the integrity of the data and ensures that the data are fit for their
intended purpose [20]. The inventory data of HRGCs in nine Nebraska counties were
validated based on the checks illustrated in Figure 3.

For every HRGC visited, a comprehensive examination of 53 database variables was
conducted and digital images were acquired. Any inaccuracies in the database were
rectified in accordance with field conditions, and missing values were added if those
attributes were found in the field. The disparity between the recorded information in
the FRA HRGCs inventory database and the actual conditions at crossing 064112B is
vividly exemplified in Figure 4, which showcases a discrepancy in the presence of yield
signs, pavement type, approach surface type, and pavement markings in the FRA dataset
compared to the on-ground conditions. The red square points indicate a zoomed illustration
of yield signs and pavement marking.
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Additionally, crossing storage distances were validated. For example, Figure 5 il-
lustrates how the storage distance in the FRA data was measured as 64 feet, but field
validation corrected it to 40 feet. The safety of HRGCs has been strongly correlated with
storage distance [18].
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Figure 5. Data correction example, crossing 072946C [2].

The illustration in Figure 6 details data validation for a specific location (crossing
064130Y), where a discrepancy was found between the actual number of flashing light pairs
and the number recorded in the Federal Railroad Administration’s (FRA) inventory dataset.
The validation involved a field check and revealed the difference, indicating that the FRA
inventory data entries on several physical aspects were incorrect.
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Figure 6. Data correction example, crossing 064130Y [2].

It should be noted that the satellite images presented in Figures 4–6 are not scaled as
satellite images inherently lack a uniform scale due to variations in altitude and sensor
characteristics, making the addition of a scale potentially misleading [2].

Table 2 provides a summary of the corrections and addition of missing values. In
aggregate, data on 560 HRGCs were successfully verified. Additionally, six HRGCs sites
were found to be abandoned, non-operational, or altogether non-existent. The effort
resulted in 2241 corrected values and 1732 missing values added to the database, providing
an average of 7.4% of the database values that were changed at every visited HRGCs. It is
noteworthy that the research team was unable to verify dynamic characteristics such as
daily train traffic and highway AADT. As such, those variable values in the FRA database
and the corrected database were the same.

Table 2. Field validation summary of corrections and added missing values (N = 560) [2].

County
Number of
Corrected

Values

Number of
Missing
Values
Added

HRGCs
Visited

Abandoned/
Non-

Existent
HRGCs

(Excluding
Private

Crossings)

Percent
Corrected

and Added
Missing
Values

Cass 307 83 56 0 7.1
Douglas 286 108 67 4 5.9

Gage 115 347 41 0 11.3
Jefferson 174 25 45 0 4.3
Lancaster 376 657 112 0 9.2

Otoe 285 46 77 2 4.2
Saline 119 37 61 0 4.1
Sarpy 144 59 25 0 8.1

Saunders 435 370 76 0 10.6
Total 2241 1732 560 6 7.4
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4. Methodology

In this research, the following two hypothesis were tested:

(i) H0 = There is no difference in the expected crashes estimated by utilizing FRA and
field-validated data (α = 5%).

To test the first hypothesis, we utilized the original FRA HRGCs inventory data and
the field-validated inventory data (both merged with the FRA HRGCs accident/incident
database) for the 560 HRGCs to estimate expected crashes by utilizing the FRA’s 2020
Accident Prediction (AP) model (Equations (1)–(4)). The two sets of expected crashes (crash
predictions) were then statistically evaluated for differences at α = 5% (a 5% chance of
incorrectly rejecting the null hypothesis). This step aimed to assess how erroneous or
missing values in the HRGCs inventory data affect the estimation of expected crashes at
HRGCs when the crash prediction models currently employed by the federal transportation
agencies are utilized.

(ii) H0 = There is no difference in the estimated parameters’ coefficients of new crash
frequency prediction models from the two datasets (FRA Vs field-validated) (α = 5%).

For this hypothesis, we developed two new crash prediction models using both FRA
and field-validated HRGCs inventory data. The objective was to determine whether the
coefficient parameters in these models exhibited statistically significant differences. A
base model was first estimated by utilizing the original FRA inventory data, and then
another comparison model was estimated using the field-validated inventory data. For
both models, the dependent variable was the past 5-year HRGCs crash counts (2017–2021).
Data exploration showed that the variance of the crash counts was greater than its mean
value, indicating overdispersion in the data. During the 5-year period, most HRGCs had
zero crashes, with only a few crossings reporting 28 crashes. This condition warranted
the estimation of a two-part Zero-inflated Negative Binomial Model (ZINB). The ZINB
model provides a better goodness of fit when compared with the Poisson and the Negative
Binomial (NB) Model [2,20–27]. It also provides parametric expressions for counts of
predicted crashes and expected crash count variance [24].

A general ZINB model is written as [23]:

E[a] = µ(1− p) (5)

V[a] = µ(1− p)(1 + µ(p + α)) (6)

where E[a] is the predicted value of crash count, V[a] is the variance of the predicted
estimate of crash count, µ is the mean of the Negative Binomial process, p is the likelihood
of the entity being in the “always 0” case in the finite mixture model, and α is the over
dispersion parameter of the Negative Binomial model (equal to 1/θ, theta is an estimated
parameter for the model).

Table 3 presents the candidate independent variables chosen for model estimation.
Before finalizing the model’s specification, a check of the multi-collinearity between candi-
date variables was performed, and those variables were chosen with a Variance Inflation
Factor (VIF) < 10 and Tolerance (TOL) > 1 [2]. According to past research, the continu-
ous variables (e.g., AADT) were natural Log-transformed to reduce the range of values
within the variables [2]. PSCL package in R computing (R-project.org) was used for model
estimation (accessed on 1 January 2020) [25]. Also, the model performance criteria were
estimated, such as Akaike information criterion (AIC) and Bayesian information criterion
(BIC) [24–26].
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Table 3. Candidate variables for inclusion in base and comparison crash prediction models [2].

Variables Variable Coding

Discrete Variables

Warning flashing lights 1 if there are flashing lights at crossing,
0 otherwise

Gates 1 if there are gates at crossing, 0 otherwise

Rural/urban classification 1 if crossing is in urban area, 0 if crossing is in
rural area

Pavement markings 1 if there are pavement markings near crossing,
0 otherwise

Crossing surface type
Timber = 1, Asphalt = 2, Asphalt and Timber or

Concrete or Rubber = 3, Concrete and
Rubber = 4, other = 5

Crossing illuminated 1 if crossing is illuminated, 0 otherwise
Crossing angle 1 = 0–29◦, 2 = 30–59◦, 3 = 60–90◦

Continuous Variables
Number of bells Count

Number of crossbucks Count
Number of total tracks Count

Ln AADT Natural Log-transformed count
Ln Total daily trains Natural Log-transformed count

Ln Maximum timetable speed Natural Log-transformed count
Number of traffic lanes Count

5. Results and Discussion

Crash predictions (expected crashes) based on the FRA’s 2020 Accident Prediction (AP)
model (by utilizing the two different datasets) yielded disparate results. To gain a deeper
comprehension of the magnitude of these disparities, the percentage differences were
computed and plotted. As depicted in Figure 7, a noticeable distinction is evident in the
expected crash values obtained from the two inventory datasets. The figure illustrates the
percentage variations between the FRA and field-validated (FV) data’s crash predictions.
It is evident from the data that the percentage differences range from 0 to over 140%,
suggesting that the anticipated crash counts could be nearly double or half of the actual
crash count. Additionally, Figure 7 also shows that the majority of HRGCs demonstrated
expected crash values within a 0–20% range of difference. However, a higher percentage
difference in expected crashes was only observed in 7 HRGCs (1.25% of the total HRGCs).
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To conduct the first hypothesis test in this research, we examined whether the crash
predictions estimated from the utilization of two datasets conform to a normal distribution.
This initial step was crucial to guarantee the correct application of hypothesis tests. To
assess the normality of predicted crashes using FRA and field-validated data, the Shapiro–
Wilk test was employed, offering a formal determination of data normality (Ho = data
distribution is normal, at α = 5%) [27,28]. A p-value below 0.05 during the Shapiro–Wilk test
suggests non-normal distribution in at least one data column (expected crashes). In such
instances, non-parametric tests are viable for dataset comparisons, such as the Wilcoxon
rank-sum test (Mann–Whitney U test) or Kruskal–Wallis test [27,28]. These alternatives,
unlike t-tests or ANOVA, are robust against non-normality assumptions, offering reliable
options when normality criteria are not met.

The null hypothesis under examination through the Shapiro–Wilk normality test
(Table 4) posited non-conformance of the data with a normal distribution. The test yielded
a computed test statistic denoted as “W”, accompanied by its corresponding “p-value”. In
the context of projected collision incidents drawn from two distinct datasets, the observed
“p-value” exhibited a significance level below 0.05, indicative of compelling contradiction
against the null hypothesis. Consequently, substantial support emerged to refute the
assumption of normal distribution in the data. The values of “W”, representing the test
statistic, for both data columns (pertaining to anticipated collision incidents) were confined
within the interval of 0 to 1. The proximity of “W” to 1 corresponded to increased adherence
to normality. However, both columns demonstrated “W” values below 1, implying notable
departure from normality. To summarize, the outcomes derived from the Shapiro–Wilk
normality test underscored the absence of normal distribution in the expected crashes
obtained from the FRA and field-validated inventory datasets, when FRA’s 2020 Accident
Prediction (AP) model was applied.

Table 4. Statistical testing of normality and disparities in expected crashes [2].

Tests Performed

Shapiro–Wilk Normality Test
Variable W p-value
Original FRA data crash
predictions 0.87519 2.2 × 10−16

Field-validated data crash
predictions 0.84692 2.2 × 10−16

Wilcoxon Rank Sum Test for Differences in Expected Crashes
Original FRA Vs FV data
crash predictions 122,640 3.622 × 10−10

Alternative hypothesis True location shift is not equal to 0

Given the absence of normality in expected crashes, a non-parametric statistical ap-
proach was chosen to compare dataset disparities. The Wilcoxon rank-sum test, a variant of
the Mann–Whitney U test, was utilized to address Hypothesis 1 of this research [28]. This
non-parametric counterpart to the two-sample t-test was applied, and the outcomes are
presented in Table 4. The results of the test yielded a p-value below 0.05 and a test statistic
(W) of 122,640, strongly indicating differing medians between the distributions. The alter-
nate hypothesis, stipulating a nonzero true location shift, signifies that one population’s
distribution is asymmetrically positioned relative to the other, implying distinct medians.
Due to the non-parametric nature of the data, estimations such as mean values were not
calculated. The test’s purpose was exclusively to ascertain evidence of distributional shifts
between the two datasets.

The analysis of crash prediction using field-validated data demonstrated a discrep-
ancy in the hazard rankings of HRGCs compared to rankings derived from FRA’s data.
Table 5 highlights the impact of employing field-validated data instead of the original FRA
inventory data on HRGCs hazard rankings. This reveals the potential for misallocating
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safety resources for HRGCs when an incomplete dataset is utilized for predictive modeling.
For instance, a specific HRGC labeled as “074929T” is ranked third in terms of crash hazard
when assessed with field-validated data but drops to fifth when using the original FRA
data for crash prediction. Moreover, several crossings that ranked within the top-10 haz-
ards in the FRA dataset do not maintain their top-10 rankings when evaluated using the
field-validated dataset. This information underscores the significance of accurate inventory
data; its absence could lead to oversight by agencies in allocating resources for crossings
with actual high crash risks. Flawed ranking based on the current FRA datasets might
result in the exclusion of crossings that warrant risk mitigation interventions.

Table 5. Comparison of hazard ranking based on crash predictions: FRA vs. field-validated data [2].

Crossing ID
2020 AP Ranking

Using Original FRA
Inventory Data

Crossing ID

2020 AP Ranking
Using

Field-Validated
Inventory Data

074952M 1 064128X 1
074945C 2 064129E 2
064128X 3 074929T 3
064129E 4 073326S 4
074929T 5 074938S 5
073326S 6 073456N 6
816859H 7 816859H 7
073456N 8 073342B 8
074938S 9 073345W 9
073342B 10 073455G 10

Note: The top-10 crash prediction-derived ranks from two datasets are listed among all 560 studied crossings in
the research.

The second hypothesis of the research aimed to assess differences in estimated pa-
rameters and models’ performance based on the FRA and field-validated dataset. Also,
it was studied to see if estimated coefficients are statistically significantly different in the
two estimated Zero-inflated Negative Binomial (ZINB) models. Estimation of the base and
comparison models using 5-year crashes (2017–2021) reported at the 560 HRGCs (finally
reduced to N = 555) showed that the model based on the field-validated data gave a differ-
ent expected magnitude of regressors when compared to the base model. However, it was
yet to be determined if these differences were statistically significant. Table 6 presents the
estimated base ZINB model that utilized the original FRA HRGCs inventory data (Table 3
provides variable coding).

Table 7 presents the estimated comparison model based on field-validated inventory
data (Table 3 provides variable coding). Tables 6 and 7 also present the performance
indicators for base and comparison ZINB models. Both models showed a different fitness
performance based on the Akaike Information Criteria (AIC) and Byesian Information
Criteria (BIC), indicating improved ZINB model fitness with the field-validated accurate
inventory dataset [2,12].

To conduct the second hypothesis test in this research, we followed the statistical
methodology proposed by Clogg et al. [29]. This test aimed to evaluate the statistical
significance of differences in parameter coefficients between the base and comparison
Zero-inflated Negative Binomial (ZINB) models. The test outcomes indicated no significant
statistical difference in the coefficients (Tables 6 and 7). Notably, only variations in crash–
risk rankings for HRGCs were observed between the two datasets based on crash prediction
estimation (Table 5).
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Table 6. Estimated base ZINB model utilizing original FRA inventory data [2].

Variable (Code Name) Estimate Std. Error Z-Value p-Value

Constant (_cons) −8.7615 2.5845 −3.39 0.000
Ln-transformed AADT (IAADT) 0.47160 0.1674 2.81 0.004
Warning flashing lights (WDTLITs) −2.1517 0.6984 −3.08 0.002
Ln-transformed max train speed
(IMAXTSPD) 1.40840 0.5615 2.508 0.012

Log (theta) 10.0436 107.89 0.093 0.925

ZINB regression zero-inflation coefficients (binomial with logit link)

Constant (_cons) 2.2206 1.0151 2.188 0.028
Ln-transformed total daily trains
(ITDTRAINS) −0.9539 0.3596 −2.652 0.007

Pearson Residuals

Min 1Q Median 3Q Max
−0.72413 −0.21093 −0.11057 −0.05989 26.92213

Summary Statistics

Number of observations = 555
Theta = 23,008.3433
Number of iterations = 85
Log-likelihood = −97.36
Degrees of freedom = 7
Inflation model = logit
AIC = 210.0122
BIC = 240.2197

Table 7. Estimated ZINB comparison model utilizing field-validated inventory data [2].

Variable (Code Name) Estimate Std. Error Z-Value p-Value

Constant (_cons) −8.9899 2.5874 −3.47 0.000
Ln-transformed AADT (IAADT) 0.4422 0.1648 2.68 0.007
Warning flashing lights (WDTLITs) −2.0443 0.6982 −2.92 0.003
Ln-transformed max train speed
(IMAXTSPD) 1.5135 0.5667 2.67 0.007

Log (theta) 10.4522 129.44 0.81 0.936

ZINB regression zero-inflation coefficients (binomial with logit link)

Constant (_cons) 2.1266 1.0165 2.092 0.036
Ln-transformed total daily trains
(ITDTRAINS) −0.8793 0.3484 −2.524 0.011

Pearson Residuals

Min 1Q Median 3Q Max
−0.55149 −0.22451 −0.11469 −0.05974 26.7747

Summary Statistics

Number of observations = 555
Theta = 34,620.8247
Number of iterations = 84
Log-likelihood = −98.01
Degrees of freedom = 7
Inflation model = logit
AIC = 208.7160
BIC = 239.0117

Comparative Analysis of Estimated Models

Key factors from the regression output of base and comparison models are as follows:
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• The coefficients for Natural log-transformed Maximum Timetable Speed (IMAXTSPD)
and Natural log-transformed Average Annual Daily Traffic (IAADT) exhibited posi-
tive signs in both models. However, the expected magnitude differed in both models,
where the base model gave a higher coefficient expected magnitude for IAADT com-
pared to the comparison model. Moreover, for IMAXTSPD, the comparison model
gave a higher coefficient expected magnitude. The average marginal effect estimates
presented in Table 8 show that a unit change in IAADT increases predicted crashes by
0.02681 in the base model and 0.02546 in the comparison model.

• The coefficients for warning-device-type flashing lights (WDTLIT) were negative for
both models (i.e., compared to passive devices, warning flashing lights reduce pre-
dicted crashes). However, the coefficient expected magnitudes and average marginal
effects (Table 8) of WDTLITs differ in both models, where the base model estimated a
higher negative value compared to the comparison model.

• The coefficients of Ln-transformed total daily trains (ITDTRAINS) in the zero-inflated
part in both the base and comparison models were negative, indicating that the
probability of excess zeros decreases with the number of trains, as expected. However,
the coefficient expected magnitudes of ITDTRAINS differed in both models.

• All the coefficients retained in both models indicated strong statistical significance.
However, as shown in Table 9, the results of hypothesis tests revealed that the regres-
sion coefficients were not statistically significantly different when utilizing the two
inventory datasets.

Table 8. Average marginal effects for base and comparison models [2].

Model Type Variable Effect Std. Error Z-Value p-Value

Base model
(based on
original FRA
inventory data)

IAADT 0.02681 0.01099 2.440 0.0146774
WDTLITs −0.12232 0.04714 −2.595 0.0094708
IMAXTSPD 0.08008 0.03567 2.245 0.0247619
ITDTRAINS 0.02431 0.01124 2.391 0.0166414

Comparison
model (based on
field-validated
inventory data)

IAADT 0.02546 0.01082 2.353 0.018636
WDTLITs −0.11768 0.04713 −2.497 0.012539
IMAXTSPD 0.08714 0.03704 2.352 0.018663
ITDTRAINS 0.02383 0.01124 2.2912 0.021725

Table 9. Comparison of coefficients of the base and comparison ZINB models [2].

Comparing Regression Coefficients of the Base and Comparison ZINB Models
H0: There is no Statistically Significant Difference between Coefficients of the Two Models
Compared Parameters Z statistic p Values

IAADT 0.00802 0.9935
WDTLITs −0.10875 0.9134
IMAXTSPD 0.13174 0.8951
ITDTRAINS −0.14899 0.8815

Figure 8 illustrates a “Predicted crashes versus AADT (natural logarithm)” chart for a
warning-device-type flashing light indicator. The chart indicates that for cases of HRGCS
with no flashing lights in the original FRA dataset, the model gave higher crash predictions
for maximum timetable speed ranging from 25 to 45 mph. However, the presence of flashing
lights decreased predicted crashes, but only for low-speed trains. Additionally, in Figures 8
and 9, the scales for the parameter IMAXTSPD (ranging from 0 to 4) represent the natural
log-transformed values for the maximum timetable speed of trains. This transformation
serves to normalize the data, handle outliers, and stabilize variance [2,3]. The gray areas in
Figures 8 and 9 represent standard errors, and the blue line shows the best-fit line.
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The trend of predicted crashes in the field-validation based model was different.
Figure 9 illustrates the estimation of higher crash predictions for no flashing lights indicator
with higher train speeds.

The estimated parameters from both base and comparison model gave intuitive results,
as previously shown in the literature. For instance, variables such as average annual daily
traffic, flashing light as a warning device, maximum timetable speed, and total daily trains
were also indicated in previous studies to be factors associated with crash occurrence at
HRGCs [3,7,11,16,29–32]. In addition to the United States, several similar studies have
been conducted in various other countries worldwide to understand the factors of HRGC
crashes [32–35]. It is believed that with the increase in average annual daily traffic and train
traffic, exposure is increased as more vehicles and trains come into contact with the rail
crossings, increasing the likelihood of crashes [2,3,16]. Increased traffic can result in longer
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waiting times at crossings. Impatient drivers may take risks, such as trying to beat a train
or going around lowered gates, which can lead to collisions [2,6,13,16].

Furthermore, flashing lights enhance the visibility of a railroad crossing, especially
during low-light conditions or inclement weather [2]. This increased visibility alerts drivers
and pedestrians to the presence of a railway, reducing the risk of crashes. Flashing lights act
as a visual and attention-grabbing cue, directing the attention of motorists to the imminent
danger of an approaching train. This heightened awareness reduces the likelihood of
individuals attempting to cross the tracks when a train is approaching. Past studies have
also observed that flashing lights on rail crossings can reduce crashes at HRGCs [2,3,11].

The association between maximum train timetable speed and crashes at highway–
rail grade crossings has been a subject of study in the field of railroad safety. There is a
well-established link between higher train speeds and an increased risk of crashes at these
crossings. Past studies have shown that higher train speeds result in a reduced reaction time
for both motorists and pedestrians at crossings [2,3,18]. As train speeds increase, the time
available for drivers and pedestrians to detect an oncoming train, assess the situation, and
safely clear the tracks decreases. This reduced reaction time can lead to a higher likelihood
of crashes. Additionally, trains traveling at higher speeds require a longer distance to come
to a complete stop [2,16,18].

It is noteworthy that the primary focus of this research was not to explore hidden
factors beyond what have already been highlighted in past research as factors of crash
occurrences at HRGCs. Instead, its primary goal was to emphasize the crucial role of high-
quality data in crash modeling and stress the importance of establishing a robust foundation
before delving into an investigation of crash factors at HRGCs. Furthermore, the new
models developed in our research largely incorporated volume-related and physical factors
similar to those observed in the FRA’s 2020 Accident Prediction (AP) model. However,
the parameters exhibited variations in magnitude when utilizing the two datasets. Also,
systematic attempts were undertaken to generate random-parameters and develop robustly
fitted ZINB models through several trials. Nevertheless, it is crucial to acknowledge that
the constraint imposed by utilizing analogous variables in both model instances, intended
for the purpose of conducting a comparative study, ultimately precluded the emergence of
any randomly determined parameters.

6. Conclusions

In this study, accurate HRGCs data are used to highlight the importance of data quality
on crash model estimation and crash predictions. The conclusions are as follows:

• Erroneous and missing data in the unaltered FRA HRGCs inventory database led to
statistically different crash predictions (expected crashes) compared to corrected and
complete (field-validated) HRGCs inventory data. These predictions also affected the
crash hazard ranking of crossings based on the two datasets.

• Estimated crash prediction model parameters and their corresponding marginal values
appeared to differ when comparing models based on the unaltered FRA HRGCs
inventory database and the corrected and complete (field-validated) HRGCs inventory
data. However, from a statistical standpoint, they did not exhibit significant differences.
Nevertheless, the Zero-inflated Negative Binomial (ZINB) crash prediction model,
utilizing the accurate inventory dataset, demonstrated superior performance according
to fitness criteria such as the Akaike information criterion (AIC) and BIC (Bayesian
information criterion).

This study accentuates the need for a correct and complete HRGCs inventory database
because critical safety-related decisions are based on the modeling results of this database.
The limitations of this study include the inability to verify the dynamic characteristics of
HRGCs, such as daily train traffic and AADT. These traffic-related variables change more
frequently compared to physical characteristics of HRGCs, and therefore, this may have
more profound impacts on model estimation and predictions. There is a need for a more
comprehensive future study on how to account for their effects on crash predictions as
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well as on developing methods for the routine update of these dynamic variables in the
database. This study was based on visits to 560 HRGCs in the field for corrections to the
original FRA HRGCs inventory. Such an effort is resource-intensive, so there is a need
for a more efficient way of verifying HRGCs inventory data. Many important variables
mentioned in the literature were unavailable in the HRGCs inventory data (e.g., clear sight
distance availability, presence of humps, roadway grade information, presence of nearby
buildings). Future research should address the nationwide collection of such data and its
incorporation in the existing FRA HRGCs database.
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