
Citation: Oh, S.-Y.; Jeong, J.; Kim,

S.-W.; Seo, Y.-U.; Youn, J. A Real-Time

Shipping Container Accident

Inference System Monitoring the

Alignment State of Shipping

Containers in Edge Environments.

Appl. Sci. 2023, 13, 11563. https://

doi.org/10.3390/app132011563

Academic Editor: Yutaka Ishibashi

Received: 14 September 2023

Revised: 10 October 2023

Accepted: 18 October 2023

Published: 22 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Real-Time Shipping Container Accident Inference System
Monitoring the Alignment State of Shipping Containers in
Edge Environments
Se-Yeong Oh 1 , Junho Jeong 2 , Sang-Woo Kim 3 , Young-Uk Seo 3 and Joosang Youn 4,*

1 Department of IT Convergence, Dong-Eui University, Busan 47340, Republic of Korea; osy0784@gmail.com
2 Department of Artificial Intelligence, Dong-Eui University, Busan 47340, Republic of Korea; jeong@junho.dev
3 Seoahn S&C Co., Ltd., Busan 49315, Republic of Korea; woogigi@hanmail.net (S.-W.K.);

craser@naver.com (Y.-U.S.)
4 Department of Industrial ICT Engineering, Dong-Eui University, Busan 47340, Republic of Korea
* Correspondence: jsyoun@deu.ac.kr

Abstract: Along with the recent development of artificial intelligence technology, convergence
services that apply technology are undergoing active development in various industrial fields. In
particular, artificial intelligence-based object recognition technologies are being widely applied to
the development of intelligent analysis services based on image data and streaming video data. As
such, in the port yard, these object recognition technologies are being used to develop port safety
services in smart ports. Accidents are a frequent occurrence in port yards due to misaligned loading
of ship containers. In order to prevent such accidents, various studies using artificial intelligence
technology are underway. In this paper, we propose a real-time shipping container accident inference
edge system that can analyze the ship container’s loading status from a safety point of view to
prevent accidents in advance. The proposed system includes the collection of video data of the ship
container, inferring the safety level of the alignment status of the ship container, and transmitting the
inference results for the safety level. In this paper, the proposed inference model is implemented with
YOLOv3, YOLOv4 and YOLOv7 networks and can be used in video monitoring to realize the accurate
classification and positioning of three different safety levels (safe, caution, and danger) in real time.
In the performance evaluation, the detection accuracy of the inference model implemented with the
YOLOv4 network was greater than 0.95. Its performance was also significantly better than that of the
inference model implemented with the YOLOv3 and YOLOv7 networks. Although it was slightly
inferior to the YOLOv4 network in terms of the accuracy, the inference model implemented with
the YOLOv3 network had a faster inference speed than the model implemented with the YOLOv4
and YOLOv7 networks. Because of the port safety scenario, in which the inference accuracy is more
important than the inference speed, we applied the YOLOv4 algorithm to the inference model of
the system.

Keywords: object detection; port safety; YOLOv4 network; edge system

1. Introduction

Since the Fourth Industrial Revolution, ICT convergence services based on IoT tech-
nology and artificial intelligence technologies have been actively developed in various
industrial domains [1–3]. Artificial intelligence (AI) is defined as the intelligence of ma-
chines or software that develops and studies these intelligent machines. Intelligent analysis
systems based on image and video data are being developed to provide insight into in-
dustrial sites and allow them to be monitored in real time. In addition, AI-based object
recognition technology and IoT-based real-time image data collection technology are being
actively applied to analyze field conditions in industrial environments. For example, a
smart port is currently being developed in the port yard through adapting 5G, IoT, and AI
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technologies [4,5]. In this context, a smart port refers to a sensor device that can monitor
facilities in the port through the IoT, collecting facility status information as real-time data
through the sensor device and analyzing the collected data by using artificial intelligence
to determine the on-site situation. This refers to the port environment to which intelligent
technology that can determine the facility status is applied [6]. In addition, it aims to
provide an efficient logistics system, eco-friendly energy management, and intelligent port
safety services in smart ports [7–10].

In this paper, we focus on exploring potential intelligent port safety services, among
various other intelligent port services. Looking at the recent solutions to intelligent port
safety services, solutions applying object recognition technology are being actively devel-
oped to prevent the increasing number of accidents that are occurring in port yards [11].
Since the port yard has a regional characteristic of strong wind, if the shipping containers
are misaligned, then shipping containers may collapse due to strong winds. Therefore,
to prevent such accidents, there is a need for an intelligent system that can monitor the
alignment status of shipping containers in real time and predict container collapses. In this
paper, we propose a real-time shipping container accident inference edge system (RSCAIES)
which can monitor the alignment status of shipping containers in real time and analyze
the alignment status of these containers to prevent accidents caused by the misalignment
status of shipping containers at the edge environment. The proposed RSCAIES consists
of three main functions: a shipping container data collection function used to monitor the
alignment status of ship containers in the port yard, a deep learning-based safety level
estimation function that can infer the safety levels of shipping containers based on their
alignment status, and a management function that can store and display the inferred safety
level results and monitor the safety accident at the port yard based on the inferred results
in real time. In particular, the deep learning-based safety level estimation function predicts
the accident risk level through the shipping container data acquired in real time. In this
paper, in order to implement a deep learning-based safety level estimation function, we
divide the classification criteria of the alignment states of shipping containers into three
classes: safe, caution, and danger. In addition, we propose a safety level estimation model
based on the YOLOv3 [12], YOLOv4 [13], and YOLOv7 [14] algorithms, which can classify
three safety levels according to the classification criteria. The safety level estimation model
is implemented to run on an edge server at the port yard, and the inference results are sent
to the port management platform using the management function.

This paper studies the solution that can support intelligent port safety services and
prevent accidents by inferring a safety level and monitoring the alignment status of shipping
containers in the port yard. The main contributions of this paper are as follows:

1. A real-time shipping container accident inference edge system using an artificial
intelligence technology is investigated. In the existing works, there is no container
accident inference system. However, the proposed system has the advantage of
being able to monitor the status and risk of container accidents in real time. The
proposed system also consists of a shipping container data collection function, a deep
learning-based safety level estimation function, and a port yard management function.

2. A deep learning-based safety level estimation method is proposed to infer the safety
levels of shipping containers. The proposed deep learning-based safety level esti-
mation method is implemented using the YOLOv4 algorithm and is able to infer
the safety levels according to the safety classification criteria based on the alignment
status of shipping containers.

3. A real-world dataset related to the alignment status of shipping containers was
collected, and a safety level estimation model was trained and optimized based on
this dataset. The optimized inference model was used as a safety-level estimation
model for the proposed system to improve its performance.

The rest of this paper is organized as follows. Section 2 presents the related works,
and Section 3 proposes the RSCAIES architecture and the safety level inference model for
accident risk based on YOLOv3, YOLOv4, and YOLOv7 networks to predict the safety acci-
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dent level of the alignment of shipping containers in detail. In Section 4, the performance
evaluation of the proposed RSCAIES and inference model is presented. Finally, this paper
is concluded in Section 5.

2. Related Works

This chapter examines trends in object detection algorithms. In addition, we analyze
an object detection algorithm suitable for classifying shipping container accidents. Object
detection algorithms are defined as the process of learning the features of the object,
detecting the features within a given image, and classifying the location and class of the
object. Objects should be identified even if they are mixed with other objects rather than
simply classifying and localizing them.

Object Detection Method

The existing object detection method is separate from traditional detection techniques
such as the Histogram of Oriented Gradients (HOG) [15] and Deformable Parts Model
(DPM) [16] algorithms and deep learning-based detection techniques. The HOG is an
algorithm that detects formulaic objects by converting the regional gradient direction
information of an image into a histogram to express its shape. It has the advantage of
strong noise, as it performs calculations in units of cells rather than pixels. The DPM is an
algorithm that detects an object in a block of a bounding box using a template filter. As the
operation is performed through the sliding window, many bounding boxes are generated,
and the detection process is complicated. Along with the mentioned algorithms, traditional
detection techniques have the disadvantage of having limited applications that can be
applied and fewer classes that can be classified. In contrast, deep learning-based detection
techniques are combined with deep learning algorithms to overcome the shortcomings
of traditional detection techniques. As a result, this method is applicable to various
applications and showed good performance in classifying many classes. Deep learning
object detection algorithms are divided into two types. One is a two-stage method, in which
regional proposal and classification are processed sequentially. These methods include
R-CNN [17], Fast R-CNN [18], and Faster R-CNN [19] as representative algorithms. R-CNN
is a model that uses a CNN, which classifies objects in a two-stage method, and a regional
proposal algorithm to locate an object’s bounding boxes, and it uses a linear support
vector machine (SVM) [20] to extract features and classify them into classes based on CNN
operations. However, the disadvantage is that it takes a lot of inference time to carry out
CNN operations on all the regions of interest (ROIs) obtained using the regional proposal
algorithm. Faster R-CNN was proposed to compensate for the shortcomings that result
from the long inference times of R-CNN. Since the selective search is computed outside
the CNN, bottlenecks occur at the ROI generation stage. Faster R-CNN has eliminated the
selective search while inheriting the structure of the existing Fast R-CNN. It is an object
detection algorithm that improves on the slow speed by using a region proposal network
(RPN) that infers ROIs from feature maps and an ROI pooling layer that generates fixed-size
feature vectors. Figure 1 shows the architecture of Faster R-CNN.

Figure 1. Architecture of Faster R-CNN.
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The other method is a one-stage method, in which regional proposal and classification
are processed simultaneously. This involves the YOLO series of algorithms and the SSD
algorithm. The YOLO algorithm is used to predict the class and location of an object in
an image. This algorithm is also suitable for detecting objects in real time, with a faster
computational speed compared with Faster R-CNN. The YOLO algorithm proposes a new
approach to incorporating a structure and finding objects by predicting the bounding boxes
in an image, and it has a simplified pipeline and fewer computations, enabling inference
speeds fast enough for real-time systems while using contextual information to reduce
background errors. However, the initial YOLO model has the disadvantage of not detecting
small objects or predicting multiple objects as a group due to spatial constraints. It also
suffers from localization errors. In the next version of the model, YOLOv2, using anchor
boxes to predict objects is proposed to improve the low recall performance. This allows
the YOLOv2 model to achieve a significant increase in recall performance. This is because
k-means clustering and a sigmoid activation function are applied along with the anchor
boxes. In addition, the size of the input image can be varied while removing fully connected
layers in the YOLOv2 model. Thus, the YOLOv2 model can balance speed and accuracy
for the purpose of the task. The YOLOv3 model consists of 53 convolution layers and
23 residual blocks, and it uses darknet-53, FPN for the neck, and YOLO for the head as the
backbone network. However, the YOLOv3 model does not improve performance more
than the YOLOv2 model. YOLOv3 shows a high FPS speed at the time when using the
graphics processing unit (GPU) while maintaining accuracy. Table 1 shows the performance
comparison between YOLOv3 and previous algorithms.

Table 1. Comparison of YOLOv3, RetainNet, FRCN, SSD, and R-FCN [13].

Detection Algorithm mAP mAP-50 Inference Time

SSD321 28.0 45.4 61
DSSD321 28.0 46.1 85

R-FCN 29.9 51.9 85
SSD513 31.2 50.4 125

DSSD513 33.2 53.1 156
FPN FRCN 36.2 59.1 172

RetinaNet-50-500 32.5 50.9 73
RetinaNet-101-500 34.4 53.1 90
RetinaNet-101-800 37.8 57.5 198

YOLOv3-320 28.2 51.5 22
YOLOv3-416 31.0 55.3 29
YOLOv3-608 33.0 57.9 51

Finally, the YOLOv4 model uses CSPDarknet-53, which combines Cross Stage Partial
Network (CSPNet) with Darknet-53 as its backbone network. Although similar in structure
to the YOLOv3 model, it combines techniques such as Bag of Freebies (BOF) and Bag of
Specials (BOS) to improve the speed and accuracy. Spatial pyramid pooling (SPP) was used
to compress the features of the image without distortion to preserve information, and PAN
was used instead of a feature pyramid network (FPN) to reduce the flow of information and
preserve low-level information. The result was robust real-time performance and improved
performance for small objects. Compared with YOLOv3, YOLOv4 increased the AP by 10%
and FPS by 12%. Also, the YOLO model has been used for objection detection in a range of
applications. Ref. [21] presented a system for monitoring litter in rivers using object recogni-
tion technology and unmanned aerial vehicles (UAVs). This system has several advantages,
namely preventing the pollution of riverbanks with litter and enabling the management of
hard-to-reach areas. The YOLOv5 algorithm and scale-invariant feature transform (SIFT)
were used for the litter detection model. Ref. [22] developed a framework based on visuals
to prevent heatstroke fatalities in confined vehicles. The mechanism identifies individuals
or animals present inside a vehicle and communicates with the caregiver via notifications in
case of their absence from the car. For interior detection, an artificial intelligence model was



Appl. Sci. 2023, 13, 11563 5 of 18

created, utilizing NanoDet, YOLOv6, and YOLOv7. Ref. [23] proposed an assistive system
based on the Artificial Intelligence of Things (AIoT) framework to provide convenience to
blind people. The system is based on smart glasses and a lightweight network based on
YOLOv5, which is capable of detecting external objects and surrounding objects such as
books. Ref. [24] proposed a system for tracking and classifying objects in a warehouse by
combining YOLOv5 for object detection with Deep Simple Online and Real-Time Tracking
(DeepSORT) to classify people, goods, and environments. The algorithm demonstrated its
robustness and efficiency in a multi-object tracking (MOT) challenge. Ref. [25] proposed
a method which models the bounding box of YOLOv3 with Gaussian parameters and
redesigns the loss function to lower the rate of false positives in object detection algo-
rithms for autonomous driving. This method significantly reduces false positives (FPs)
and increases true positives (TPs), resulting in an improvement in the mAP by 3.09 and
3.5 on the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)
and Berkeley DeepDrive (BDD) datasets, respectively. Demonstrating real-time detection
performance, it achieved a high inference rate of 42 FPS. Ref. [26] introduced a new loss
function for bounding box regression that provides optimization for both bounding box
transformation and localization variance. The use of localization variance enables the
merging of neighboring boxes during non-maximum suppression, which improves the
localization performance. In [27], the authors presented a dynamic DETR that combines
a dynamic encoder utilizing different types of convolutions with an ROI-based decoder.
This strategy effectively overcame the limitations associated with small object feature loss
and a slow training speed, which were previously problematic in the learning process.
Furthermore, additional experimentation revealed a 3.6-fold improvement in the mAP. A
novel neural network-based system for object detection, called AdaDet, was introduced
in [28]. It uses random variables to measure the uncertainty of object outcomes, estimating
the reliability of the detection results. AdaDet also allows an early exit for objects with
high detection accuracy, reducing the computational inference cost. In [29], a new dynamic
head framework was utilized to efficiently integrate several self-attention mechanisms and
considerably enhance the representational capabilities of the head of an object detection net-
work effectively. The proposed technique was applied to the ResNeXt-DCN backbone and
delivered a state-of-the-art algorithm, achieving a performance of a 54.0 average precision
score without any additional computational burden.

3. Proposed Real-Time Shipping Container Accident Inference Edge System

In this section, we propose the overall structure of a real-time shipping container
accident inference edge system that can predict accidents caused by the misalignment of
shipping containers. The proposed edge system includes safety classification criteria and
an accident prediction model.

3.1. Overall Structure of a Real-Time Shipping Container Accident Inference Edge System

Figure 2 shows the overall structure of the Real-Time Shipping Container Accident
Inference Edge System (RSCAIES). The RSCAIES consists of two parts: the edge system and
the operation and management system. The edge system includes a rolling shutter camera,
an edge server with an AI-based safety level estimation function, and a GPS receiver. The
role of each component of the edge system is described in Table 2. We used an Nvidia
Jetson AGX Xavier kit to implement the edge system. The OS installation was provided by
Ubuntu-based Nvidia. To install the CUDA, cuDNN, and TRT, we began by installing the
Jetpack package version 4.6.4. The edge systems were a server environment with Ubuntu
18.04 OS, 32 GB of DDR4 memory, and a 512 core Nvidia Volta GPU with a tensor core,
and they provided the objection detection and inference service. The edge system plays
a role in classifying the level of the shipping container’s alignment safety by inferring
the alignment status of the shipping containers from the data of the shipping containers
in the port yard acquired with the camera, while the operation and management system
stores the classification results received from the edge system in the server, displays the
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result to the user, and takes action based on the results. The operation and management
system included the DB server and an operation and management server. The role of each
component of the operation and management system is described in Table 3.

Figure 2. Overall structure of a real-time shipping container accident inference edge system.

Table 2. The role of each component of the edge system.

Device Role

Rolling shutter camera Shipping container photograph
data acquainting

Edge server
A server running an inference model for a

safety level estimation based on the shipping
container alignment image

GPS Receiver

A device that receives the current latitude,
longitude, and azimuth to transmit a shipping
container location with a high accident rate to

the manager

Table 3. The role of each component of the operation and management system.

Device Role

DB Server
Store image and JSON format-based

information of the detected
classification results

Operation and management server Display and monitor the result to the user and
take action on the results

3.2. Service Flow

The RSCAIES is divided into three parts in the service flow: the data acquaintance
and preprocessing step, the YOLO-based safety level estimation inference step, and the
transmission and management step. Figure 3 shows the overall service flow of the RSCAIES.

Figure 3. Overall service flow of the RSCAIES.
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First, data acquisition and the preprocessing step involve obtaining the shipping
container image from the rolling shutter camera and dividing it into frames. The location
information of the image is also obtained from the GPS receiver. The next step is the
YOLO-based safety level estimation inference step. This is the process of inferring the
safety level-based shipping container alignment status using the YOLO algorithm. This
process sequentially receives the divided shipping container alignment status images,
converts the 1920 × 1080 images to a size of 416 × 416, and divides it into 7 × 7 grids. For
each grid, a bounding box is generated, and the NMS algorithm is applied to generate a
bounding box for shipping container corner casting. And for each grid, the conditional
class probability is obtained to infer the safety level class in each bounding box. The next
step is the transmission step. This is the process of transmitting the result for classifying the
safety level to the management and DB server. This process generates a JSON file and an
image file based on the inference result for each frame. The generated files are converted
to a binary form and transmitted via HTTP. The last step is the management step. The
management step displays the results to the user with the transmitted JSON file and image
file and monitors the result for the user. The operator then takes action on the results.

3.3. Safety Classification Criteria and a Deep Learning-Based Safety Level Estimation Method

In this paper, the safety classification criteria of the container alignment status are
classified into three safety levels (safe, caution, and danger) based on the degree of error in
the upper and lower shipping container corner castings. For Europe, the degree of error is
defined for an error range of up to 25∼35 mm [30]. Therefore, considering the international
standard regulation for shipping container corner casting, ISO 1161 [31], and the shipping
container alignment status in the port, we defined the three safety levels as follows. As
shown in Figure 4, to estimate the degree of error, we used the edge of the lower shipping
container corner casting as the baseline. And the degree of error was determined using the
difference between the edge of the upper shipping container corner casting and the edge of
the lower shipping container corner casting.

Figure 4. Baseline for the estimation of the safety level.

Firstly, the classification criteria for a safe class of the shipping container alignment
status are as follows. Figure 5 shows the safe zone defined for the classification of a safe
class. According to ISO 1161, when the difference between the left edge of the upper
shipping container corner casting and the left edge of the lower shipping container corner
casting is from 0 mm to 25.4 mm, the shipping container alignment status is declared to be
safe. Considering the above criteria, we define that the safe zone is set as the zone between
the left edge and the center of the lower shipping container corner casting. Therefore,
the left edge of the upper shipping container corner casting is included in the zone of the
classification criteria as a safe class. Figure 5 shows the example of the shipping container
alignment status being classified as the safe class.

Secondly, Figure 6 shows the classification criteria and an example of the caution class.
According to ISO 1161, when the difference between the left edge of the upper shipping
container corner casting and the left edge of the lower shipping container corner casting
is between 25.5 mm and 51 mm, the shipping container alignment status is declared as
caution. Considering the above criteria, we define that the caution zone is set as the zone
between the center and the right edge of the lower shipping container corner casting.
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Therefore, the left edge of the upper shipping container corner casting is included in the
zone of the classification criteria as the caution class. Figure 6 shows an example of the
shipping container alignment status being classified as the caution class.

Figure 5. Safe zone defined for the classification as the safe class and the related example.

Figure 6. Caution zone defined for classification as the caution class and a related example.

Finally, the classification criteria of the danger class is shown in Figure 7. According
to ISO 1161, the difference between the left edge of the upper shipping container corner
casting and the left edge of the lower shipping container corner casting must be more than
52 mm. Therefore, as shown in Figure 7, the zone of the danger class is set as the right side
of the right edge of the lower shipping container. If the left edge of the upper shipping
container corner casting is located in the zone of the classification criteria for the danger
class, then it is classified as the danger class.

Figure 7. Danger zone defined for classification as the danger class and a related example.
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3.4. Transmission Message and Dashboard in Operation and Management

This subchapter defines the method and message structure for transmitting the results
of container accident risk classification. The communication between the edge server, which
is an AI-based safety evaluation system, and the operation and management server and
DB server uses the HTTP protocol based on TCP/IP communication. In addition, the edge
server transmits the inference results in the message, and the communication method is
set to send the message after establishing a connection with the server. Figure 8 shows
the basic message structure. The message consists of a message-length field that allows
us to input the length information of the message content field and a message content
field that allows us to input the risk assessment results and images used in the assessment.
In addition, as shown in Figure 8, the risk assessment result generated by the AI-based
inference model is sent by inputting the binary information and the length value of the
JSON file into the text area field as well as the length information of the image area field
and the image value to be stored in the image area field into the image area field.

Figure 8. Message structure.

Figure 9 shows the dashboard in the operation and management server of the RSCAIES.
The operation and management server displays dangerous areas and safe areas based on
the risk assessment results and location information inferred and transmitted by the edge
server at the location of the containers in the port, and it utilizes the results to prevent
container accidents.

Figure 9. Dashboard screen.

4. Experimental Evaluation
4.1. Dataset

In this paper, to train the inference model and evaluate its performance, we acquired a
shipping container alignment state dataset through the mobile video surveillance system
at the container terminal near Busan, Republic of Korea, considering the target scenarios
related to shipping container accidents. A total of 79,423 images 1290 × 1080 in size,
with an average of 6 holes per image, were used for the training set, the validation set,
and the test sets. The simple images from the dataset are shown in Figure 10. We used
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LabelImg software (HumanSignal. 2018. LabelImg(version 1.8.1). San Francisco) to label
all the images with the corner casting of container and convert the label information into a
standard format for the YOLOv4 training.

Figure 10. Sample images and labels.

The acquired total images consisted of a safe class, a caution class, and a danger class,
and there were several classes in one image with each class, with a ratio of 5.2:2.7:2.1, as
shown in Table 4. The dataset was divided into a 70:15:15 ratio of the training set, validation
set, and test set, as shown in Table 5.

Table 4. Each class distribution.

Class Number of Classes Ratio

Safe 41,039 52%
Caution 21,506 27%
Danger 16,878 21%

Total 79,423 100%

Table 5. Dataset distribution.

Datasets Number of Images Ratio

Training Set 11,378 70%
Validation Set 2867 15%

Test Set 2867 15%

Total 19,112 100%

4.2. Evaluation Indicators and Inference Models

To properly evaluate the proposed inference model, we used the following three
evaluation indicators (EIs): object detection accuracy, classification accuracy, and inference
time. Each performance indicator used the metrics addressed in Table 6.

Table 6. Method of estimating each evaluation indicator (EI).

Indicator Measuring Method

Object Detection Accuracy Accuracy according to Equation (1)
Classification Accuracy Precision, recall, and F1 score according to Equations (2)–(4)
Inference Time Frames per second (FPS) when using the real embedded device
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The accuracy of the object detection is the ratio of correctly classified traffic flow
samples to the total number of samples, which is represented by the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

Here, we list four common variables. The binary confusion matrix is shown in Table 7.
The coordinate axes represent two properties of the label: ‘True’ and ‘False’. If both the
actual and predicted labels are ‘True’, then we call this case true positive (TP). If both the
actual and predicted labels are ‘False’, then we call it true negative (TN). False negative
(FN) is when the actual label is ‘True’ and the predicted label is ‘False’. False positive (FP)
is the opposite.

Table 7. Confusion matrix in the example of the safe class.

Actual Class
Predicted Class

Safe Non-Safe

Safe TP FN
Non Safe FP TN

Next, to evaluate the classification accuracy, we estimated the precision, recall, and F1
score. Precision is a measure of the ratio of positive, correctly predicted classes to the total
number of positive classification predictions, depicted as in the following equation:

Precision =
TP

TP + FP
. (2)

Recall measures the ratio of the actual positive, correctly predicted traffic classes as in
the following equation:

Recall =
TP

TP + FN
. (3)

The F1 score measures the average of precision and recall as in the following equation:

F1 score =
2 × Precision × Recall

Precision + Recall
. (4)

Finally, to evaluate the inference time as the time cost of the inference model, we
measured the frames per second (FPS) through the real embedded device (NVIDIA Jetson
AGX Xavier(Nvidia. 2021. jetpack (version 4.6.4). Ubuntu. Nvidia)) used as the edge device
for the proposed real-time shipping container accident inference system. To implement
the inference model in order to classify the alignment status of shipping containers and
then infer a container accident, we used YOLOv3, YOLOv4, and YOLOv7 as the learning
algorithms. The total inference models consisted of six models: YOLOv3 with 416 pixels,
YOLOv3 with 640 pixels, YOLOv4 with 416 pixels, YOLOv4 with 640 pixels, YOLOv7 with
416 pixels, and YOLOv7 with 640 pixels. The hyperparameters used to train each model
are listed in Table 8.

Table 8. Input parameter applied to each model for the learning algorithm.

Model Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

Algorithm YOLOv3 YOLOv3 YOLOv4 YOLOv4 YOLOv7 YOLOv7
Image 416 × 416 640 × 640 416 × 416 640 × 640 416 × 416 640 × 640

Resolution X3 X3 X3 X3 X3 X3
Batch 16 16 16 16 16 32

Subdivision 16 16 16 16 1 1
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Table 8. Cont.

Model Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

Momentum 0.9 0.9 0.949 0.949 0.937 0.937
Decay 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Angle 0 0 0 0 0 0

Saturation 1.5 1.5 1.5 1.5 0.7 0.7
Exposure 1.5 1.5 1.5 1.5 1.5 1.5

Hue 0.1 0.1 0.1 0.1 0.015 0.015
Learning

Rate 0.001 0.001 0.001 0.001 0.001 0.001

Scale 0.1, 0.1 0.1, 0.1 0.1, 0.1 0.1, 0.1 0.9 0.9
IoU 0.5 0.5 0.5 0.5 0.5 0.5

4.3. Evaluation Results

In this subsection, we evaluate the performance of the proposed inference models
combined with the YOLOv3, YOLOv4, and YOLOv7 algorithms, which can classify the
alignment status of shipping containers and infer container accidents. We also compare six
models: YOLOv3 with 416 pixels (Model_1), YOLOv3 with 640 pixels (Model_2), YOLOv4
with 416 pixels (Model_3), YOLOv4 with 640 pixels (Model_4), YOLOv7 with 416 pixels
(Model_5), and YOLOv7 with 640 pixels (Model_6). Firstly, to evaluate the object detection
accuracy, we used Equation (1), and the results of these experiments are presented in Table 9.
The results demonstrate that the models with an image resolution value of 640 × 640 × 3
achieved better accuracy than the models with an image resolution value of 416 × 416 × 3.
The average accuracy of Model_4 reached 92.5%, showing high accuracy compared with
the other models.

Table 9. Object detection accuracy of each model.

Model Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

Accuracy 79.6% 82.0% 90.2% 92.5% 66.8% 73.2%

The results for the F1 score, precision, and recall for each inference model (IoU = 0.5)
are shown in Figure 11 and Table 10. As shown in the results, for precision, model_4
performed better than the other models with a score of 92.5%. model_6 achieved a score
of 70.5%, model_5 achieved a score of 64.8%, model_3 achieved a score of 90.1%, model_2
achieved a score of 81.7%, and model_1 achieved a score of 79.0%. For recall, model_4’s
best score was 92.5%, while model_6 achieved a score of 75.4%, model_5 achieved a score
of 74.3%, model_3 achieved a score of 90.2%, model_2 achieved a score of 81.7%, and
model_1 achieved a score of 79.0%. For the F1 score, model_4 performed better than the
other models, with a score of 92.5%; model_6 achieved a score of 72.9%; model_5 achieved
a score of 69.2%; model_3 achieved a score of 90.2%; model_2 achieved a score of 80.9%;
and model_1 achieved a score of 78.2%. Based on these results, it is clear that model_4
outperformed the other models in all the performance metrics calculated and that the
YOLOv7-based models were unable to recognize small objects efficiently. Table 11 shows
the mean scores for precision, recall, and F1 score performance, with an IoU range from
0.5 to 0.9.

Table 10. Precision, recall, and F1 score performance of each model (IoU = 0.5).

Model Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

Precision 79.0% 81.7% 90.1% 92.5% 64.8% 70.5%
Recall 79.6% 82.0% 90.2% 92.5% 74.3% 75.4%

F1-score 78.2% 80.9% 90.2% 92.5% 69.2% 72.9%



Appl. Sci. 2023, 13, 11563 13 of 18

Figure 11. Precision, recall, and F1 score performance of each model.

Table 11. Average precision, average recall, and average F1 score performance of each model (IoU = 0.5∼0.9).

Model Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

av_Precision 38.4% 42.0% 51.2% 57.6% 63.8% 70.1%
av_Recall 25.0% 27.4% 55.4% 60.4% 71.9% 73.7%

av_F1-score 30.3% 33.2% 53.2% 59.8% 67.6% 71.8%

The precision, recall, and F1 score for each class of each model are shown in Tables 12–17.
The precision, recall, and F1 score per traffic class using model_1 are listed in Table 12. The
results demonstrate that the caution class had the lowest measurements among the class
labels, with a precision of 0.74, recall of 0.46, and F1 score of 0.57. Thus, the amount of
sample data affected the classification performance, because the caution class had fewer
samples than the other classes. The results also reveal that the safe class achieved the best
classification performance of all models. We also see that model_4 had the best overall
performance for all classifications.

Table 12. Classification performance of model_1.

Safety Class Precision Recall F1 Score

Safe 80.5% 94.8% 87.1%
Caution 74.8% 46.6% 57.4%
Danger 80.8% 83.7% 82.2%

Table 13. Classification performance of model_2.

Safety Class Precision Recall F1 Score

Safe 82.2% 96.2% 88.7%
Caution 77.4% 51.9% 62.1%
Danger 85.4% 84.8% 85.1%

Table 14. Classification performance of model_3.

Safety Class Precision Recall F1 Score

Safe 92.7% 94.8% 93.7%
Caution 83.6% 81.9% 82.7%
Danger 92.2% 81.9% 82.7%
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Table 15. Classification performance of model_4.

Safety Class Precision Recall F1 Score

Safe 95.0% 95.3% 95.2%
Caution 86.9% 86.8% 86.8%
Danger 93.5% 93.0% 93.3%

Table 16. Classification performance of model_5.

Safety Class Precision Recall F1 Score

Safe 67.3% 89.6% 76.9%
Caution 54.0% 61.5% 57.5%
Danger 73.0% 71.6% 72.3%

Table 17. Classification performance of model_6.

Safety Class Precision Recall F1 Score

Safe 74.2% 89.2% 81.0%
Caution 60.6% 63.6% 62.1%
Danger 76.7% 73.3% 75.0%

The recognition results for model_1 (Figure 12), model_2 (Figure 13), model_3 (Figure 14),
and model_4 (Figure 15) are shown in Figures 12–15. model_4 had better recognition
accuracy than model_1, model_2, and model_3. In each model’s recognition result image,
there are boxes and a central dot. The box is the result of detecting the corner casting in
the container and classifying the safety level, and the dot shows the safety level classified
by the user before learning. As shown in the figures, different algorithms of each model
achieved different performance results. In particular, model_3 and model_4, which used
the YOLOv4 algorithm, showed accurate safety classification for detecting the corner
castings of containers. On the other hand, model_1 and model_2, which used the YOLOv3
algorithm, showed errors in safety classification. Therefore, the proposed system uses
model_4 with the YOLOv4 algorithm as a candidate model for safety level estimation
because it is important to accurately detect the corner casting of a container and accurately
classify the accident risk.

Finally, to evaluate the inference time of each model and determine the detection
efficiency, we measured the frames per second (FPS) through the real embedded device
(NVIDIA Jetson AGX Xavier) used as the edge device in our real-time shipping container
accident inference system. Video data of 8 min 32 s were used for the test. The FPS results
are shown in Table 18. The average FPS results show that the difference was more closely
related to the resolution of the input image than to the learning algorithm used. Therefore,
model_1 and model_3 with an input image resolution of 416 pixels achieved higher FPS
results than the models with an input image resolution of 640 pixels. In addition, in terms of
learning algorithms, model_1 and model_2, which used the YOLOv3 algorithm, performed
better than model_3 and model_4, which used the YOLOv4 algorithm.

Table 18. FPS of each model.

FPS Model_1 Model_2 Model_3 Model_4

FPSmin 11.3 8.4 10.9 5.2
FPSaverage 12.8 8.7 11.3 5.9

FPSmax 15.0 9.0 13.6 7.5
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Figure 12. Recognition results of model_1.

Figure 13. Recognition results of model_2.

Figure 14. Recognition results of model_3.

Figure 15. Recognition results of model_4.

5. Conclusions

This paper describes a real-time shipping container accident inference edge system
which can monitor a ship container’s loading status in real time and analyze it from a
safety point of view in order to prevent accidents related to misaligned loading. In the
proposed system, an inference model based on the YOLOv4 algorithm is used to realize
the accurate safety classification of three types of safety levels (including safe, caution,
and danger). In the performance evaluation, this inference model applied to the system
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showed accurate object detection and recognition performance, with 95% safe detection,
87% caution detection, and 94% danger detection. The FPS performance also obtained
an evaluation value of 5.9. Numerous experiments have verified its effectiveness and
performance. In future works, we plan to extend our inference model with several new
methods to optimize its performance and develop a model with a fast inference speed
that can handle multiple sessions. Our main focus will be on achieving higher accuracy
when detecting tiny objects and recognition accuracy while reducing the inference time. In
addition, we will strive to further optimize the trade-off between speed and accuracy.
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