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Abstract: The utilization of ultraviolet (UV) absorption spectroscopy for monitoring the concentration
of specific decomposition gas components in gas-insulated switchgear (GIS) can provide a means
to assess its insulation status. Nevertheless, UV optical modules currently deployed in the field
are susceptible to external interferences like ambient noise and equipment vibrations. Real-time
spectral data acquisition often suffers from significant noise contamination, directly impinging on
subsequent feature extraction and detection accuracy. This paper presents an optimized singular
value decomposition (SVD) noise reduction method for mitigating noisy spectral signals. First,
each singular value within the noisy signal is transformed into a component signal. Next, the
highest frequency value in the signal serves as an indicator to characterize the signal. Finally, the
primary frequency values are arranged based on the decreasing singular values of the original noisy
signal. The singular value corresponding to the first primary frequency value surpassing a preset
threshold is selected as the effective order for denoising. Random noise with varying intensities
was intentionally introduced to the UV spectral signal of sulfur dioxide (SO2), followed by noise
reduction procedures. It is shown that the improved SVD noise reduction algorithm proposed in this
paper enhances the signal-to-noise ratio (SNR) by 18.02% and 16.86%, and reduces the root-mean-
square error (RMSE) by 15.13% and 14.92%, respectively, compared with the singular value difference
spectrum (SVDS) denoising method and wavelet transform denoising method under the condition of
low SNR. Furthermore, there exists a linear relationship between the concentration of SO2 samples
and the eigenvalues of the UV spectra, demonstrating a higher linear goodness with a coefficient
of 0.99735. The denoising method proposed in this paper does not require the manual setting of
various types of parameters, and has a better ability to deal with the noise of UV spectral signals in
engineering sites with complex environments.

Keywords: spectral denoising; singular value decomposition; fourier transform; effective order;
signal processing

1. Introduction

GIS has garnered significant prominence within the electric power industry due to its
exceptional sealing capabilities and robust operational stability [1–3]. The sulfur hexafluo-
ride (SF6) gas employed in GIS demonstrates robust electrical insulation properties and
excels in arc extinguishing performance. However, insulation defects that may arise during
GIS manufacturing and operational processes can lead to partial discharges, resulting in
SF6 decomposition and the formation of various derivative compounds. Among the most
prevalent characteristic decomposition components of SF6 gas, the concentration of SO2
serves as a pivotal indicator for assessing GIS insulation conditions. The detection of these
characteristic SF6 decomposition components in GIS is typically achieved through a variety
of methods, including gas chromatography [4,5], infrared absorption spectrometry [6–8],
and photoacoustic spectrometry [9].Gas chromatography offers high accuracy in gas detec-
tion but is plagued by extended detection periods. Photoacoustic spectrometry boasts high
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detection sensitivity, albeit susceptible to interference from environmental noise. Infrared
absorption spectrometry permits simultaneous detection of multiple gases, but encounters
challenges associated with the mutual interference of absorption peaks from each gas
and high equipment costs [10].Within the wavelength range of 290 nm to 310 nm, SO2
does not exhibit any characteristic absorption overlap with other SF6 derivatives [11,12].
Consequently, UV absorption spectroscopy presents notable advantages in SO2 detection.
These advantages encompass shorter detection periods, reduced equipment costs, and
minimized gas consumption.

In the on-site GIS insulation monitoring process, the utilization of portable ultravi-
olet spectrometers can be hindered by environmental noise and equipment vibrations,
potentially submerging the genuine characteristics of the ultraviolet spectral signal within
the noise. To facilitate a more accurate quantitative analysis of SO2 within the GIS, it is
imperative to undergo a denoising process of the ultraviolet spectral signal. Conventional
methods for spectral data noise reduction encompass Fourier transform, wavelet transform,
Savitzky–Golay filtering, and empirical mode decomposition (EMD). Fourier transform
excels in analyzing signals in the frequency domain, particularly periodic ones, but falls
short in extracting features from localized signals. Conversely, wavelet transform and
the Savitzky–Golay filter necessitates the manual selection of various filtering parameters,
rendering them less suitable for on-site inspections. Furthermore, EMD is an iterative algo-
rithm that demands repeated signal decomposition, potentially leading to modal overlap
issues and yielding unstable decomposition results.

SVD, as a data-driven signal processing technique, distinguishes itself by eliminating
the need for manual parameter adjustments and demonstrates superior denoising capabili-
ties for both linear and nonlinear signals [13]. Notably, the difference between the authentic
spectral signal and the noise becomes more discernible in the singular values. The crux lies
in accurately identifying the boundary between them to achieve effective denoising. As a
result, this study introduces a novel approach for determining the optimal order of SVD. In
comparison to previous methods, this approach maximizes denoising effectiveness and
optimizes computational resources to enhance both computational efficiency and denoising
accuracy. The following is a summary of this paper’s contribution:

1. A passive, built-in optical sensor has been engineered, featuring a high-reflectivity
concave mirror seamlessly integrated into the flange. This sensor is designed for
direct mounting onto the GIS, enabling real-time online monitoring.

2. Our innovative approach involves the reconstruction of singular values from noise-
inclusive signals into distinct component signals. These component signals are then
integrated with the fast Fourier transform (FFT) algorithm, introducing FFT peaks as
metrics to characterize the signals. These metrics are subsequently ranked through a
decremental process. The singular value corresponding to the first FFT peak surpass-
ing a predefined threshold is chosen as the effective order for denoising.

3. Detection experiments involving various concentration gradients were carried out
using the SO2 ultraviolet spectroscopy detection platform. The denoising performance
of the proposed method was then compared to that of the conventional approach.
The results clearly indicate that the method presented in this study outperforms the
conventional approach in terms of denoising accuracy, making it a promising option
for practical applications.

2. Related Work

The selection of the order for SVD directly impacts the effectiveness of signal denois-
ing. An excessively high-chosen order of the singular spectrum may inadvertently retain
noise information in the filtered signal, thereby impeding the desired denoising outcome.
Conversely, an excessively low-chosen order of the singular spectrum might mistakenly
treat valid signal components as noise, leading to their unintentional removal during the
filtering process. Traditional SVD-based noise reduction is typically carried out by directly
examining changes in singular values, and the optimal denoising order corresponds to the
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first singular value that undergoes a substantial alteration. Subsequently, the denoising
order is determined by selecting the singular value order associated with the initial signifi-
cant change in difference values. Singular values beyond this chosen order are then set to
zero, effectively achieving the denoising objective [14].

Researchers have introduced various effective order selection methods. Aiang et al.
proposed a method based on the singular value curvature spectrum [15]. Cheng et al.
employed the SVD algorithm in conjunction with the principle of minimum mutual entropy
to distinguish noise from the genuine signal with the aim of denoising [16]. Mao et al.
introduced an innovative denoising algorithm that combines segmented SVD with the
lifting wavelet transform (LWT) based on the ensemble empirical modal decomposition
(EEMD) [17]. Lei et al. combined SVD with variational mode decomposition (VMD) to
develop a novel denoising method [18]. In the work of Ren et al., a novel denoising
methodology was introduced, amalgamating intrinsic time scale decomposition (ITD) and
permutation entropy (PE)-based dual noise reduction techniques with SVD [19].

3. Theoretical Method

In this paper, we present an innovative method for the optimal order selection in SVD
denoising. The process begins by reconstructing each singular value associated with the
noise-containing signal into a one-dimensional signal. This signal is then transformed into
the frequency domain. Next, we employ a FFT on each individual signal to identify the
peaks as distinctive signal characteristics. Subsequently, we differentiate the FFT peaks
by delaying the first-order values and arrange them in descending order according to
the singular values. The singular value corresponding to the first FFT peak within the
differential spectrum, surpassing a predetermined threshold, is identified as the optimal
choice for denoising.

3.1. Principle of SVD Denoising

Given an original signal X = (x1, x2, x3, . . ., xN), a noise signal S = (s1, s2, s3, . . ., sN),
and a noisy signal Y = (y1, y2, y3, . . ., yN), where N represents the length of the signal, the
relationship among the three signals can be expressed as follows:

Y = X + S (1)

To reconstruct the noisy signal Y in phase space, it is transformed into a Hankel matrix
Hm×n (m ≤ n):

Hm×n =


y1 y2 · · · yn
y2 y3 · · · yn+1
...

... · · ·
...

ym ym+1 · · · yN

 (2)

where 1 < n < N, m is the embedding dimension and satisfies m + n− 1 = N.
SVD of the Hankel matrix H:

H = U ∑ VT (3)

where the orthogonal matrix U ∈ Rm×m and the orthogonal matrix V ∈ Rn×n are the left
and right singular matrices of the H matrix, respectively, and ∑ is the singular value matrix
of the following form

∑m×n =

[
∆ 0
0 0

]
(4)

where ∆ = diag(λ1, λ2, · · · , λr), and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, λr are the singular values of
the Hankel matrix, r is the rank of this matrix, and 0 is the zero matrix.

Normally, the vital attributes of the genuine signal are encapsulated by the first k (k < r)
significant singular values, with the noise signal being contained in the remaining (r − k)
singular values. Therefore, through the proper selection of the SVD order, the subsequent
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setting of the remaining singular values to zero, and the subsequent reconstruction of the
Hankel matrix using the inverse of the SVD, the denoising goal can be accomplished. The
resultant Hankel matrix can then be simplified into a one-dimensional signal, effectively
eliminating the noise.

3.2. Determining the Optimal SVD Decomposition Order

An excessively high choice of the SVD order can result in the inclusion of noise
information in the filtered signal, thus hindering the desired denoising effect. Conversely,
when the selected singular order is excessively low, it may inadvertently filter out valuable
components as noise. In this study, we individually reconstruct each singular value of
the spectral signal into a one-dimensional signal. We then employ the frequency domain
to compare and analyze each singular component, facilitating the determination of the
optimal order for SVD-based denoising while preserving the essential components.

The singular values of the signal Y are obtained through Equations (2)–(4) mentioned
earlier. During each iteration ∆, only one of the λi is preserved, while the remaining
singular values are set to zero. This process generates a collection of singular value vectors
∆′i = diag(0, · · · , λi, · · · , 0), along with the singular value matrix and Hankel matrix, which
can be represented in the following form:

∑′
i =

[
∆′i 0
0 0

]
(5)

H′i = U ∑′
i VT (6)

Each singular value λi in ∆′i is transformed into a matrix of singular values. The matrix
is then inverted using singular value decomposition, resulting in the transformation matrix
H′i , as depicted in Equations (5) and (6) provided earlier. Subsequently, the Hankel matrix
is reduced to yield the component signals Yi, which correspond to the original signal Y.
These component signals are utilized to reconstruct the spectral signal.

We apply the FFT to each of the r component signals. Within each signal, we identify
the frequency value corresponding to the maximum amplitude. These frequency values
are then arranged in descending order, based on the singular values of the original signal.
The primary frequency difference spectrum is derived through the application of first-
order lagged difference processing. To accommodate specific situations, we establish
a predetermined threshold range for differences. Singular values that precede the first
difference value surpassing this threshold are preserved in the primary frequency difference
spectrum, while the remaining singular values are nullified.

4. Experimentation and Evaluation
4.1. Denoising of SO2 UV Spectral Signal Simulation

We selected the original noiseless differential absorption spectra of 5 µL/L SO2 gas
within the wavelength range of 290 nm to 310 nm. The data had a sampling interval of
0.11 nm and a signal length of 203. We also used simulated signals with added noise at a
SNR of 5 dB, as show in Figures 1 and 2.

The noisy signal, with a SNR of 5 dB, is transformed into a 101 × 103 Hankel matrix.
This matrix is then subjected to SVD, resulting in the reconstruction of component signals
for each singular value, following the previously described methodology. The resultant
component signals are displayed in Figure 3.

As depicted in Figure 3, the characteristics of the original signal are clearly evident in
the singular value component signals. The sum of the first six component signals can be
considered the genuine and effective representation of the original signal. A notable change
occurs in the seventh component signal. According to the principle of SVD denoising,
the order corresponding to the alteration in the singular value, which coincides with the
optimal order for singular value noise reduction.
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In Figure 4, the first-order difference exceeding the predefined threshold of 0.3 serves
as the effective order for SVD. It is evident that the order of the first singular value exceeding
the preset threshold is 6, consistent with the observation of the singular value component
signal transition from the seventh in Figure 3. The first six singular values are retained,
and the remaining singular values are set to zero. The noise-reduced Hankel matrix is
then reconstructed through the inverse transformation of SVD and condensed into a one-
dimensional signal. The signal after denoising is smoothed, and its feature distribution
closely aligns with the original signal. The denoising results for the noisy signal with a SNR
of 5 dB are presented in Figure 5. The noise reduction algorithm proposed in this study
is entirely data-driven and effectively distinguishes between the signal and noise based
on the differences in singular value information. This capability enhances the accuracy of
selecting the effective order for SVD denoising.
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Figure 3. Singular Value Component Signals with Noise, SNR: 5 dB. (a) 1st to 4th singular value
component signals; (b) 5th to 8th singular value component signals.

To evaluate the denoising capability of the optimization algorithm for the UV spectrum
of SO2, we assess the denoising performance of the UV-difference spectrum of SO2 using
the proposed denoising algorithm, the SVDS method, and the wavelet denoising method.
For the wavelet denoising method, we choose the “sym14” wavelet basis function and set
the number of decomposition layers to five [20]. The simulation dataset comprises a total of
30 samples. To gauge the denoising effectiveness, we employ the SNR and RMSE metrics.
The denoising results are presented in Figures 6 and 7.
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The method presented in this paper demonstrates superior denoising effectiveness
at lower SNR. It is shown that the improved SVD noise reduction algorithm proposed in
this paper enhances the signal-to-noise ratio (SNR) by 18.02% and 16.86%, and reduces the
root-mean-square error (RMSE) by 15.13% and 14.92%, respectively, compared with the
SVDS denoising method and wavelet transform denoising method under the condition of
low SNR. However, for higher SNR, approximately exceeding 20 dB, the denoising effect
becomes comparable to that of the wavelet noise reduction method. The rationale for this
approach is rooted in the observation that, once the SNR surpasses 20 dB, the noise content
in the signal becomes minimal and closely resembles the original signal. Consequently, it
becomes challenging to evaluate the denoising performance of these two methods under
such circumstances. The SVDS method exhibits an overall average denoising effect and has
limited capacity to process spectral data with specific SNR.

4.2. Denoising Experiments for Each Concentration Gradient of SO2

To further validate the denoising effectiveness of the algorithm on measured spectra, a
UV absorption spectroscopy-based SO2 detection platform was established. This platform
was equipped with a setup designed for SO2 analysis. We meticulously prepared five sets
of SO2 test samples, each with concentrations of 1, 2, 5, 10, and 20 µL/L. A schematic of the
experimental testing platform is depicted in Figure 8.
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In the course of the experiments, a Bwtek Quest X-ray spectrometer and a HAMA-
MATSU L9455-11 scintillation xenon lamp were utilized. Single-mode optical fibers, se-
lected for their optical transmission efficiency of at least 80% within the 200 nm to 400 nm
wavelength range, were employed for optical transmission. The gas absorption cell, featur-
ing an optical path length of 0.85 m, incorporated several concave mirrors coated with a
high-reflectivity aluminum film. The inner wall of the cell was lined with a Teflon film to
effectively mitigate gas adsorption effects. The UV light emitted by the xenon lamp was
guided through the single-mode optical fiber and directed into the gas absorber cell using
the collimating mirror. Within the gas absorption cell, the UV light thoroughly interacted
with the SO2 gas before being directed to the spectrometer via the focusing mirror. The
spectrometer was connected to a computer, which further analyzed and processed the
acquired spectral data. The high-reflectivity concave mirrors used in the experiments were
integrated into the back of the flange, and the microspectrometer, xenon lamp, single-
mode fiber optic, and PC processing terminal were integrated into the portable toolbox, as
illustrated in Figure 9.
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Spectral data for SO2 at five different concentrations were subjected to noise reduction
using three distinct methods: the algorithm proposed in this paper, wavelet transform, and
SVDS. Following the Beer–Lambert law, absorbance is directly proportional to gas concen-
tration, taking into account the absorption coefficient and optical path length. Similarly, in
the frequency domain, attributes such as the maximum magnitude following FFT are also
proportionate to gas concentration. Figure 10 illustrates that the UV absorption spectra of
SO2 at varying concentrations, after processing with the algorithm presented in this paper,
display a well-defined distribution of absorption peaks and consistent frequency domain
characteristics.
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Figure 10. UV difference spectra of SO2 concentration after denoising.

To compare the performance difference between the improved SVD denoising al-
gorithm proposed in this paper and other denoising methods, line curves depicting the
relationship between the FFT values of the UV differential spectra and the SO2 gas concen-
tration after various denoising methods were fitted, as illustrated in Figure 11.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 14 
 

FFT are also proportionate to gas concentration. Figure 10 illustrates that the UV absorp-
tion spectra of SO2 at varying concentrations, after processing with the algorithm pre-
sented in this paper, display a well-defined distribution of absorption peaks and con-
sistent frequency domain characteristics. 

 
Figure 10. UV difference spectra of SO2 concentration after denoising. 

To compare the performance difference between the improved SVD denoising algo-
rithm proposed in this paper and other denoising methods, line curves depicting the re-
lationship between the FFT values of the UV differential spectra and the SO2 gas concen-
tration after various denoising methods were fitted, as illustrated in Figure 11. 

  
(a) (b) 

290 295 300 305 310

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

A
bs

or
ba

nc
e(

a.
u.

)

Wavelength/nm

 1ppm
 2ppm
 5ppm
 10ppm
 20ppm

0 5 10 15 20
0

1

2

3

4

F
F
T
 m

a
g
n
it
u
d
e

Concentration (μL/L)

 FFT magnitude

 Linear regression line

R 2=0.936

0 5 10 15 20
0

1

2

3

4

F
F
T
 m

a
g
n
itu

d
e

Concentration (μL/L)

 FFT magnitude

 Linear regression line

R 2=0.997

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 14 
 

  
(c) (d) 

Figure 11. Goodness of the linear regression fits. (a) Original signal: 0.936; (b) Improved SVD: 0.997; 
(c) Wavelet transform: 0.995; (d) SVDS: 0.956. 

The figure above illustrates that, following the improved SVD processing, the line fit 
of concentration to the FFT eigenvalues surpasses the performance of both the wavelet 
transform denoising algorithm and the singular value difference spectral denoising algo-
rithm processing. Moreover, the determination coefficient is enhanced from 0.93627 to 
0.99735 for the original data. 

5. Conclusions 
(1) This study introduces the novel application of the SVD method for denoising SO2 

ultraviolet spectral signals. It also proposes an optimized method for selecting the 
effective order of singular value denoising. This method involves reconstructing each 
singular value of the original spectral signal into a one-dimensional signal, analyzing 
it in the frequency domain, and using the frequency value with the highest amplitude 
as an index to characterize each singular value component. 

(2) The denoising algorithm’s effectiveness is maximized by selecting the singular value 
order corresponding to the first significantly changed frequency value as the algo-
rithm’s effective order. 

(3) In low SNR conditions, our study reveals that the improved SVD noise reduction 
algorithm presented in this paper leads to substantial improvements. It boosts the 
SNR by 18.02% and 16.86%, as compared to the SVDS method and the wavelet trans-
form denoising algorithm, respectively. Additionally, the RMSE diminishes by 
15.13% and 14.92%, respectively. Furthermore, the linear relationship between the 
concentration of SO2 samples and the characteristic value of the UV spectra achieves 
a remarkable coefficient of 0.99735. The denoising method proposed in this paper 
does not require manual setting of various types of parameters, and has a better abil-
ity to deal with the noise of UV spectral signals in engineering sites with complex 
environments. 
These findings highlight the effectiveness of our algorithm, particularly in situations 

with low SNR. In comparison to wavelet denoising and the SVDS method, our approach 
offers superior denoising capabilities. Although wavelet denoising and the singular value 
difference spectral method exhibit good denoising performance, our improved SVD 
method excels in scenarios with low SNR. 

0 5 10 15 20
0

1

2

3

4

F
F
T
 m

a
g
n
it
u
d
e

Concentration (μL/L)

 FFT magnitude

 Linear regression line

R 2=0.995

0 5 10 15 20
0

1

2

3

4

F
F
T
 m

a
g
n
itu

d
e

Concentration (μL/L)

 FFT magnitude

 Linear regression line

R 2=0.956
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(c) Wavelet transform: 0.995; (d) SVDS: 0.956.
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The figure above illustrates that, following the improved SVD processing, the line fit
of concentration to the FFT eigenvalues surpasses the performance of both the wavelet
transform denoising algorithm and the singular value difference spectral denoising algo-
rithm processing. Moreover, the determination coefficient is enhanced from 0.93627 to
0.99735 for the original data.

5. Conclusions

(1) This study introduces the novel application of the SVD method for denoising SO2
ultraviolet spectral signals. It also proposes an optimized method for selecting the
effective order of singular value denoising. This method involves reconstructing each
singular value of the original spectral signal into a one-dimensional signal, analyzing
it in the frequency domain, and using the frequency value with the highest amplitude
as an index to characterize each singular value component.

(2) The denoising algorithm’s effectiveness is maximized by selecting the singular value
order corresponding to the first significantly changed frequency value as the algo-
rithm’s effective order.

(3) In low SNR conditions, our study reveals that the improved SVD noise reduction
algorithm presented in this paper leads to substantial improvements. It boosts the SNR
by 18.02% and 16.86%, as compared to the SVDS method and the wavelet transform
denoising algorithm, respectively. Additionally, the RMSE diminishes by 15.13% and
14.92%, respectively. Furthermore, the linear relationship between the concentration
of SO2 samples and the characteristic value of the UV spectra achieves a remarkable
coefficient of 0.99735. The denoising method proposed in this paper does not require
manual setting of various types of parameters, and has a better ability to deal with
the noise of UV spectral signals in engineering sites with complex environments.

These findings highlight the effectiveness of our algorithm, particularly in situations
with low SNR. In comparison to wavelet denoising and the SVDS method, our approach
offers superior denoising capabilities. Although wavelet denoising and the singular value
difference spectral method exhibit good denoising performance, our improved SVD method
excels in scenarios with low SNR.

The focus of this paper is solely on the application of the improved singular value
decomposition algorithm to the denoising of SO2 UV spectra. In future research endeavors,
it would be worthwhile to explore whether this method can be extended to the spectra of
other characteristic decomposition component gases of SF6.
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