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Abstract: The rapid proliferation of handheld intelligent devices and the advent of 5G technology
have brought about convenient and fast services for people. In perception-oriented application ser-
vices, participating users will upload sensitive mobile data in order to obtain benefits. While devising
privacy protection strategies to ensure data security, it is crucial to accomplish task perception related
to data collection to the fullest extent possible. To address this challenge, this paper proposes a
personalized data privacy protection algorithm based on an adaptive dynamic adjustment grid and
the minimum wage task allocation strategy. According to the different levels of users’ needs for
privacy protection, combined with the privacy budget allocation strategy, we design a different-level
differential privacy protection mechanism and consider the reward mechanism in task allocation
to balance the effectiveness and security of the location data uploaded by users. Experiments show
that the strategy proposed in this paper can not only protect the data but also enable users to freely
choose the level of privacy protection.

Keywords: differential privacy; personalized privacy protection; task assignment; mobile crowdsensing

1. Introduction

The emergence of mobile crowdsensing technology [1–3] comes from the integration
of sensors and embedded devices. Handheld devices can acquire useful information in
the real world by collecting, uploading and sharing data [4,5]. In various scenarios like
social recommendations (e.g., food or hotel recommendations) and real-time monitoring
of the surrounding environment (e.g., noise level monitoring) [6,7], an application uses a
mobile device’s perception capabilities to enhance data credibility, thereby minimizing
the expenses of installing sensor equipment. However, its implementation may inadver-
tently expose sensitive information about mobile users, including social connections and
location data [8,9]. The platform’s task allocation relies on the user’s location, causing
the data collected by the user’s device to potentially reveal their trajectory or other
details. For instance, Google Maps utilizes “anonymous” location data from drivers
to create real-time maps, yet it inadvertently discloses the driver’s route and location.
An attacker with prior knowledge will use the known information to mine the user’s
privacy to threaten the user’s personal safety. Therefore, when designing perceptual
service applications, the first consideration is to protect the privacy and security of
collectors. Only by designing a reasonable and effective data protection mechanism can
users accept more tasks.

Users may disclose their own sensitive information when participating in crowdsens-
ing: a malicious cloud platform may use user information to make profits, which will
cause immeasurable losses to users and thus dampen the enthusiasm of mobile users for
participating in crowdsensing. Therefore, how to solve the privacy protection problem
in crowdsensing is crucial; privacy protection has gradually been paid great attention by
scholars, and a variety of privacy protection methods have been proposed [10–14]. In
2003, Beresford first proposed the concept of location privacy protection [15]. Privacy

Appl. Sci. 2023, 13, 12696. https://doi.org/10.3390/app132312696 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312696
https://doi.org/10.3390/app132312696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1715-7448
https://doi.org/10.3390/app132312696
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312696?type=check_update&version=1


Appl. Sci. 2023, 13, 12696 2 of 19

protection is primarily focused on concealing users’ identity and location information for
safeguarding their confidentiality [16,17]. Currently, common privacy protection methods
include anonymity-based methods, reputation-based methods and differential privacy-
based methods.

There are several mobile crowd awareness schemes using anonymity technology to
protect privacy data at home and abroad [18–21], such as k-anonymity technology [22].
The main idea of the k-anonymity technique proposed by Samarati and Sweeney is as
follows: Assuming that the attacker is faced with massive data and there are a certain
number of quasi-identifiers (such as age, gender, salary, etc.) in the massive data of which
records cannot be identified, the attacker can use prior knowledge to narrow the data
to a certain range of equivalence classes that satisfy their prior knowledge but cannot
lock the attack target from the equivalence class [22,23]. This technology uses equivalence
classes to protect personal privacy, and parameter k can measure the maximum information
disclosure risk that users can bear [24]. Nevertheless, anonymization is insufficient for
privacy preservation, since mobile users may be traced via travel routes and social relations.
Meanwhile, despite the efficacy of k-anonymity technology in data protection, its reliance
on the attacker’s background knowledge poses a significant vulnerability. If faced with a
new attacker possessing unknown prior knowledge, the attacker can potentially differenti-
ate various records within the published equivalent dataset beyond the predicted scope,
leading to deanonymization [25]. So, the security of the k-anonymous model depends
on the knowledge possessed by the attacker. And since it is impossible to prove that the
algorithm can evaluate the mathematical process of privacy levels, it is not a very perfect
privacy protection strategy.

Reputation-based approaches are popular in mobile crowdsensing for allocating tasks to
mobile users, but they have their inherent weaknesses. Reputation-based mechanisms [19,26–28]
can assign tasks to mobile users. However, the mechanism reliant on reputation is vulnera-
ble due to its dependency on a trusted third party (TTP) for managing reputation, which
makes it vulnerable to reputation-linking attacks, in which anonymous mobile users can
be reidentified based on their reputations. The SPOON framework, proposed by Ni et al.,
addresses this weakness by utilizing proxy re-encryption and BBS signature technology to
safeguard sensitive information of mobile users and customers. Named SPOON [6], this
framework enables registered customers and mobile users to anonymously demonstrate
their ability and trustworthiness for participating in service perception tasks, ensuring the
security of the tasks and reports. However, the effectiveness of this technology still relies
on the guarantee provided by a trusted third party. If this third party breaches trust, the
data remain vulnerable and unprotected.

The emergence of differential privacy technology effectively addresses the aforemen-
tioned issues. Differential privacy was originally used in the field of statistical databases
(database). Dwork [24,25,29] first applied differential privacy technology to the statisti-
cal database field with the aim of safeguarding individuals’ privacy information when
publishing statistical data. Differential privacy is advantageous as it does not rely on an
attacker’s prior knowledge and can be mathematically proven using a quantitative eval-
uation method. This technology has gained significant attention from privacy protection
researchers and has been implemented in various areas, including privacy-protected data
publishing and mining.

While designing privacy protection strategies to ensure the security of data, we should
complete the task perception related to data collection as much as possible. To address this
problem, this paper proposes a personalized data privacy protection algorithm based on an
adaptive dynamic adjustment grid and the lowest paid task allocation strategy. Considering
the privacy protection requirements of users at different levels, we have designed various
levels of differentiated privacy protection mechanisms by incorporating the privacy budget
allocation strategy. In addition, we consider a reward mechanism in task assignment
to balance the effectiveness and security of user-uploaded location data. Experiments
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demonstrate that the strategy proposed in this paper not only safeguards the data but also
empowers users to freely select the level of privacy protection.

In summary, this paper makes the following contributions:

• Privacy protection in perception: We investigate the privacy protection problem in
perception-oriented application services. Our aim is to design privacy protection
strategies ensuring data security, with the capability to comprehensively fulfill the
task of data collection perception.

• Personalized data privacy protection: We propose a personalized data privacy protec-
tion algorithm based on an adaptive dynamic adjustment grid and the lowest paid
task allocation strategy. Considering the varying levels of user privacy protection
needs, we design different-level privacy protection mechanisms by incorporating the
privacy budget allocation strategy. We also consider a reward mechanism in task
allocation to balance the effectiveness and security of user-uploaded location data.

• Extensive evaluation: We conduct thorough evaluations on various real-world datasets.
The results demonstrate that our proposed strategy not only safeguards the data but
also allows users to freely choose their preferred level of privacy protection.

The remainder of this paper is organized as follows. After reviewing the related works
in Section 2, we introduce the model framework in Section 3. Then, the personalized
privacy protection is proposed in Section 4, followed by the evaluations in Section 5 and
discussion in Section 6. Finally, we conclude this paper in Section 7.

2. Related Work
2.1. Differential Privacy

A differential attack occurs when the attacker leverages existing knowledge to
compare it with the query information, attempting to deduce the most probable guess.
For instance, if a school releases the results of a course with 100 students, revealing that
only six students failed, an attacker possessing the score information of 99 students can
attempt to guess whether the remaining student passed or failed. Differential privacy
protection technology introduces noise to the original data to ensure a similar data
distribution. Consequently, when an attacker adds or removes data, the disparity in data
distribution becomes indistinguishable, preventing the identification of specific users
within the published data. The basic concepts and definitions of differential privacy are
as follows:

(ε-differential privacy) In the algorithm, a series of queries Q are performed on any
two adjacent datasets D and D

′
, and PQ is the probability of the set of all possible outputs

of Q. SQ is any subset of PQ. If the algorithm satisfies:

P[Q(D) ∈ SQ] ≤ eε · P[Q(D
′
) ∈ SQ] (1)

then this algorithm satisfies ε-differential privacy, where datasets D and D
′

are adjacent
datasets. That is, even if any tuple is changed, the probability difference of the output
results is very small. The attacker cannot guess the dataset and can play a role in protecting
user data [30].

(Global sensitivity) When conducting a series of random queries Q on any two adjacent
datasets D and D

′
, the global sensitivity of the query function is the maximum Manhattan

distance of the output. The global sensitivity can obtain the variation range of a query
function on a pair of adjacent datasets. And the formula is as follows:

QSq(D) = max
D,D′

∥∥Q(D)−Q
(

D′
)∥∥

1 (2)

(Local sensitivity) When conducting a series of random queries Q on any two adjacent
datasets D and D

′
, the formula of local sensitivity is as follows:

LSq(D) = max
D′

∥∥Q(D)−Q
(

D′
)∥∥

1 (3)
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The local sensitivity is determined via the query function and the distribution of the
query dataset, whereas the global sensitivity is solely related to the query function and is
independent of the query dataset. Utilizing local sensitivity poses a certain risk of data
leakage. Therefore, in the algorithm proposed in this paper, we will adopt global sensitivity.
As mentioned earlier, differential privacy can be achieved by introducing noise to the query
results, yet excessive noise can impede data availability. Since sensitivity signifies a change
in query results due to the deleting of any record in the dataset, it is commonly employed
as a parameter to measure the amount of noise in differential privacy.

2.2. Noise-Adding Mechanism in Differential Privacy

Because differential privacy only allows access to the database through counting and
summation, random noise needs to be added to each query result to protect data privacy.
Only in this way can the attacker be prevented from guessing the existence of the target in
the database and obtaining specific information from the set of query results. Next, we will
introduce the common noise mechanism in differential privacy.

(Laplace mechanism) If we send a series of query requests to database D: Query
= q1, q2, q3, . . . , qn, the database will produce a real answer q(D). Differential privacy
protection adds noise to the numerical results to obtain a series of results with the same
probability distribution [31,32]. The Laplace mechanism solves this problem well and needs
to provide a parameter λ. It is calculated as follows:

λ =
QS
ε

(4)

The Laplace distribution has a mean of 0 and a variance of λ2, and it satisfies ε-
differential privacy. The noise added to the query set result q(D) during the query is
η ∼ Laplace(0, λ). Therefore, the returned result is:

A(D) = q(D) + η (5)

Clearly, the smaller the privacy budget, the greater the noise when adding to the
original data, thereby enhancing the level of protection, but inevitably compromising the
data’s availability. To cater to the personalized privacy protection requirements of users,
this paper categorizes protection levels by assigning different privacy budgets.

2.3. Private Space Decomposition

In database management, there exists a specialized storage structure known as an
index, which enables the rapid retrieval of required data. For instance, in a student
information database, the index allows for the swift retrieval of specific student information.
Common index storage is generally implemented using B-tree or B+tree, facilitating the
quick location of specified data through dichotomy. However, these conventional indexes
are designed solely for one-dimensional data. When dealing with data represented on
two-dimensional coordinates, spatial indexes are employed in database management. Data
storage commonly utilizes quadtree [33], R-tree, k-d tree and the geohash algorithm to
convert two-dimensional data into one-dimensional data, enabling the use of B-tree indexes
for efficient spatial data point searches.

Building upon the definition of query function in differential privacy, Graham Cor-
mode et al. proposed the concept of “private space decomposition (PSD)” in Reference [34].
PSD is a concept applied in the field of data management. It refers to dividing the data
space into smaller subspaces with the introduction of differential privacy protection mea-
sures in spatial data structures to achieve the goal of data privacy protection. Under the
premise of privacy protection, introducing noise at different levels of the data space can
safeguard data privacy while maintaining data structure effectiveness and retrievability.
Private space decomposition technology is used in applications involving personal and
private data to balance the requirements of data availability and privacy protection.
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When using PSD for privacy protection in spatial indexing, it is common to utilize
the spatial index tree structure and divide the geographical area into subintervals, which
serve as the next-level nodes of the tree structure. Leaf nodes contain two-dimensional
coordinates, while the parent node stores the summarized data information of child nodes
adhering to differential privacy, essentially representing the index information. To ensure
the objective of data privacy protection, noise is introduced to the spatial nodes during
index establishment, ultimately leading to query results aligned with the distribution of
differential privacy.

In addition to the tree hierarchy, the index for spatial data also has a plane structure,
such as a grid structure. Wahbeh Qardaji et al. [30] proposed the concept of a multilevel
grid index and compared it with the traditional tree index. Their findings indicate that the
multilevel grid offers better performance in terms of differential privacy protection than
the traditional hierarchy. They further introduced the unified grid granularity method [30].
Building upon the idea of unifying the grid granularity partition, Reference [35] presented
an adaptive grid (AG) method characterized by robustness and simplicity. This method
calculates the size of the second grid based on the results of the first grid query. In
comparison to the PSD, the AG method also demonstrates robustness and simplicity. While
the dynamic grid utilizes some data in the second calculation of grid granularity, its impact
on privacy protection is not significant. This paper inherits the adaptive grid (AG) method
and makes improvements based on personalized user needs. When adding noise to the
grid by using the Laplace mechanism, the personalized user needs are considered.

3. System Model and Framework Overview

In this section, we first introduce the system model used in this work. Next, we
propose a personalized privacy protection framework for mobile crowdsensing, with a
detailed workflow presented in Figure 1.

Figure 1. Mobile acquisition task allocation process based on differential privacy protection for
mobile crowdsensing.

3.1. Dynamic Spatial Meshing

“Dynamic spatial meshing” refers to a technique utilized across various fields that
improves simulation accuracy and efficiency by dynamically adjusting grid density to
accommodate areas with complex or rapidly changing phenomena. The dynamic adaptive
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grid index planning used in this paper was established in Reference [35]. As illustrated in
Figure 2, it involves fixed first- and second-level privacy budget allocation strategies. The
strategy calculates the granularity of the first-level grid based on the number of workers.
It combines the privacy budget of the first-level grid with the Laplace mechanism to
introduce noise into the nodes of the first-level grid. Subsequently, the query data of
each grid in the first level are utilized to calculate the granularity of the second-level grid.
This process involves establishing the second-level grid and adding noise twice in the
second-level grid.

Figure 2. Dynamic spatial meshing strategy and meshing process.

3.2. System Model

This paper proposes a personalized strategy for user data privacy protection during
the process of mobile data collection, which builds upon the dynamic division of plane
space and the construction of a private space decomposition index proposed by previous
researchers. Considering the diverse privacy protection needs of different workers, we
introduce varying Laplace noises into leaf grid nodes while ensuring that tasks are
allocated in the most cost-effective manner. In the simulation experiment, this paper adds
noise to the node, queries the summarized data result within a specific range, compares
it with the actual result and then assesses the level of privacy protection capability.
The task allocation framework for users with different protection levels is evaluated
using parameters such as task propagation time, completion percentage and forwarding
distance. Experimental data demonstrate that the personalized privacy protection strategy
proposed in this algorithm is more effective in the data collection process and performs
better in task allocation results.

3.3. Framework Overview

We design a personalized privacy protection framework for mobile crowdsensing, as
shown in Figure 1. The framework is mainly divided into three parts:

1. The platform provides differential privacy protection according to the location of work-
ers, completes task allocation and ensures that the data are not excessively distorted.

2. According to the private space decomposition (PSD) broadcast area selection algo-
rithm, the appropriate task broadcast range is calculated for task release and the task
is accepted under the purpose probability.
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3. Design cost reward mechanism and select appropriate workers to complete the task.
Figure 1 describes the workflow of the whole platform when a task needs to be published.

In the process of crowdsensing, the task requester first submits the task requirements,
and then the platform broadcasts the task to workers. Workers choose to accept the task,
and the platform selects among them based on cost or optimal performance. The selected
worker with a handheld mobile device performs sensing and returns the sensed data to
the platform. During this process, workers need to upload their location and other privacy
information to the platform, which may pose a risk of privacy leakage. Our model includes
three parts: personalized private space decomposition framework, task broadcast strategy
and task allocation algorithm based on worker compensation. These parts correspond
to step 4 (workers accept the assignment), step 3 (area broadcast to workers) and step 5
(choose the lowest-paid worker based on cost) in Figure 1, respectively. Our model protects
user privacy during the crowdsensing process to avoid privacy leakage. Details of these
parts are introduced in Section 4.

4. Personalized Privacy Protection

In this section, we introduce the three parts of our personalized privacy protection
framework in detail. We first design the personalized private space decomposition frame-
work. Based on that, we further design the task broadcast strategy. Finally, the task
allocation algorithm based on worker compensation is presented.

4.1. Personalized Private Space Decomposition Framework Design
4.1.1. PSD

When constructing a worker index in the database, we operate under the following
assumptions: Firstly, the workers’ residential places represent their current locations.
Secondly, the platform possesses latitude and longitude coordinate data of workers. The
third assumption is that the workers’ residential places are distributed within a known
area. In the simulation experiment, the residential location can serve as a substitute for
real-time location data, facilitating comparisons with the spatial index privacy protection
algorithm of other data structures. This section introduces the spatial index frame design
for the spatial location of workers. The dynamic division of the spatial grid employs the
dynamic spatial meshing strategy outlined in Section 3.1.

It is worth noting that the data privacy budget of each grid is the same when the above
algorithm dynamically divides the spatial grid, so it cannot meet personalized needs. This
paper makes some improvements on this basis.

4.1.2. Personalized Privacy Budget Allocation

When establishing the dynamic meshing results, using the conclusions in Refer-
ence [30], we will reduce the total budget ε. It is divided into two parts. The first part ε1
is the privacy budget required to add noise to the node when establishing the first-level
grid node. The second part ε2 = ε − ε1 will be used to calculate the noisy count of the
second-level grid nodes. And the calculation formula of ε1 is as follows:

ε1 = ε× α (6)

α is the percentage of the total budget divided when dividing the first-level grid
(0 < α < 1). According to the literature [30], the parameter α is not critical for privacy
protection results. When the range of α is from 0.2 to 0.6, the noisy data are roughly similar
to the original data. Therefore, in order to achieve a personalized level of privacy protection,
we will set α to a random number from 0.3 to 0.6.

4.1.3. Spatial Grid Division Strategy

When constructing a spatial index, it is necessary to organize each index into a grid
containing a limited number of user nodes or a grid covering a small area, with each leaf
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node forming part of the subsequent tree structure. Drawing from index categories in the
database, various forms of tree structure decomposition exist during spatial division:

No data decomposition required. The tree structure after division is precisely defined,
and the division’s outcome relies solely on the definition of the tree structure. For instance,
the quadtree is established by recursively dividing each node’s region into four subregions
of equal area [36].

Data decomposition required. This decomposition relies on the internal data of the
node. For example, Hilbert R-tree: R-tree is a spatial decomposition formed by nested
rectangles that may overlap.

Hybrid tree. The definition of a hybrid tree is that the establishment of some level
nodes needs data support and the division of the remaining level nodes does not need data
support. The construction process of a hybrid tree needs to be designed in combination
with a specific framework.

When providing differential privacy protection for nodes in space, some researchers
have adopted the above tree structure [34,37]. It is common to use recursive partitioning to
establish quadtree and k-d tree. Although effective in maintaining differential privacy pro-
tection, applying one-dimensional hierarchical methods to two-dimensional datasets often
results in deeper trees. When dealing with massive data, the construction of spatial indexes
can extend to more than ten levels, with grid divisions often operating at a scale level.

Dynamic spatial meshing strategy AG: Reference [35] proposed an adaptive grid
(AG) method. This method aims to divide areas with concentrated worker data into more
subareas and areas with sparse worker data into fewer subareas. In other words, AG
addresses the drawback of the unified grid (UG) by calculating the sizes of second-level
grid cells at different levels based on the data of the upper-level node.

The PSD algorithm in AG is introduced as follows: Firstly, we establish the root node
of the mesh. Subsequently, we partition the root node into a grid of fixed size m1 ×m1. To
introduce variability into the number of users in each grid cell, we add noise to the number
of users in each grid cell by using Formula (5). The author of Reference [30] proposed
the calculation formula for determining the granularity of the first-level grid node in AG,
which is presented in Equation (7):

m1 = max{10,

⌈
1
4

√
N × ε

c

⌉
} (7)

where N represents the number of data points on the workers’ location grid. The authors
of Reference [38] presented a substantial number of data. According to the experimental
results, it was demonstrated that setting c = 10 yields improved division results.

Subsequently, AG retrieves the count of workers in the first-level grids. With the num-
ber of these grids being m1 ×m1, we calculate the size of the second-level grid according to
the number of query results. Each coarse-grained region is then adaptively subdivided into
m2 ×m2 finer-grained areas. The calculation formula of m2 is as follows:

m2 =


√

N′ × ε× (1− α)

c2

 (8)

To increase the granularity m2 and reduce the overhead, the author of Reference [35]
incorporated an additional parameter c2 into the heuristic algorithm, setting it to c2 =

√
2.

During the initialization phase, the particle size is set to m2 ×m2 , and noise is added to the
number of fine-grained grid cells using Formula (5). Subsequently, the perturbed count of
the corresponding fine-grained mesh is published alongside the structure of AG. Based on
Formula (1), the counting query algorithm of the AG model satisfies the requirements of
ε-differential privacy.

Personalized dynamic spatial meshing strategy PAG: For personalization, we set the
privacy budget percentage α to a random value. Refer to Algorithm 1 for the specific
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algorithm. Table 1 presents a description of the special symbols utilized in Algorithm 1,
while Figure 3 serves as an aid for comprehending the flowchart of Algorithm 1.

Figure 3. The flowchart of Algorithm 1.

Table 1. Symbols required for Algorithm 1.

Symbol Definition

queue auxiliary queue

curr current team head node

dcurr depth of node curr in PAG tree

subWL1currId subgrid corresponding to node curr

ε1,nodei
personalized privacy budget of the first-level grid

node i

ε2,nodei
remaining privacy budget

According to References [34,35], we understand that the Laplace mechanism can
introduce noise to the spatial index of the dataset, ensuring that the output of the counting
query function satisfies the requirements of ε-differential privacy.

4.2. Task Broadcast Strategy Design

Compared to tasks assigned directly by the platform, workers are more willing to
accept the broadcast task, so the platform needs to find a reasonable broadcast area. In
essence, the task broadcasting strategy must access the spatial indexes of workers and
calculate a designated broadcast grid area centered around the task location. The decisive
condition of this area is that the task can be accepted by the staff in the platform when
the probability of completion can be achieved. As users generally prefer tasks closer to
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their current location for convenience [38,39], their acceptance rates vary depending on
task proximity. The acceptance rate is a function that decreases with forward distance.
In this paper, the linear decline function is selected. This chapter adopts the broadcast
area algorithm described in Reference [35]. This paper finds the secondary grid node
where the task is located and continuously adds the neighbor nodes with workers. When
there is a certain probability that the task can be completed, it ends the expansion of the
broadcast area.

Algorithm 1 PAG

Input: Grid of workers’ location (WL)
Output: Grid of workers’ location (WL)

1: calculate m1
2: Initialize the root node, initialize the queue and queue the root node
3: if queue is empty:
4: output the PAG tree
5: else:
6: pop queue leader node curr
7: If dcurr = 0:
8: divide WL into subWL11, subWL12, . . . , subWL1m1
9: establish first-layer nodes of PAG tree

10: put first-layer nodes into queue
11: randomly generated budget percentage α
12: calculate ε1,nodei

and remaining privacy budget ε2,nodei
13: execute step 3
14: else:
15: If dcurr = 1:
16: divide subWL1currId into subWL21, subWL22, . . . , subWL2m1
17: establish second-layer nodes of PAG tree
18: add second-layer nodes to Laplace random noise count
19: put second-layer nodes into queue
20: execute step 3
21: else:
22: If dcurr = 2:
23: calculate m1
24: divide subWL2currId into subWL31, subWL32, . . . , subWL3m2
25: establish third-layer nodes of PAG tree
26: add third-layer nodes to Laplace random noise count
27: put third-layer nodes into queue
28: execute step 3
29: else:
30: divide subWL3currId into subWL41, subW42, . . . , subWL4m2
31: establish fourth-layer nodes of PAG tree
32: add fourth-layer nodes to Laplace random noise count
33: put fourth-layer nodes into queue
34: execute step 3

According to the literature [39], approximately 10% of the platform’s workforce is
responsible for more than 80% of the tasks; these individuals are referred to as super
workers. Moreover, within the group of super workers, around 90% of them travel less
than 40 miles a day. This attribute has been labeled as task locality in the literature [37].
Additionally, prior research [40] addressed the issue of content locality among users of
platforms such as Flickr and Wikipedia, proposing the spatial content generation model
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(SCPM). The model calculates the average contribution distance (MCD) of each worker
as follows:

MCD(wi) =
n

∑
i=1

d(wi, tj)

n
(9)

where d(wi, tj) represents the distance between worker wi and task tj. As described in
the literature [35], the formula for calculating the maximum travel distance (MTD) that
workers are willing to accept for a task is as follows:

MTD = 90%×MCD (10)

When the distance between the worker and the task exceeds the MTD, the worker will
not choose the task. Here, MAR denotes the maximum probability of a worker accepting
the task. Additionally, AR represents the probability that the staff will accept and complete
the task. AR is calculated as follows:

AR = max{0, (1− dist
MTD

)×MAR} (11)

Here, dist represents the distance between the worker and the task. We establish a
threshold, EU. If the probability of completing the broadcast area surpasses this threshold,
it implies that at least one worker can accept the task. Assuming uniform AR among
workers within a single secondary grid, the distance between workers and tasks is the
average distance between tasks and the four corners of the secondary grid.

nc represents the noise count of workers within grid c. pc represents the task acceptance
rate of workers in grid c. The utility of grid c is calculated as follows:

Uc = 1− (1− pc)
nc (12)

Next, two calculation schemes of broadcast area will be introduced.
Broadcast area calculation without considering the secondary grid division: Begin

with the grid containing task t as the initial broadcast area. If the current broadcast area’s
utility is lower than EU, the nearest neighbor to the task within the maximum travel range
will be added to the broadcast area. The specific flow of the algorithm is outlined in
Algorithm 2, while Table 2 provides the interpretation of the symbols used in Algorithm 2.

Table 2. Symbols required for Algorithm 2.

Symbols Definition

t task

GR broadcast area

Q maximum heap of the second-level cells covering t

ci the second-level grid node

neighbours space inner grid c
′
is neighbor

Broadcast area calculation considering two-level grid continuous division: In order
to reduce the cost as much as possible, Algorithm 2 can divide the final secondary grid
and find the adjacent subregions that can reach the threshold. The following are the
improvement steps of Algorithm 2 and special symbol notes.

4.3. Task Allocation Algorithm Based on Worker Compensation

When facing the task allocation mechanism based on a dynamic grid, there are different
task allocation methods according to different considerations of the decision-making mecha-
nism. For example, the task is assigned to the workers who accept the task first (time first), the
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task is assigned to the workers closest to the task (location first), and the task proposed in this
paper is assigned to the workers with the lowest salary (salary first). In order to improve the
speed of task acceptance, the first accept first assign model is used to assign the task to the staff
with the earliest response time among all response staff. In order to reduce the travel distance of
the staff, the nearest first assignment model is used to assign the task to the staff member closest
to the task among all the responding staff. This paper chooses to assign tasks to the workers
with the lowest salary in the unit cost, that is, the lowest reward-first allocation algorithm.

Algorithm 2 GDY

Input: Task t, utility threshold EU, maximum travel area MTD
Output: Broadcast area GR

1: Initialization GR is null, u = 0
2: Initialize the maximum heap Q, where q is the second-level grid covering t
3: Pop { ci, Uci } from stack Q
4: If ci = null then output broadcast area GR, where GR is greater than MTD. Otherwise

GR = GR ∪ ci
5: If Uci ≥ 0 then U = 1− (1−U)(1−Uci )
6: If U ≥ EU then output broadcast area GR. Otherwise look for neighbors of C not in

GR ∩MTD
7: Add neighbors to Q and execute step 3

When designing the remuneration, the worker w
′
is privacy budget and the distance be-

tween wi and task t d(wi, t) are taken into account. Reward cost[i,0] is a linear combination
of privacy budget and distance. The calculation formula is shown in Equation (13):

cost[i, 0] = 50× ε2

ε
+ 50× d(wi, t) (13)

For personal reasons (such as completing a task), even if some workers have a high
probability, they may not complete the task. Therefore, it is necessary to simulate whether
workers complete the task by using a random function. The greedy algorithm is used to
find the current lowest paid worker, and Formula (11) is used to calculate the probability
AR that the worker accepts the task, and the random function is called to simulate the
probability that the worker actually accepts the task. If the random number is greater than
AR, the task is accepted and the assignment ends. Otherwise, continue to find the next
worker until there is a worker to accept or no workers.
5. Experiments and Analyses

The personalized differential privacy protection strategy proposed in this paper adds
complexity to task assignment. Introducing random Laplace mechanism noise can affect
the efficiency and accuracy of task assignment to workers within the task assignment
model. Hence, we aim to assess the effectiveness of the personalized privacy policy (PAG)
proposed in this paper in safeguarding data against discrepancies between noisy and
real data.

5.1. Experimental Settings

In our experiments, we utilized two widely used real-world datasets, Gowalla and
Yelp, as the core foundations. Gowalla, a social network dataset, provides genuine location
check-in data from users of the Gowalla mobile application, recording their activities at
various global locations, including timestamps and user profiles. Within our model, we
consider the users in Gowalla as workers, each check-in point being a previously accepted
and executed task.

On the other hand, Yelp offers an extensive compilation of business- and user-related
information sourced from the Yelp website. It encompasses intricate business data such
as geographical coordinates, operating hours and user ratings, alongside user-generated
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reviews. With data points comprising 15,583 restaurants, 70,817 users and 335,022 reviews,
we regarded restaurant locations as tasks and user reviews as accepted tasks.

Our experiments were conducted on a computer equipped with an Intel i7 CPU and
an NVIDIA 3090 GPU. Each experiment was repeated multiple times to derive the average
value as the final result.

5.2. Performance Evaluation Criteria

In the context of the task allocation mechanism, we emphasize the following indicators:

• averageErr: Represents the average of the average difference between the actual
query count and the noisy query count results. A smaller difference indicates better
algorithm performance.

• nhops: Denoting the number of broadcast hops in the platform’s task dissemination
region. A smaller number of hops suggests faster task completion.

• ANW: Indicating the average number of workers required for each task broadcast. A
smaller workforce implies higher quality worker selection.

• TASR: Representing the acceptance rate by staff once the task is released on the
platform. A higher ratio signifies more efficient worker selection.

• WTD: Signifying the average distance that staff members need to travel in order to
complete their assigned tasks. A smaller distance suggests better suitability of the
selected workers for the tasks.

5.3. Experimental Results

In this paper, the simulation experiment will utilize datasets from the literature [35].
The specific results of the simulation experiment evaluation are as follows:

5.3.1. Evaluation of Privacy Protection Performance of Personalized PSD Spatial Index

Based on the findings presented in Reference [35], the grid structure demonstrates
superior performance compared to other spatial index data structures in terms of differential
privacy protection. Consequently, we solely consider one spatial index data structure for
comparison. Specifically, our experiments are conducted on four spatial indexes: k-d tree,
UG unified grid, AG adaptive grid and PAG personalized adaptive grid. Each of these
algorithms is utilized to identify different spatial indexes. Furthermore, the spatial indexes
with added noise are repeatedly counted within a specific range, allowing us to calculate
the disparity between the actual data count and the noise-infused count for the same query.
A smaller variance between the actual count and the noise count signifies a stronger data
protection effect.

Given that our partition percentage is a randomly generated number during the
actual internal division of the PAG grid, it becomes apparent that most workers allocate
a significant portion of their privacy budget to the division of the first-level grid, with
a comparatively smaller share allocated to the second-level grid nodes. Consequently,
we set the privacy budget for k-d, UG and AG at 0.4, with a percentage of 0.5, and the
privacy budget in PAG at 0.6. To ensure the accuracy and effectiveness of the experimental
data, we conducted separate queries across various spatial indexes under different total
privacy budgets. The average results from multiple seeds were calculated, followed by
the computation of the average discrepancy between the query results of different spatial
indexes under different total privacy budgets and the real data. Figure 4 illustrates the
experimental test data for different total privacy budgets in a line graph, while Table 3
presents the average experimental values for different privacy budgets, with averageErr
representing the average of the average difference between the actual query count and the
noisy query count results.
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Figure 4. Values of averageErr under different spatial partition strategies.

Table 3. Average value of spatial index experimental data gap under different privacy budgets.

Data/Space Structure k-d UG AG PAG

averageErr 24.24 20.34 17.65 18.02

5.3.2. Impact of Personalized Grid Structure on System Performance

We conducted a comparison of the communication cost between the PAG structure
and the AG structure in task broadcasting. Using a set of 100 task coordinates, along
with the AG spatial index and the PAG spatial index, we generated the broadcast areas
GRAG and GRPAG according to Algorithm 3, while Table 4 provides the interpretation
of the symbols used in Algorithm 3. Subsequently, we initiated broadcasting within the
designated broadcast areas. Following this, we calculated the average number of notified
workers (ANW) and the number of propagation hops (nhops) for the task broadcast. The
specific results are presented in Tables 5 and 6.

Table 4. Symbols required for Algorithm 3.

Symbol Definition

ci the last unit with excessive utility in the broadcast area

ci′ subunit of ci obtained according to Algorithm 3

wrequired the noise count of the subunit is required

wci noise count of ci

percentile percentage of subarea in the secondary grid
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Table 5. ANW in broadcast areas under different privacy budgets.

ε GRAG GRPAG

0.1 46 270

0.4 30 134

0.7 30 111

1.0 27 92

Table 6. nhops in broadcast areas under different privacy budgets.

ε GRAG GRPAG

0.1 6 14

0.4 4 11

0.7 4 9

1.0 4 8

Algorithm 3 Subunit division algorithm of the secondary grid in broadcast area PCSH

Input: Task location t, the last cell ci, the probability of task acceptance in the current grid
Ucurr

Output: ci′ (subunit of ci)
1: Calculate dist (the distance between ci and t) and psub

a (the worker’s probability)

2: Urequired =
U −Ucurr

1−Ucurr
(probability required)

3: wrequired = log1−Urequired
1− psub

a (number of workers required)

4: Calculation of area percentile: percentile =
wrequired

wci
5: If ci covers t, then calculate the subunit C’ of C-based percentile and output; otherwise,

perform step 6
6: Find the subunit ci′ of ci adjacent to the current region and output it.

5.3.3. Impact of Minimum Reward Task Allocation Model on System Performance

Based on the simulation results of task broadcasting in Section 4 we can further
analyze the impact of the minimum reward task allocation model on the platform system’s
performance. The primary indicators in this section are the success rate TASR, representing
the acceptance rate by staff once the task is released on the platform, and the distance WTD
that staff members need to travel in order to complete their assigned task. The specific
experimental results are presented in Tables 7 and 8.

Table 7. TASR (%) of AG and PAG under different task allocation mechanisms.

ε AG PAG

Time First Location First Time First Location First Salary First

0.1 87 94 92 100 99

0.4 86 92 90 96 97

0.7 87 94 92 96 93

1.0 85 90 90 95 98
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Table 8. WTD (km) of AG and PAG under different task allocation mechanisms.

ε AG PAG

Time First Location First Time First Location First Salary First

0.1 0.3561 0.2112 0.7456 0.2674 0.1790

0.4 0.3249 0.2064 0.5458 0.1891 0.1945

0.7 0.3130 0.2229 0.4871 0.2434 0.1683

1.0 0.3224 0.2322 0.4206 0.1649 0.2095

6. Discussion

Our method not only ensures that user privacy is not leaked but also considers
the impact on system performance of completing the task as efficiently as possible. In
this section, we will analyze our method from the three aspects of privacy protection
performance, impact of personalized grid structure on system performance and impact of
minimum reward task allocation model on system performance.

6.1. Evaluation of Privacy Protection Performance of Personalized PSD Spatial Index

Through the analysis of Figure 4, it can be concluded that when the total privacy bud-
get remains constant, the adaptive grid demonstrates superior data protection capabilities
compared to other tree structures. In scenarios with a small privacy budget, the AG slightly
outperforms the PAG grid. However, as the privacy budget increases, the AG no longer
exhibits its initial advantages, and at times, the PAG even outperforms the AG. This result
can be attributed to the fixed allocation of the second-level grid’s budget in the AG, which
consistently accounts for half of the total privacy budget, while the PAG’s allocation is not
fixed. Consequently, the privacy budget percentage for the PAG’s second-level grid may
lean towards being less than half, leading to significant noise addition in the second-level
grid of PAG and potentially compromising the data’s authenticity. Nevertheless, Table 3
indicates that, without considering the size of the privacy budget, the overall difference in
data protection capabilities between the PAG algorithm proposed in this paper and the AG
algorithm is not pronounced. Furthermore, the PAG, which facilitates personalized privacy
protection levels for workers, marks an improvement over the AG.

6.2. Impact of Personalized Grid Structure on System Performance

Tables 5 and 6 indicate that the disadvantage of this algorithm is the high communica-
tion cost of the PAG when using Algorithm 3 to calculate the task broadcast area GRPAG.
However, Figure 4 and Table 7 demonstrate that the PAG algorithm achieves enhanced pri-
vacy protection results and a higher task completion rate, even at the expense of increased
communication cost. Therefore, the reduction in salary cost can make up for the increase in
broadcast communication cost.

6.3. Impact of Minimum Reward Task Allocation Model on System Performance

Table 7 indicates that the task allocation success rate of the PAG significantly outper-
forms that of the AG algorithm. Furthermore, after selecting the PAG to establish a spatial
index, Table 8 demonstrates that the time priority task allocation mechanism surpasses
both the location priority mechanism and the reward mechanism in terms of the average
travel distance required to complete tasks. This not only affects the time to complete the
task but also increases the cost of the platform. Consequently, for data collection tasks, the
PAG spatial index algorithm proposed in this paper, coupled with the reward-first task
allocation mechanism, can efficiently realize cost-effective data collection on the platform.

The results indicate that the personalized adaptive grid (PAG) exhibits superior per-
formance in terms of privacy protection and task allocation success rates compared to other
spatial index structures, particularly when the privacy budget is substantial. However,
the communication costs associated with the PAG are relatively higher, albeit justifiable
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considering the enhanced privacy protection and task completion rates. Moreover, the use
of a reward-first task allocation mechanism further optimizes data collection processes on
the platform, leading to cost-effective and efficient data collection. The findings underscore
the importance of considering privacy protection and task allocation strategies in designing
efficient spatial index structures for data collection platforms.

7. Conclusions

During the process of mobile data collection, the protection of data collectors’ location
data has become an increasingly critical concern. To prevent exposing real staff location
information to potential attackers, certain documents, such as [41–44], have employed
differential privacy technology to obfuscate location information on the local client before
uploading the perturbed data to the platform. Building upon this prior work, this paper
presents implementation algorithms for different privacy protection levels within specific
grid cells in the second-level grid. Finally, the task allocation strategy of minimum reward
allocation is proposed. We compare the algorithm proposed in this paper with the algorithm
proposed by the author of Reference [35] through experimental simulation. The purpose
of the comparison is to analyze the effectiveness and practicability of the personalized
privacy protection algorithm proposed in this paper in data protection. By analyzing the
results, we can conclude that the task allocation model proposed in this paper has a positive
impact on improving performance indicators such as the task completion rate in the task
allocation process.

While the algorithm proposed in this paper yields favorable results in terms of data
privacy protection and task allocation, it is not without its limitations. One prominent issue
is that the algorithm sacrifices a portion of the communication cost for lower remunera-
tion and a flexible privacy protection level. Our forthcoming area of improvement is to
find a more suitable algorithm that minimizes the number of propagation hops during
communication, consequently reducing the cost associated with it.
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