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Abstract: The importance of radar-based human activity recognition has increased significantly over
the last two decades in safety and smart surveillance applications due to its superiority in vision-
based sensing in the presence of poor environmental conditions like low illumination, increased
radiative heat, occlusion, and fog. Increased public sensitivity to privacy protection and the progress
of cost-effective manufacturing have led to higher acceptance and distribution of this technology.
Deep learning approaches have proven that manual feature extraction that relies heavily on process
knowledge can be avoided due to its hierarchical, non-descriptive nature. On the other hand, ML
techniques based on manual feature extraction provide a robust, yet empirical-based approach, where
the computational effort is comparatively low. This review outlines the basics of classical ML- and
DL-based human activity recognition and its advances, taking the recent progress in both categories
into account. For every category, state-of-the-art methods are introduced, briefly explained, and their
related works summarized. A comparative study is performed to evaluate the performance and
computational effort based on a benchmarking dataset to provide a common basis for the assessment
of the techniques’ degrees of suitability.

Keywords: deep learning; human activity recognition; micro-Doppler; machine learning; radar

1. Introduction

In the last two decades, civil radar-based applications used for human sensing and
human activity recognition (HAR) have made significant progress. This has been trig-
gered and supported by the rapid development in semiconductor technologies in recent
decades, particularly the drastic changes in the concept of radar. Modern radar systems are
highly integrated, i.e., the most important circuits are housed on a single chip or a small
circuit board.

The potential of radar-based sensing and recognition technologies has been discovered
across a variety of different scientific domains, and they have been the target of numer-
ous previous and recent research studies. The first studies dealt with the detection and
recognition of humans in indoor environments in applications related to security [1–6].
Medical applications, i.e., the monitoring of patients, extended their applicability [7–13] to
sub-domains, e.g., vital sign detection. In addition, the latest developments in autonomous
driving have impressively shown the enormous potential of radar-based automotive appli-
cations in human activity and security, e.g., gesture recognition [14–25] and safety-oriented
car assistance systems, e.g., fatigue recognition [26] and occupant detection [27–32], es-
pecially forgotten rear-seated or wrongly placed infants or children, in order to prevent
deaths due to overheating or overpowered airbags. In comparison to the aforementioned
application fields, automotive-specific applications suffer excessively from different en-
vironmental conditions due to variations in light, temperature, humidity, and occlusion.
Further, increasing demands for privacy-compliant smart home solutions, e.g., for the
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intelligent control of heating [20] or the surveillance of elderly people in order to detect
falls [9], have led to an unprecedented technological pace.

Although the advantages of vision-based sensing and recognition technologies are
undisputed, there are many situations where the drawbacks are severe compared to radar-
based technologies. Sensing-related problems include lighting conditions (poor illumina-
tion), thermal conditions (increased radiative heat), occlusion, and atmospheric phenomena
(fog, mirages). Besides these, radar-based systems are independent of privacy-related
conditions since the target information does not rely explicitly on target shapes but can be
derived from microscale movements based on micro-Doppler signatures [33–38].

The radar-based recognition of human activities has been studied by numerous au-
thors, where classical machine learning (ML)-based techniques, e.g., k-Means [39] and
SVM [40–44], as well as deep learning-based (DL) approaches, have been used [45–70].
In general, ML-based techniques rely on shallow heuristically determined features that are
characterized by simple statistical properties and thus depend on technological experience.
Furthermore, the learning process is restricted to static data and does not take long-term
changes in the process data into consideration.

Deep learning constitutes a subdomain of machine learning, where the method’s
applicability does not depend on the suitability of hand-crafted features. Feature extraction
is highly reliant on domain knowledge and the expertise of the specific user. Instead, deep
learning approaches are able to extract high-level, yet not fully interpretable, information
in a generalized approach, and due to their structure, the underlying learning process can
be designed to increase computational efficiency, e.g., through parallelization.

This work addresses the recent progress in ML-based HAR methods in radar tech-
nology settings and focuses on DL-based approaches since these have proven to be more
generalized, long-term, and robust solutions for classification problems. One major con-
tribution of this paper is to provide the first comparative study of HAR methods using
a common database and a unified approach for the application of the most common DL
methods while focusing on key aspects: CNN-, RNN-, and CAE-based methods. The goal
is to investigate the performance associated with the computational costs, i.e., the total
execution time, and the space complexity, i.e., the parametricity of these methods under
identical conditions in order to determine the suitability through comparison, from which
general recommendations can be derived. Furthermore, a unified approach for the classifi-
cation task using different methods but a common preprocessing technique is proposed.
The importance of careful preprocessing of the input data is highlighted in two variational
studies. In the first study, variations in the lower color value limit of the derived feature
maps are observed, and the impact on the accuracy is evaluated. This is important since
the characteristic patterns rely strongly on the color range, where high thresholds are
associated with a higher degree of loss of important information, whereas low thresholds
may contain redundant information, which, regardless of the model, could increase the
risk of overfitting. In the second study, the impact of data compression on the accuracy of
the feature maps is evaluated, since data reduction leads to lower storage requirements
and hence reduced costs for hardware or faster data transmission rates for online systems.

The remaining sections are organized as follows. In Section 2, the basic principles
of radar are outlined and briefly explained. Then, common preprocessing techniques are
presented in Section 3, whereas Section 4 emphasizes the recent progress of DL-based
approaches after providing a short introduction. In Section 5, a comparative study of
the most successful approaches and state-of-the-art methods related to the preceding
sections based on benchmark data is presented, and the performance, computational effort,
and space complexity are evaluated and discussed in Section 6. Finally, the paper concludes
by presenting open research topics derived from current gaps and challenging issues
anticipated in the future.
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2. Basic Principles
2.1. Radar-Based Sensing

The underlying principle of the radar-based detection of targets, in general, is to emit
and receive electromagnetic waves (RF signals), which contain information about the targets’
properties. A common categorization of radar systems is to classify them as pulse-radar
or continuous-wave systems. Both categories have individual applications with specific
advantages and disadvantages with regard to distance resolution, velocity resolution,
power consumption, technical equipment, waveform generation, signal processing, etc.

2.2. Continuous-Wave Radar

The main characteristic of continuous-wave (CW) radar systems is that they emit a con-
tinuous electromagnetic wave using a sine waveform, where the amplitude and frequency
remain constant, and process the wave reflected by the target (see Figure 1). Besides infor-
mation about the reflectability, they contain information about the target’s velocity due to
the Doppler frequency shift. A common variant of this technique is FMCW radar systems,
whose waveforms vary in the time domain.

With regard to HAR, FMCW-based radar systems in the mm-wave domain have
significant advantages compared to CW radar, and their suitability for human sensing has
been proven by numerous works in the last two decades [40–42,46,48,50,57]:

• High sensitivity: For the detection of human motions, especially small-scale motions,
e.g., breathing and gestures, a sensitivity close to the wavelength is required. This
can be achieved when a high center frequency combined with a high bandwidth (B)
is used.

• Minimized risk of multipath propagation and interaction with nearby radar systems
due to the high attenuation of the mm-wave RF signal.

• Distances and velocities of targets can be measured simultaneously, e.g., when tri-
angular modulation of the chirp signal combined with a related signal processing
technique is used.

• Thermal noise independence, as the phase is the main carrier containing information
about the targets’ distances.

Figure 1. Schematic representation of an FMCW-based radar sensor.

FMCW-based radar systems generate a sinusoidal power-amplified RF signal (chirp)
through a high-frequency oscillating unit, where the frequency varies linearly between two
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values, fmin and fmax, in a sawtooth-like pattern for a specific duration, Tr, according to the
following function (see Figure 2):

fmax − fmin =
d f
dt
· Tr (1)

Figure 2. Time-related characteristics of the chirp signal with sawtooth and triangular shape modulation.

The constant K = d f /dt = B/Tr for 0 < t < Tr determines the slope of the generated
signal, whereas the frequency variation is determined by a linear function. This RF signal is
emitted via the transmitting antenna, and the echo signal, which results from the scattered
reflection of the electromagnetic waves on the objects, is received at the receiving antenna
and is low noise-amplified. A mixer processes both the transmitted and received signals
and generates a low-frequency beat signal, which, in the following, is preprocessed and
used for the analysis.

A linear chirp signal that can be defined within the interval 0 < t < Tr by

sT(t) = Ate(2π f0t+πKt2)j (2)

is emitted and mixed with its received echo signal to provide the IF signal

sIF(t) = At Are(2π f0td+2πKtdt−πKt2
d)j (3)

which, in the following, is preprocessed and used for the calculation of the feature maps.
In general, human large-scale kinematics, e.g., the bipedal gait, are characterized by

complex interconnected movements, mainly of the body and the limbs. While the limbs
have oscillating velocity patterns, the torso can be characterized solely by transitional
movements.
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According to the Doppler effect, moving rigid-body targets induce a frequency shift in
the carrier signal of coherent radar systems that is determined in its simplest form by

fD = −2v fT

c
(4)

where v is the relative velocity between the source and the target and fT is the frequency of
the transmitted signal. While the torso induces more or less constant Doppler frequency
shifts, the limbs produce oscillating sidebands, which are referred to as micro-Doppler
signatures [33]. In the joint time–frequency plane, these micro-Doppler signatures have
distinguishable patterns, which make them suitable for ML-based classification applications.
An example can be seen in Figure 3.

Figure 3. Micro-Doppler signature (spectrogram) of a walking person (from [5]).

Micro-Doppler signatures are derived through time-dependent frequency-domain
transformations. The first step is to transform the raw data of the beat signal to a time-
dependent range distribution, referred to as the time-range distribution R(m, n) through the
fast Fourier transform (FFT), where m is the range index and n is the slow time index (time
index along chirps).

While the Fourier transformation is unable to calculate the time-dependent spectral
distribution of the signal, the short-time Fourier transform (STFT) is a widely used method for
linear time-varying analysis that provides a joint time–frequency plane. In the time-discrete
domain, the STFT is defined by the sum of the signal values multiplied by a window
function, which is typically the Gaussian function, to provide the Gabor transform:

X(m, f ) =
∞

∑
n=−∞

x[n]w[n−m]e−j2π f n (5)

Applied to the time-range distribution matrix R(n, m), the time-discrete STFT can be
computed by:

STFT(p, f ) =
N−1

∑
n=0

R[m, n]w[n− p]e−j2π f n/N (6)

The spectrogram, also referred to as the Doppler-time (DT) spectrogram, is derived from
the squared magnitude of the STFT:

spectrogram{x(t)}(m, f ) = |X(m, f )|2 (7)

Besides the STFT of the time-range distribution matrix, an FFT using a sliding window
along the slow time dimension obtains time-specific transformations in the time-frequency
domain, which is called range-Doppler (RD) distributions.
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A modification of the FMCW radar is the Chirp Sequence Radar [71]. It facilitates the
unambiguous measurements of a range R and a relative velocity vr simultaneously, even in
the presence of multiple targets. To achieve this, fast chirps of short durations are applied.
The beat signals are processed in a two-dimensional FFT to provide measurements of both
variables through frequency measurements in the time domain t and the short-time domain
k instead of frequency and phase measurements, as is the case in regular FMCW radar. This
method reduces the correlation between the range and relative velocity and improves the
overall accuracy.

2.3. Pulse Radar

While CW-based radar and its subclasses rely on moving targets to create micro-
Doppler signatures, pulse radar is able to gather a range of information on non-moving
targets, e.g., human postures, by applying short electromagnetic pulses. A modification
that combines the principles of both CW and pulse radar is pulse-Doppler radar.

In pulse radar, the RF signal is generated by turning on the emitter for a short period
of time, switching to the receiver after turning off the emitter, and listening to the reflection.
The measuring principle is based on the determination of the round-trip time of the RF sig-
nal, which has to meet specific requirements with regard to the maximum range and range
resolution. These are determined by the pulse repetition frequency (PRF), or alternatively,
the interpulse period (IPP), and the pulse width (τp), respectively. A variant of pulse radar
is Ultra-Wideband (UWB) radar, which is characterized by low-powered signals and very
short pulse widths, which leads to a more precise range determination, although it has a
drawback with regard to the Signal-to-Noise Ratio (SNR).

The reflected RF signals contain intercorrelated information about the target and
its components, i.e., human limbs, as well as the surrounding environments, through
scattering effects in conjunction with multipath propagation. Due to its high resolution,
small changes in human postures create different measurable changes in the shape of the
reflected signal. Using sequences of preprocessed pulse signatures, specific activities can
be distinguished from each other and used as features in the setup of classification models.

In [70], the authors developed and investigated a time-modulated UWB radar system
to detect adult humans inside a building for security purposes. In contrast to static detection,
Ref. [44] used bistatic UWB radar to collect data on eight coarse-grained activities for human
activity classification. The data were collected at a center frequency of 4.7 GHz with a
resolution bandwidth (RBW) of 3.2 GHz and an RBF of 9.6 MHz, which were reduced in
dimensionality by Principal Component Analysis (this is discussed in the next subsection)
and used within a classification task based on a Support Vector Machine (SVM) after a manual
feature extraction using the histogram of principal components for a short time window.

2.4. Preprocessing

In general, returned radio signals suffer from external incoherent influences, i.e., clut-
ter and noise, and are, therefore, unsuitable for the training of machine learning-based
classification methods. In addition to this aspect, which concerns data quality, the success,
as well as the performance, of classification methods depends on the data representation,
data dimensionality, and information density. Thus, it is necessary to apply signal-processing
techniques in order to enhance the data properties prior to training and classification.
The next subsection provides a brief description of common preprocessing methods.

2.4.1. Clutter

Radio signals reflected by the ground lead to a deterioration of data quality, in general,
as the ground contains information unrelated to the object or task. The difficulty of the
determination and removal depends strongly on the situational conditions.

In static environments, clutter can be removed by simply subtracting the data contain-
ing the relevant object from the data that were previously collected where the object was
missing [44]. Nevertheless, quasi-static or dynamic environments, such as those that occur
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in mobile applications, storage areas, etc., are characterized by changing conditions that
can affect the data.

Numerous works have emerged in recent years that have been based on different
approaches, e.g., sophisticated filters using eigenimages derived from Singular-Value Decom-
position (SVD) for filtering, combinations of Principal Component Analysis (which is explained
in Section 2.4.4), and filtering in the wavenumber domain using predictive deconvolution,
Radon transform, or f-k filtering [72,73].

2.4.2. Denoising

One of the major problems in machine learning applications is called overfitting. It
occurs when the model has a much higher complexity or degree of freedom with regard
to the input data used for training. This leads to a perfect fit to the training data but fails
when other data, i.e., testing, are considered.

To overcome this lack of generalization, when other factors can be excluded (e.g.,
the amount of data is sufficient), denoising is one of the techniques used to improve accu-
racy. The use of low-pass filters, convolutional filters, or model-based filters are the most
common methods for reducing noise, which can mislead algorithms into learning patterns
that do not refer to the process itself.

Apart from this, adding noise can increase robustness. In [61], a Denoising Autoencoder
(DAE) was used, where noise was added to the input data, leading to an overall increase in
the model’s generalization ability. The most common method is to add isotropic Gaussian
noise to the input data [62]. Another way is to apply masking noise or salt-and-pepper noise,
which means that a certain fraction of the input data is set to zero or changed to its
corresponding maximum or minimum value, respectively [62].

2.4.3. Normalization

As the amplitudes of the target signatures depend substantially on the distance be-
tween the sensor and the target, normalization of the data is required in order to maintain
consistent statistical properties, e.g., uniform SNR, which are required for the training of
ML models.

2.4.4. Data Reduction

Principal Component Analysis (PCA) is a common method used to the reduce the
dimensionality of data, which is beneficial for algorithms to learn efficiently [40]. Its main
idea is to preserve the maximum variance of the data while projecting them onto a lower
dimensional hyperplane using the first eigenvectors, called the principal components, where
every predominant subset of principal components defines a plane that is orthogonal to the
following principal component (see Figure 4).

Figure 4. Data distribution in 3D space and projection onto axes of principal components.



Appl. Sci. 2023, 13, 12728 8 of 34

Due to its increased numerical stability, Singular-Value Decomposition (SVD) is a typical
method for the calculation of the principal components V = v1 . . . vm:

X = USVT (8)

To obtain a reduced dataset, the first m principal components where the cumulated
explained variance ratio exceeds a certain target threshold are selected to form a matrix,
which is multiplied by the original data matrix:

Xred = XṼ (9)

2.4.5. Whitening

Closely related to normalization, whitening refers to a more generalized method,
where a transformation is applied to the input data so that the diagonal elements of the
covariance matrix are all one (also called sphering). This method reduces the correlations
among the input data and improves the efficiency of the learning algorithm. The most
common methods are Principal Component Analysis (PCA), Zero-Phase Component Analysis
Whitening (ZCA), and Cholesky Decomposition [74,75].

Principal Component Analysis, the most popular procedure for decorrelating data,
can be used to reduce the dimensionality of data while maximizing the variance of data.
With regard to two-dimensional data structures, e.g., images, this is achieved by determin-
ing the covariance matrix, which is decomposed using SVD into two orthogonal matrices,
U and VT, and one diagonal matrix, S, where the diagonal matrix contains the eigenvalues.
By taking only the first n components of the eigenvector matrix along with their corre-
sponding eigenvalues, it is possible to obtain a compressed version of the original image.
Here, it is used to compute the conversion matrix, WPCA, which can be multiplied with the
original matrix to achieve decorrelation:

Σ = Cov(X) = USVT (10)

WPCA = (S + Iε)−1/2UT (11)

XPCA = WPCAX (12)

The small constant, ε, which is usuallyaround 1.0× 10−5, is inserted to avoid large coeffi-
cients caused by the reciprocals of very small eigenvalues. The zero-phase transformation

WZCA = U(S + Iε)−1/2UT (13)

XZCA = WZCAX (14)

is a whitening procedure, where, in contrast to PCA, the transformation leads to un-
correlated data with unit variances, and it is computed using PCA and an additional
multiplication with the eigenvector matrix, U.

2.5. Feature Engineering

In general, the selection and extraction of features during feature engineering is crucial
for the success of machine learning applications. The term selection refers to the identi-
fication of strongly influencing measurable properties with regard to the mathematical
task, whereas extraction deals with dimensionality reduction when using compositions
of features. For example, in [40], PCA was used to determine the histogram of the most
influencing PC for a given time window, from which the mean and variance were used as
features. Another example is [37], where the number of discrete frequency components was
determined using spectrograms that contain micro-Doppler signatures, providing useful
information about the locations of small-scale motions.

Classical techniques, e.g., Linear Regression, Decision Trees, Random Forests, k-Nearest
Neighbors, etc., rely heavily on handcrafted feature engineering, which implies certain
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experience and domain knowledge, whereas DL methods use algorithms that automatically
select useful features, which, as their main drawback, are barely interpretable by humans
and difficult to evaluate indirectly.

2.6. Challenges

Besides the numerous successful applications of machine-learning methods in human
activity recognition, there are still topics that have yet to be investigated or at least, have only
been partially addressed. In general, these challenges can be divided into source-related
problems and methodological problems, which are presented in the following subsections.

The first source-related problem deals with the fact that related works pursue different
aspects of human activity recognition and rely on their own data acquisition, which depends
on the activities the authors focus on. The use of different datasets with varying activities
of different scales constitutes a major problem, as the conditions for comparability are
simply not provided, e.g., [40–42,48,50,53,57,59] used coarse-grained activities in their
investigations, whereas [26,46] used fine-grained activities as a basis for their works. This is
especially problematic since the movements are linked to weaker micro-Doppler signatures
in terms of power for fine-grained activities.

Another problem is that many activities in both coarse-grained and fine-grained
classes have a certain similarity, which has been proven, e.g., by [40], where data collected
from coarse-grained activities were used for an SVM-based binary classification problem,
and activities like punching were confused with running.

Among other factors, every activity has a unique micro-Doppler signature, so machine
learning-based classification models are trained to distinguish between the specific activities
but not the transitions between them, which leads to performance losses, especially in
online applications.

Human activities can be broadly classified into two main categories: coarse-grained
and fine-grained activities. Given constant configurations regarding data acquisition, this
leads to different magnitudes and distributions of local variations, which can lead to
different classification accuracies.

As humans have individual physical properties due to genetics, age, sex, fitness,
disabilities, consequences of illnesses or surgeries, etc., which change over time, datasets
will also have variances in the amplitude or time domain, which leads to individual,
temporal micro-Doppler signatures.

In general, micro-Doppler signatures contain information on a person’s activity char-
acteristics. Besides the difficulties mentioned above, the complexity of the classification
task is severely affected by the number of subjects when the classification is not broken
down into subordinate, composite classification tasks based on datasets for each individual.
This problem is exacerbated by different activities being performed simultaneously.

Many human activities consist of sequential, subdivided activities, e.g., lifting a blan-
ket, rotating from a horizontal into a sitting position, and standing up together connote the
wake-up process. As the whole sequence is required to form the dataset for that specific
activity, segmentation plays an important role in data preprocessing.

As single activities lead to similar datasets for each repetition, the complexity of the
classification task is increased when the datasets are collected from concurrent activities.
Signatures containing smeared patterns lead to datasets with ambiguous characteristics
and high variance.

Models for classification problems rely on large amounts of data for training and
validation, which require consistent annotations. While in experimental conditions this is
not the case, data collections from public sources for an adaptive online application have to
be labeled.

Due to clutter, the data quality is strongly degraded by the presence of nearby objects
that reflect fractions of the emitted power to the receiver through multipath propagation.
For mitigation, environmental data are collected and used for preprocessing. In mobile
applications, this is a crucial topic, as the surroundings do not remain constant.
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The handcrafted selection of significant, unique features is one of the major problems
in classical machine learning classification problems, as it requires time-consuming efforts
to find distinguishable patterns in the data so that the risk of confusion between similar
activities is significantly reduced.

Data used for training are collected by repeated executions of planned activities by
multiple subjects, e.g., running, jumping, sitting, etc. Unplanned, uncomfortable actions,
e.g., falling, are much rarer events, which can lead to unequal class batch sizes.

3. Review of Methods
3.1. Support Vector Machines

This numerically optimized and generalized method was developed by Boser, Guyon,
and Vapnik in the 1990s [49], while the basic algorithm behind Support Vector Machines
(SVMs) was introduced by Vapnik and Chervonenkis in the early 1960s [51]. With regard to
its application to classification tasks, the main idea is to introduce hyperplanes using a
so-called kernel trick, which maps points in a nonlinear way onto a higher-dimensional
space so that the margin between the points and hyperplanes is maximized, increasing their
separability. SVM’s suitability for human activity recognition classification tasks, as well as
its great potential, has been confirmed by numerous authors.

In [40], a bistatic UWB radar system working at 4.3 GHz was used to obtain datasets of
time-based signatures of human interactions with the radar signal. These were used to train
an SVM based on the one-vs.-one method to classify seven activities performed by eight
subjects: walking, running, rotating, punching, crawling, standing still, and a transition
between standing and sitting. The data were significantly reduced by 98.7% using PCA,
where 30 main coefficients were selected. The classification accuracy reached only 89.88%
due to difficulties resulting from confusion between certain activities containing similar
micro-Doppler signatures.

In a recent study, Pesin, Lousir, and Haskou [42] studied radar-based human activity
recognition using sub-6 GHz and mmWave FMCW radar systems. Three-dimensional fea-
tures consisting of the minimum, maximum, and mean of the matrix, Σ, derived from range–
time–power signatures were extracted using SVD. These were used to train a medium
Gaussian SVM, which was applied to classify three different activities (walking, sitting,
and falling). With an average classification accuracy of 89.8% for the mmWave radar system
and 95.7% for the sub-6 GHz radar, it was shown that radar systems with higher resolutions
do not necessarily lead to better classification.

3.2. Convolutional Neural Networks

Since their introduction in the 1980s by Yann LeCun, Convolutional Neural Networks
(CNN) have gained importance in science, especially in the signal-processing domain.
As for other scientific fields, e.g., computer vision and speech recognition, the application
of CNNs has been carried out for human activity recognition in numerous works in recent
decades [40,41,48].

Convolutional Neural Networks are architectures that consist of stacked neural layers
of certain functional types. The basis is formed by sequences of convolutional layers and
pooling layers. Convolutional layers are sets of convolutional filters that connect the neurons
in the current layer to local sections (receptive fields) in the previous layer or input layer
(see Figure 5). The filters apply a convolution based on the receptive field size, stride,
and weights to the neurons of the previous layers. This process is called feature extraction,
as it creates feature maps using activation functions, e.g., ReLU, sigmoid, tanh, etc., that
contain information about the most active neurons with regard to that specific filter. A two-
dimensional discrete convolution is applied using the following general formula

S[i, j] = (I ∗ K)[i, j] = ∑
m

∑
n

I[i + m, j + n] · K[m, n] (15)
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where K is the kernel with the indices m and n, and I is the input or preceding layer with
the indices i and j.

Figure 5. Convolutional layers.

The determination of the filter weights is the main task in the learning process. In con-
trast to fully connected networks (FCNs), this structure reduces the number of weights and,
therefore, the computational effort, while preserving a certain degree of generalization.
Pooling layers perform a subsampling task to reduce the amount of information and, there-
fore, the computational load and increase the degree of invariance to slight variations in the
data of the previous layer. The most common pooling layer types are the maximum pooling
layer and the average pooling layer. The former selects the neuron with the highest value
within its specific receptive field, whereas the latter takes the average value of all neurons
of the receptive field of the previous layer. Finally, fully connected layers connect the neurons
containing the results of the convolutional process to the neurons of the output layer for
a classification task through flattening. The degree of generalization can be increased by
inserting dropout layers, which reduce the number of neurons.

Seyfioglu, Özbayoglu, and Gürbüz [53] applied a multiclass SVM, an AE, a CNN,
and a CAE to classify 12 aided and unaided coarse-grained human activities. Using a
4.0 GHz CW radar system to create spectrograms, domain-specific features, e.g., cadence
velocity diagrams (cvds), as well as non-domain features, e.g., cepstral coefficients, LPC,
and DCT, were derived. The sample sizes ranged from 50 (sitting) to 149 (wheelchair) for
each class. The CAE-based approach achieved the highest accuracy of 94.2%, followed by
the CNN (90.1%), AE (84.1%), and multiclass SVM (76.9%).

Singh et al. [48] used a time-distributed CNN enhanced with a Bidirectional LSTM
to classify five human full-body activities consisting of boxing, jumping, jacks, jumping,
squats, and walking, based on mmWave radar point clouds. The dataset was collected using
a commercial off-the-shelf FMCW radar system in the 76–81 GHz frequency range capable
of estimating the target direction. The dataset consisted of 12,097 samples for training,
3538 for testing, and 2419 for validation, where each sample consisted of a voxelized
representation with dimensions of 60× 10× 32× 32. Among the other ML-based methods
applied (SVM, MLP, Bidirectional LSTM), the accuracy of 90.47% achieved by the CNN
was the highest. However, the main drawback of this method is the increased memory
requirement for the voxelized representation of the target information, which is not a
concern when using micro-Doppler signatures.
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Besides Stacked Autoencoders and Recurrent Neural Networks, Jia et al. [41] applied
a CNN to a dataset that was collected using an FMCW radar system working at 5.8 GHz.
The dataset was used to build features with dimensions of 32 × 32 × 3 based on the
compressed range-time, Doppler-time amplitude and phase, and cadence velocity diagram
data [41]. The data were collected from 83 participants performing six activities consisting
of walking, sitting down, standing up, picking up an object, drinking, and falling, which
were repeated thrice to deliver 1164 samples in total. An accuracy of 92.21% was achieved
for the CNN using Bayes optimization, whereas the SAE achieved 91.23%. The SVM-based
approach achieved 95.24% accuracy after feature adaptation using SBS, while the accuracy
of the CNN was improved to 96.65% by selecting handcrafted features.

Huang et al. [63] used a combination of a CNN and a Recurrent Neural Network
(LSTM) model as a feature extractor for point cloud-based data and a CNN to extract
features from range-Doppler maps. The outputs from both models were merged and fed
into an FCN-based classifier to classify the inputs into six activities consisting of in-place
actions, e.g., boxing, jumping, squatting, walking, and high-knee lifting. The results showed
a very high accuracy of 97.26%, which is higher than the results of the feature extraction
methods used in other approaches.

In [64], a CNN model was developed using two parallel CNN networks, whose
outputs were fused into an FCN for classification (DVCNN). This approach along with an
enhanced voxelization method led to high accuracies of 98% for fall detection and 97.71%
for activity classification.

Chakraborty et al. [65] used an open source pretrained DCNN, i.e., MobileNetV2,
VGG19, ResNet-50, InceptionV3, DenseNet-201, and VGG16, to train with their own pro-
vided dataset (DIAT- µRadHAR) consisting of 3780 micro-Doppler images comprising differ-
ent coarse-grained military-related activities, e.g., boxing, crawling, jogging, jumping with a
gun, marching, and grenade throwing. An overall accuracy of 98% proved the suitability of
transfer learning for HAR.

3.3. Recurrent Neural Networks

Since the works of Rumelhart, Hinton, and Williams [76], as well as Schmidhuber [77],
Recurrent Neural Networks (RNN) and their derivatives, i.e., Long Short-Term Memory Net-
works, have been widely applied in the fields of natural sciences and economics. In contrast
to CNNs, which are characterized as neural networks working in a feedforward manner
since their outputs depend strictly on the inputs, RNNs have the ability to memorize
their latest states, which makes them suitable for the prediction of temporal or ordinal
sequences of arbitrary lengths. They consist of interconnected layers of neurons that use
the current inputs and the outputs of the previous time steps to compute the current out-
puts, with shared weights allocated to the inputs and outputs separately using biases and
nonlinear functions. By stacking multiple RNN layers, a hierarchy is implemented, which
allows for the prediction of more complex time series.

An exemplary structure of an RNN is presented in Figure 6. On the left side, the net-
work architecture is presented using general notation, whereas on the right side, its tempo-
ral unrolled (or unfolded) presentation is illustrated, where each column represents the
same model at a different point in time. The current input, xt, is required to update the
first hidden state, hi

t, of node, i, where i and t denote the node index and time instance,
respectively. This update happens along with the previous state of the same node using the
weighting matrices, U and Wi, and a nonlinear activation function for the output. Then,
the output of the node is passed to the next hidden state, hi+1

t , as input via the weighting
matrix, Vi. Last but not least, the model’s output is obtained using another nonlinear
activation function. This leads to a structure of interlinked nodes that are able to memorize
temporal patterns, where the number of nodes determines the memorability.

Despite their enormous potential for the prediction of complex time series, RNNs
suffer from two main phenomena known as unstable gradients and vanishing gradients,
which limit their capabilities. The first phenomenon occurs when a complex task involves
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many layers, which leads to the accumulation of increasingly growing products that cause
exploding gradients, whereas the second refers to the problem where the cells, due to their
limited structure, tend to reduce the weights of the earliest inputs and states.

Figure 6. Stacked RNN: Generalized structure and temporal unrolled variant.

3.4. Long Short-Term Memory (LSTM)

In 1997, Hochreiter and Schmidhuber [78] introduced LSTM cells, which have been
investigated and enhanced in the works of Graves, Sak, and Zaremba [79–81]. In contrast
to RNNs, Long Short-Term Memory networks are efficient in managing longer sequences and
are able to reduce the problems that lead to the restricted use of simple RNNs. An LSTM
cell contains short-term and long-term capabilities, which enable the memorization and
recognition of the most significant inputs using three gate controllers (see Figure 7).

Figure 7. Standard representation of a Peephole Long Short-Term Memory cell.
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The input gate controls the fraction of the main layer output using the input that is
used for the memory. For the Peephole Convolutional LSTM, a variation of the standard
Peephole LSTM, to be suitable for processing images, it is calculated using the current
input, xt, the previous short-time memory, ht−1, and the previous long-time memory, ct−1.
These are multiplied with the corresponding weighting matrices, Wx,i, Wh,i, and Wx,i, using
matrix multiplication or element-wise multiplication (denoted as ∗ and ◦, respectively),
and passed to a nonlinear function along with a bias term (see Equation (17)). In contrast
to the input gate, the forget gate defines the fraction of the long-term memory that has to
be deleted. Similarly, the input and both memory inputs are multiplied with the matrices,
Wx, f , Wh, f , and Wx, f , respectively, and added to another bias term, prior to being passed
to the same nonlinear activation function (see Equation (16)). This forms the basis for the
updates of the memory states, where the current long-time memory (or cell state), ct, is
calculated as the sum of the previous long-time memory, ct−1, weighted by the forget gate
and the new candidate for the cell state, which is the tanh-activated linear combination
of the weighted input and the previous short-time memory weighted by the input gate
(see Equation (18)). Finally, the output gate determines the part of the long-term memory
that is used as the current output, yt, and the short-term memory for the next time step.
For this, the current short-time memory of the LSTM cell is calculated by the tanh-activated
current long-time memory, ct, weighted by the output gate, which itself is calculated using
the current input, the previous short-time state, and the current long-time memory state
(see Equations (19) and (20)).

ft = σ(xt ∗Wx, f + ht−1 ∗Wh, f + ct−1 ◦Wc, f + b f ) (16)

it = σ(xt ∗Wx,i + ht−1 ∗Wh,i + ct−1 ◦Wc,i + bi) (17)

ct = ft ◦ ct−1 + it ◦ tanh(xt ∗Wx,c + ht−1 ∗Wh,c + bc) (18)

ot = σ(xt ∗Wx,o + ht−1 ∗Wh,o + ct ◦Wc,o + bo) (19)

ht = ot ◦ tanh(ct) (20)

Vandermissen et al. [46] used a 77 GHz FMCW radar to collect data from nine subjects
performing 12 different coarse- and fine-grained activities, namely events and gestures.
Using sequential range-Doppler and micro-Doppler maps, five different neural networks,
including an LSTM, a 1D CNN-LSTM, a 2D CNN, a 2D CNN-LSTM, and a 3D CNN,
were investigated using 1505 and 2347 samples of events and gestures with regard to
performance, modality, optimal sample length, and complexity. It was shown that the 3D
CNN resulted in an accuracy of 87.78% for events and 97.03% for gestures.

Cheng et al. [57] derived a method for through-the-wall classification and focused on
the problem of unknown temporal allocation of activities during recognition, which can
significantly impact accuracy. By employing Stacked LSTMs (SLSTMs) embedded between
two fully connected networks (FCNs) and using randomly cropped training data within the
Backpropagation Through Random Time (BPTRT) method for the training process, an average
accuracy of 97.6% was achieved for the recognition of four different coarse-grained activities
(punching three times, squatting and picking up an object, stepping in place, and raising
hands into a horizontal position).

In [59], an SFCW radar system was employed to produce spectrograms for multiple
frequencies in the collection of data from 11 subjects who performed six different activities
with transitions. By comparing the single-frequency LSTM and Bi-LSTM with their multi-
frequency counterparts, it was shown that the classification performance was significantly
higher, resulting in accuracies of 85.41% and 96.15%.

Due to their ability to memorize even longer temporal sequences, which applies to a
wide range of human activities, LSTM networks are, in general, suitable for radar-based
HAR, as long as the limitations are considered. RNNs also have limitations, i.e., numerical
problems with the determination of gradients and setup constraints due to the sample
lengths of input data [46]. Moreover, in comparison with other techniques, LSTM networks
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require a high memory bandwidth, which can be a major drawback in online applications
if hardware with limited resources is used [82].

3.5. Stacked Autoencoders

For a variety of applications, dense or compressed representations of input data
using unlabeled data are required to reduce dimensionality by automatically extracting
significant features. Autoencoders and modifications of them have proven their suitability
across a variety of fields, especially in the image-processing domain. A basic autoencoder
(AE) consists of an encoder, which generates a latent representation of the input data in one
hidden layer of much lower dimensionality (codings), and a decoder, which reconstructs the
inputs based on these codings. By using Stacked Autoencoders (SAEs) that have multiple
symmetrically distributed hidden layers (stacking), the capability to handle inputs that
require complex codings can be extended (see Figure 8).

Figure 8. Example of a Stacked Autoencoder.

Jokanovic et al. [8] used an SAE for feature extraction and a softmax regression
classifier for fall detection. Among the positive effects of the proposed preprocessing
method, an accuracy of 87% was achieved.

Jia et al. [41] used an SAE, in addition to an SVM and a CNN, to evaluate performance
using multidomain features, i.e., range-time (RT), Doppler-time (DT), and cadence velocity
diagram (CVD) maps, based on an open dataset [35] and an additional dataset. It was
shown that for different feature fusions, the CNN was the most robust method, followed
by the SAE and the SVM.

3.6. Convolutional Autoencoders

When useful features of images form the basis of an application, Convolutional Au-
toencoders (CAEs) are better suited than SAEs due to their capability of retaining spatial
information. Their high-level structure is equal to that of a simple autoencoder, namely
the sequence of an encoder and a decoder, but in this case, both parts contain CNNs (see
Figure 9).

Campbell and Ahmad [56] pursued an augmented approach, where a Convolutional
Autoencoder was used for a classification task using local feature maps for the convolu-
tional part and the whole signature for the multi-head attention (MHA) part. MHA is an
aggregation of single-attention heads, where each head is a function of three parameters:
query, key, and value. The dataset was established using a 6 GHz Doppler radar to collect
data from five subjects based on coarse-grained activities (falling, bending, sitting, and walk-
ing [56]), where each activity was repeated six times. The study was carried out for different
training and test split sizes. From the results, it was observed that the attention-based
CAE required less data for training compared to the standard CAE with up to three layers,
achieving an accuracy of 91.1% for the multi-head attention using a multi-filter approach.
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Figure 9. Example of a Convolutional Autoencoder.

A comprehensive overview of key articles with regard to the radar technology domain,
data, classification method, and achieved results is provided in Table A1, which can be
found in the Appendix A.

3.7. Transformers

In 2017, Vaswani et al. introduced a new deep learning model, called a Transformer,
whose purpose was to enhance encoder–decoder models [66]. Originally derived for
sequence-to-sequence transductions, e.g., in Natural Language Processing (NLP), Transform-
ers have also gained importance in other fields, e.g., image processing, due to their ability
to process patterns as sequences in parallel in capturing long-term relationships, thereby
overcoming the difficulties with CNN- and RNN-based models. They consist of multiple
encoder–decoder sets, where the encoder is a series containing a self-attention layer and
a feedforward neural network, whereas the decoder has an additional layer, the encoder–
decoder attention layer, which helps highlight different positions while generating the output.

Self-attention mechanisms are the basis of Transformers. In the first step, they com-
pute internal vectors (query, key, and value) based on the products of the input vectors and
weighting matrices, which are then used to calculate scores after computing the dot prod-
ucts between the query vectors and the key vectors of all other input vectors. The scores
can be interpreted as the focus intensity. Using the softmax function after normalization,
the attention is calculated as the weighted sum of all value vectors. The weighting matrices
are the entities that are tuned during training. Using multiple (multi-head) self-attention
mechanisms (MHSA) in parallel, it is possible to build deep neural networks with com-
plex dependencies.

Transformers have also been applied in radar-based human activity. In [67], a Trans-
former was trained as an end-to-end model and used for the classification of seven coarse-
scaled tasks, i.e., standing, jumping, sitting, falling, running, walking, and bending. In com-
parison with the two other benchmark networks, the accuracy of the Transformer was
the highest at 90.45%. With a focus on making Transformers more lightweight, in [68],
another novel Transformer was developed and evaluated based on two different datasets of
participants performing five activities (boxing, waving, standing, walking, and squatting),
achieving accuracies of 99.6% and 97.5%, respectively. Huan et al. introduced another
lightweight Transformer [69] that incorporated a feature pyramid structure based on con-
volution combined with self-attention mechanisms. The average accuracy achieved for the
public dataset was 91.7%, whereas for their own dataset, it reached 99.5%.
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4. Comparative Study

As the investigation of the performance of recently investigated DL-based approaches
is typically based on separate studies utilizing differing datasets, this paper aims to enforce
comparability by establishing a common basis using the same dataset across a variety
of DL methods. In the first study, all models are trained and evaluated using the same
dataset and good practical knowledge. An additional study is conducted to highlight the
importance of careful preprocessing, i.e., the adjustment of the color value limits of the
feature maps using threshold filtering, where the lower limit is varied using three different
offsets of −30, −50, and −70 with regard to the maximum color value, and the influence on
classification accuracy is investigated. A second study is conducted where the influence of
the compression of the feature maps on the accuracy of the selected models is investigated
for three compression ratios.

4.1. Methodology

The methodology is expressed in a flowchart that describes the basic procedure (see
Figure 10). In the first step of preprocessing, the dataset was used to generate the images
containing the feature maps, i.e., Doppler-time maps. After scaling and trimming, the color
levels were adapted. In order to reduce dimensionality, the colors were converted to
grayscale. Using compression, the image sizes were reduced. Whitening was performed
to decorrelate the data without reducing dimensionality. Next, the dataset was split into
training, validation, and test datasets. In the model setup, the model for the classifier was
defined, and depending on the model architecture, an additional model for pretraining was
defined if necessary. The procedure concluded with the evaluation of the model. Since the
classes were balanced, performance metrics such as accuracy, recall, and confusion matrix
were suitable for the evaluation.

Figure 10. Unified procedure flowchart.
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4.2. Dataset

In this study, we used the open dataset Radar Signatures of Human Activities [35],
which was recently used by Zhang et al. [83] to produce hybrid maps and train the CNN
architectures LeNet-5 and GoogLeNet for classification and benchmarking, respectively,
using transfer learning. Jiang et al. [54] used this dataset for RNN-based classification with
an LSTM-based classifier, achieving an average testing accuracy of 93.9%. Jia et al. [41] used
this dataset for the evaluation of SVM-based classification with varying kernel functions,
achieving accuracies between 88% and 91.6%.

The dataset contained a total of 1754 data samples, stored as .dat files containing raw
complex-valued radar sensor data of 72 subjects aged from 21 to 88 performing up to six
different activities: drinking water (index 0), falling (index 1), picking up an object (index 2),
sitting down (index 3), standing up (index 4), and walking (index 5) [35] (see Table 1).
The data were collected using a 5.8 GHz Ancortek FMCW radar, with a chirp duration of 1
ms, a bandwidth of 400 MHz, and a sample time of 1 ms. Each file, which was either about
7.5, 15, or 30 MB in size, contained the sampled intermediate radar data of one particular
person performing one activity at a specific repetition.

Table 1. Contents of the open dataset Radar Signatures of Human Activities [35].

No. Date Number of
Files

Number of
Activities

Number of
Subjects

Number of
Repetitions

1 December 2017 360 6 20 3
2 March 2017 48 6 4 2
3 June 2017 162 6 9 3
4 July 2018 288 6 16 3
5 February 2019 306 6 17 3
6 February 2019 301 5 20 3
7 March 2019 289 5 20 3

It must be noted that there was a class imbalance. The activity class falling (index 1)
contained a total of 196 sample images, whereas the other classes contained 309 or 310 sam-
ple images.

4.3. Development Platform

The comparative study was conducted using an Intel Core i7-1165G7 processor with an
Intel Iris Xe graphics card. The embedded graphics card is capable of using 96 execution
units at 1300 MHz. In addition, 16 GB of total workspace was available.

The methods were developed using Python-based open source development platforms
and APIs: TensorFlow 2.13.0, Keras 2.13.0, and scikit-learn 1.3.1, among other basic toolboxes,
e.g., numpy 1.24.3, pandas 2.1.0, and others.

4.4. Data Preprocessing

The data were converted to Doppler-time maps in JPEG format using a Python script,
which was developed based on the provided MATLAB file. The function transformed the
sampled values of the raw radar signal into a spectrogram (see Figure 11). In the first step,
the data were used to calculate the range profile over time using an FFT. Then, a fourth-order
Butterworth filter was applied, and the spectrogram was calculated by applying a second
Fourier transform to overlapping time-specific filtering windows, i.e., the Hann window.
Subsequently, the spectrograms were imported into the Python-based application and
transformed into images of 224× 224× 3 px in size after scaling. Trimming the edges and
adapting the color levels was important to remove weak interfering artifacts and highlight
characteristic patterns caused by frequency leakage or non-optimized windowing. In the
next step, they were converted to grayscale images to reduce dimensionality since in this
case, the color channels did not contain any additional information. A compression using
truncated SVD was applied to reduce the data size while retaining the main information.
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Figure 11. Images of micro-Doppler signatures (spectrograms) for six activities (from [5]).

Using the ZCA method, the images were whitened. Dimensionality reduction was
discarded to avoid significant loss of information. As the color values ranged from 0
to 255, normalization was then applied, which scaled the values from 0 to 1 in order to
improve performance.

4.5. Model Setup

For the assessment, a variety of models from three deep learning classes were imple-
mented: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
and Convolutional Autoencoders (CAEs) with fully connected networks.

The CNN model consisted of three instances of 2D convolutional layers, where each was
followed by a maximum pooling layer and a dropout layer. Next, the network concluded with
a flattening layer for implementing vectorization and connecting to two fully connected
layers (see Figure 12). The architecture was implemented based on the Keras sequential API
using the Input, Conv2D, MaxPooling, Dropout, Flatten, and Dense layer functions; the SGD
and Adam optimizers; and the Categorical Cross-Entropy loss function from the keras.layers,
keras.optimizers, and keras.losses packages, respectively.

Figure 12. Structure of selected CNN.

The increasing number of filters in each convolutional layer helped build hierarchical
features and prevent overfitting. The first layers captured low-level information, whereas
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the last ones reached higher levels of abstraction with higher complexity and became
smaller to enforce generalization. The 3-by-3 kernel, with a stride of 1 and without padding,
was required to halve the dimensions of the feature maps until the smallest size was reached,
producing good results—28 × 28. The values for the penalty function of the regularizers
for the kernel, bias, and activity were set to be 1.0 × 10−2, 1.0 × 10−4, and 1.0 × 10−5,
which were good empirical values to start with. A Rectified Linear Unit (ReLU) activation
function was selected for faster learning. The comparably average dropout rate of 0.4 was
well-suited for this network since the aforementioned regularizers had to be taken into
account. The first downstream FCN, which consisted of 212 nodes and connected the last
maximum pooling layer with the output FCN, was used for the classifier. It was required
to transform the spatial features of the feature maps into complex relationships. The output
FCN had six nodes, each representing one class and using a softmax activation function to
determine the probability of class assignment for the input image.

The RNN models were constructed using simple RNNs, LSTMs, Bidirectional LSTMs,
and Gated Recurrent Units (GRUs), which were also implemented based on the Keras
sequential model using the SimpleRNN, LSTM, GRU, Bidirectional, and Dense layer functions
from the keras.layers package.

The number of nodes in the first part, which was the recurrent network, was uniformly
set to 128, which led to good results and prevented overfitting. For activation, the hyperbolic
tangent function (tanh) was selected, as it is associated with bigger gradients and, in com-
parison with the sigmoid function, faster training. Each network was followed by a fully
connected layer to establish the complex nonlinear relationships required to connect the
time-specific memory to the respective classes. Using a softmax function for activation,
the probabilities were outputted for each class.

The autoencoder-based model was implemented based on the architecture of the
CAE (see Figure 13). In contrast to the aforementioned implementation, it used the Keras
functional API, as it is more flexible and allows for branching and varying the numbers
of inputs and outputs. The branching option was required to independently define the
encoder and decoder parts since two consecutive training sessions were required. The first
training (pretraining) was performed on the complete autoencoder model consisting of the
encoder and decoder parts to train the feature-extracting capabilities. Then, the trained
weightings and biases were transferred to a separate model consisting of the encoder part
and an FCN, which implemented the classifier, to output the class probabilities.

4.6. Training

For training, 70% of the total training dataset was used as the training subset, employ-
ing cross-validation with batches of 32 samples for up to 300 epochs. For validation, 20% of
the dataset was used; hence, 10% of the dataset was used as the test subset. The model-
specific numbers of parameters are listed in Table 2.

Depending on the network, either the Stochastic Gradient Descent (SGD) algorithm
or Adam (adaptive moment estimation) optimizer was used, with individual and optimized
learning rates for each network that varied between 10−3 and 10−4.

Table 2. Number of parameters for each of the investigated methods.

Method Trainable Non-Trainable Total

CNN 4,853,174 0 4,853,174
LSTM 494,086 0 494,086
Bi-LSTM 988,166 0 988,166
GRU 371,718 0 371,718
CAE 25,691,910 94,144 25,786,054
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Figure 13. Structure of the selected CAE-based model.

5. Results

For the performance evaluation, the standard ML metrics (accuracy, recall, precision,
and F1 score) were selected. Due to the class imbalance, i.e., unequal sample size between
the activity of falling (index 1) and the other activities, the measures of accuracy, recall,
and precision were expected to have slight errors, which is of little relevance, since the
relations were the main interest. The F1 score has the robustness to overcome this issue
since it compensates for the tendency of the recall to underestimate and the precision to
overestimate using the harmonic mean calculated from both. Two additional metrics (the
macro-averaged Matthew Correlation Coefficient (MCC) and Cohen Kappa) are also robust
against class imbalances and, along with the F1 score, form the basis for the assessment.
The MCC, which has its origin in binary classification, can be used to evaluate classifiers’
performance in a multiclass classification task when a one-vs.-all strategy is pursued. In this
case, a classifier’s performance is computed using the average of the performance of every
classifier, where each one can only classify a sample as belonging to the class assigned or,
conversely, as belonging to any of the remaining classes. The Cohen Kappa measures the
degree of agreement between different classifiers, where in this case, the probabilities of
agreement between the classifiers in a one-vs-all strategy, along with the probabilities for a
random-driven agreement, are considered.

The metrics of the results of the classification studies are listed in Table 3. The learning
curves, consisting of the loss and accuracy functions, as well as the resulting confusion
matrices, are displayed in Figures 14–18.

The learning curves of the CNN (Figure 14) show a moderate learning pace with
decreasing variance and the likelihood of sudden spikes that tend to appear when using the
Adam optimizer. The decreasing gap between the training and validation curves indicates
the absence of overfitting. From the confusion matrix, it is evident that there is a higher
probability of the network confusing the activity of picking up objects with drinking, while
the other tasks remain unaffected.

The learning curves of the RNN-based networks show varying performances. The
LSTM network has similar learning curves to the CNN with regard to the learning pace and
generalization, and the confusion matrix shows the same issue as the CNN. The learning
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curves of the Bi-LSTM show significantly faster convergence but suffer from higher variance,
although the confusion is significantly smaller compared to the aforementioned models.
The GRU network shows a higher tendency toward overfitting, with comparably small
variances in accuracy progress. Last but not least, the CAE network shows the biggest
tendency to overfit and, besides the confusion between tasks 0 and 2, has an increased risk
of confusing task 0 (drinking) with task 4 (standing up).

Table 3. Performance results and execution times for validation for the investigated methods.

Method Accuracy% Precision% Recall% F1% MCC% Cohen
Kappa%

Total
Execution
Time/s

CNN 88.0 89.7 88.0 87.9 86.0 91.0 3251
LSTM 82.3 85.6 82.9 83.0 80.1 85.5 2966
Bi-LSTM 86.3 88.7 86.3 86.8 83.7 90.2 10,780
GRU 82.3 82.6 82.3 82.0 78.8 86.0 2569
CAE 81.7 84.2 81.7 82.5 78.1 78.1 7349

Figure 14. Loss and accuracy during training and confusion matrix for CNN-based classification.

Figure 15. Loss and accuracy during training and confusion matrix for LSTM (RNN)-based classification.
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Figure 16. Loss and accuracy during training and confusion matrix for Bi-LSTM (RNN)-based
classification.

Figure 17. Loss and accuracy during training and confusion matrix for GRU (RNN)-based classification.

The influence of the color levels of the feature maps on performance is shown in
Figure 19. This variational study was carried out for all models, where the lower limit of the
color scale was varied using offsets of −30 (least details), −50, and −70 (most details) with
regard to the maximum color value. Here, the CAE and CNN show the best performance
and higher robustness to color level variations, whereas the RNN-based methods are more
strongly affected, with the GRU showing the strongest effects. The results indicate that the
color levels have a significant impact on classification accuracy. Considering the stochastic
effects of training, the optimum threshold in this study probably lies between −50 and
−70.

The influence of the compression ratios of the feature maps on performance is shown
in Figure 20. Using three different compression ratios, i.e., 100%, 67%, and 50%, a study was
carried out for all models. According to the results, the performance of all models, except for
the GRU, shows high robustness to information loss caused by compression, with the CAE
achieving the best results, followed by the CNN and Bi-LSTM. In practice, this means that
even with a halved data size, the models are able to achieve similar performance. It should
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be noted that the model-specific performance deviations in the investigated cases were
caused by the stochastic nature of the learning algorithm and the dataset batching process.

Figure 18. Loss and accuracy during training and confusion matrix for CAE-based classification.

Figure 19. Accuracy by different lower color value limits used for threshold filtering for the selected
models.

From the results, we can confirm that CNN-based classification achieved better per-
formance in comparison to the investigated RNN-based methods. The reason for this is
that the derived feature maps of CNNs have the ability to extract locally distributed spatial
features in a hierarchical manner and, therefore, can recognize typical patterns, whereas
RNN-based methods memorize temporal sequences of single features. This ability also
applies to CAEs, but the tendency for overfitting is much higher, so tuning, e.g., through
better regularization, is necessary. Regarding the underlying type of input, namely images,
RNN-based networks are suboptimal due to the lack of scalability and the absence of the
ability to memorize spatial properties.
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Further, it can be revealed that the classification of coarse-grained activities led to
better results. Higher magnitudes of the reflected radar signal, which were assigned to
large-scale movements, led to distinct characteristic properties in the micro-Doppler maps,
which improved performance.

Figure 20. Accuracy by different compression ratios of the input data for the selected models.

6. Discussion

According to the metrics of the validation, all models yielded acceptable results for the
same dataset, indicating their overall suitability for this application with different levels of
performance. In addition, the learning curves of all models were convergent but indicated
different levels of smoothness and generalization. Further, it can be confirmed that the
misclassifications for all models were the highest for the activities of drinking (index 0) and
picking up objects (index 2).

The results show that CNNs are more suitable structures for the given task compared
to the RNN variants, i.e., LSTM, Bi-LSTM, and GRU, due to their ability to memorize spatial
features, while the learning curves tended to show sudden jumps during the first third
of the training, followed by smooth and gradual improvements. It is remarkable that the
training and validation curves of both the CNN and LSTM networks exhibited significant
differences, while their metrics were similar.

Despite the observation that every consecutive run of the training led to slightly
different curves, especially the continuity during the first 100 epochs, the variation in
validation accuracy was the highest for the Bi-LSTM network, while the training and
validation curves had very steep slopes during the same period. Only the GRU network
was able to achieve better continuity, but it showed a higher tendency for overfitting during
the final epochs.

Further, the overall performance was lower compared to the results mentioned in the
aforementioned literature, which suggests that more intensive hyperparameter tuning for
the network setup or image generation could improve the results. Another option would
be applying a more sophisticated preprocessing technique when generating the samples,
specifically, enhancing task-specific pattern details while adapting the conditions to the
model’s structure and increasing the overall training time.
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7. Conclusions

Inthis paper, several DL-based approaches that have been the focus of radar-based
human activity recognition were reviewed and evaluated. This was performed using a
common dataset to evaluate performance across different metrics while accounting for
computational cost, which is represented by the overall execution time. The aim was to
establish a baseline comparison using the same dataset that assists in selecting the most
appropriate method considering the performance and computational cost.

Besides the proposed measures, i.e., model improvement and sample refinement,
the application of further DL methods, e.g., autoencoder variants (SAE, CVAE); Generative
Adversarial Networks (GAN) and their variants, e.g., Deep Convolutional Generative Adversarial
Networks (DCGAN); or combinations of different methods, would broaden the knowledge
base. By evaluating additional aspects like sample space or computational space require-
ments during training, the parametricity of the models, or aspects related to execution,
such as the ability to distribute and parallelize operations among multiple computers, new
criteria for the selection of the most appropriate DL method could be introduced.
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CAE Convolutional Autoencoder
CNN Convolutional Neural Network
CVAE Convolutional Variational Autoencoder
CVD Cadence Velocity Diagram
DAE Denoising Autoencoders
DCGAN Deep Convolutional Generative Adversarial Network
DCP Depth-wise Separable Convolution
DL Deep Learning
DT Doppler-Time
FCN Fully Connected Network
FFT Fourier Transform
FMCW Frequency-Modulated Continuous Wave
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
HAR Human Activity Recognition
MCC Matthew Correlation Coefficient
MHSA Multi-Head Self-Attention
ML Machine Learning
MLP Multi-Layer Perceptron
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LSTM Long Short-Term Memory
PCA Principal Component Analysis
PRF Pulse Repetition Frequency
RA Range Azimuth
RD Range Doppler
RDT Range Doppler Time
RE Range Elevation
ReLU Rectangular Linear Unit
RF Radio Frequency
RNN Recurrent Neural Network
RT Range Time
SAE Stacked Autoencoder
SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
SVD Singular-Value Decomposition
SVM Support Vector Machine
UWB Ultra-Wideband Radar
ZCA Zero-Phase Component Analysis
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Appendix A

Table A1. Radar classes and echo signals used for coarse-grained HAR.

Ref. Year Radar Type Center Freq./GHz Features Dataset, Samples Activities Class. Model Process. Max. Accuracy/%

[40] 2010 FMCW 4.3 Time-based RF
signatures

Own; 40 per class (5
of 7)

Walk, run, rotate,
punch, crawl,
standing still,
transition
(standing/sitting)

SVM PCA 89.99

[53] 2018 CW 4.0 DT, CV, etc. Own;
50–149

Walk, jog, limp, walk
+ cane, walk + walker,
walk + crutches,
crawl, creep,
wheelchair, fall, sit,
falling (chair)

CAE - 94.2

[47] 2018 CW 24.0 DT Own;
50–149 [RadID] DCNN - 94.2

[48] 2019 FMCW 76.0–81.0 Range, velocity,
power, angle, time

Own (MMActivity):
Training: 12,097; Test:
3538; Validation:
2419;

Box, jump (jacks),
jump, squats, walk

SVM (with RBF),
MLP, LSTM, CNN +
LSTM

PCA (for SVM)

SVM: 63.74; MLP:
80.34; Bi-LSTM: 88.42;
CNN + Bi-LSTM:
90.47

[41] 2020 FMCW 5.8
RT, RD,
amplitude/phase,
CV

Own; 249 per class
Walk, sit down, stand
up, pick up object,
drink, fall

SVM, SAE, CNN SBS SVM: 95.24; SAE:
91.23; CNN: 96.65

[46] 2020 FMCW 77.0 RDT Own; Events: 1505;
Gestures: 2347

Events: enter room,
leave room, sit down,
stand up, clothe,
unclothe; Gestures:
drum, shake, swipe
l/r, thumb up/down

CNN, CNN + LSTM n.a.
Event-related: 97.03;
Gesture-related:
87.78
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Table A1. Cont.

Ref. Year Radar Type Center Freq./GHz Features Dataset, Samples Activities Class. Model Process. Max. Accuracy/%

[56] 2020 CW 6.0 RD Own; 900 per class fall, bend, sit, walk CAE n.a. 91.1

[57] 2020 FMCW 1.6–2.2 RT Own; Training: 704; Test:
160

box, squat and pick up,
step in place, raise both
hands (into horizontal
position)

FCN, SLSTM, FCN n.a 97.6

[42] 2021 FMCW <6.0, 76.0–81.0 RT Own; n.a. Walking, sitting, falling SVM, Bagged Trees SVD 95.7 (sub-6GHz), 89.8
(mmWave)

[59] 2021 SFCW 1.6–2.2 DT Own; 66 (for each 301
data points)

Step in place, walk
(swinging arms), throw,
walk, bend, crawl

Uni-LSTM, Bi-LSTM n.a. Uni-LSTM: 85.41 (avg.);
Bi-LSTM: 96.15 (avg.)

[50] 2021 FMCW 5.8 RT, RD, DT Own; Training: 1325,
Test: 348

Walk, sit down, stand up,
pick up object, drink, fall

1D CNN-LSTM, 2D
CNN, multidomain
approach (MDFradar)

n.a.

1D CNN-LSTM: 71.24
(avg.; RT), 90.88 (DT); 2D
CNN: 89.16 (RD); MDFR.:
94.1 (RT, DT, RD)

[63] 2022 FMCW 76.0–81.0 RD Own; 17 persons;
20 s/activity

Boxing, jumping,
squatting, walking,
circling, high-knee lifting

CNN, CNN–LSTM - 97.26

[64] 2022 FMCW 60.0–64.0 3D Point Clouds Own; 4 persons;
10 min/activity

Walking, Sitting down,
lying down from sitting,
sitting up from lying
down, falling,
recuperating from falling

CNN - 98.0

[65] 2022 FMCW 60.0–64.0 3D Point Clouds Own; 3870

Boxing, crawling,
jogging, jumping with
gun, marching, grenade
throwing

DCNN - 98.0

[67] 2023 FMCW 60.0–64.0 3D Point Clouds Own; 5 persons;
Standing, jumping,
sitting, falling, running,
walking, bending

MM-HAT (own network) MHSA 90.5
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Table A1. Cont.

Ref. Year Radar Type Center Freq./GHz Features Dataset, Samples Activities Class. Model Process. Max. Accuracy/%

[68] 2023 FMCW 60.0–64.0 RA, RD, RE Own; 5 persons; 2000 Boxing, waving, standing,
walking, squatting

DyLite-RADHAR (own
network) DSC 98.5

[69] 2023 FMCW 79.0 DT Own; 10 persons

Walking back and forth,
sitting in a chair, standing
up, picking up object,
drinking, falling

LH-ViT (own network) - 99.5
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