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Abstract: Power losses of switches and inductors are consistent challenges that hinder the devel-
opment of high-frequency power supply in package (PSiP). This paper investigates the roadmap
for power loss optimizations of switches and inductors in high-frequency PSiPs. Firstly, a size and
parallel quantity design method to reduce power loss in an integrated Si LDMOSFET is provided
with comprehensive consideration of switching frequency and power levels. Secondly, quality factors
of different air-core inductors are analyzed with consideration of geometric parameters and skin
effect, which provides the winding structure optimization to reduce power losses. The power losses
of the integrated Si LDMOSFET and air-core inductors are both reduced to less than 10% of the
output power at 1~100 MHz switching frequency and 0.1~10 W power level. Finally, based on the
above optimizations, power losses of switches and inductors are calculated with switching frequency
and power level. Combining the calculated results, this paper predicts the efficiency boundaries of
PSiPs. Upon efficiency normalization with consideration of input and output voltage levels, all the
predictions are consistent with the published literature. The efficiency predication error is 1~15% at
1~100 MHz switching frequency and 0.1~10 W power level. The above power loss optimizations
improve the efficiency, which provides potential roadmaps for achieving high-frequency PSiPs.

Keywords: power supply in package; power loss optimization; integrated Si LDMOSFET; air-core
inductor; efficiency boundary

1. Introduction

In CPU and MCU applications, there is a consistent pursuit of high-frequency point-
of-load (PoL) power supplies [1–3]. The switching frequency has been increasing in the
past few decades [4]. This miniaturizes switches and inductors that primarily dominate
the system size and weight. As a result, the integration level has evolved into a 3D
stacked power supply (3D-SPS, discrete switch and discrete inductor), power supply in
package (PSiP, integrated switch and discrete inductor), and power supply on chip (PwrSoC,
integrated switch and integrated inductor) [5–7]. These integration levels differentiate in
switching frequency and power rate and applications, as shown in Table 1.

Table 1. Switching Frequencies and Power Levels of Different Integration Levels.

Integration Level 3D-SPS PSiP PwrSoC

Switching Frequency <10 MHz <100 MHz >100 MHz
Power Level <100 W <10 W <2 W

Application Primary PoL power
supply

Compact primary
PoL power supply

Secondary PoL power
supply (on chip)
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The 3D-SPS adopts discrete switches and inductors, which allows for high power
conversion (up to 100 W) [8–10]. It carries out a 3D stacking structure on the PCB, and
usually places magnetic components above or below the entire PCB board. With relative
high inductance, the 3D-SPS approach can operate at a switching frequency below 10 MHz.
The reduced switching frequency benefits the overall efficiency, since the switching loss is
proportional to the switching frequency.

The PSiP integrates all components in one package, which achieves single chip power
conversion [7,11]. Typically, it integrates power switches, drivers and control modules
on a single die, whereas discrete inductors with low profile are packaged into the chip.
Owing to the reduced inductance, the PSiP approach usually operates at a frequency above
10 MHz that leads to high switching loss and reduced efficiency. Due to limited power
devices and heat dissipation, the power range is restricted to under 10 W.

The PwrSoC integrates all components on a single die, which achieves the highest
integration level [12–14]. The integrated on-chip power supply can be placed as near to the
load as possible, which reduces the transmission loss in power lines [15]. However, with
a low on-chip inductance, the switching frequency usually increases above 100 MHz to
reduce ripples. As a result, power loss and heat dissipation are hard to optimize and that
limits the power rate to below 2 W.

In comparison to 3D-SPS, the PSiP saves the interconnecting area of the control chip,
which drives chip and power transistors in 3D-SPS. In comparison to PwrSoC, the PSiP
generally adopts the standard CMOS process and does not require the CMOS process with
power inductors, which is more mature and compatible with technology. Therefore, the
PSiP power supply is more widely applied in communication, server automatic systems
and so on.

For all integration levels, switching frequency and power levels are usually contra-
dictory, and the major challenges toward high frequency are power losses of switches and
inductors, as shown in Figure 1.
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Among the major challenges, the power switch dominates conduction and switching losses.
Conduction and switching losses are primarily determined by the on-resistance value (Ron) and
total gate charge value (QG), respectively. Figure-of-merits (FOM = Ron ×QG) of the Si vertical
trench, Si lateral trench and GaN lateral trench are shown in Figure 2 [16–18]. Due to the
wider bandgap, higher electron mobility and electron velocity of GaN HEMT, its FOM is
several times lower than that of Si MOSFET. These material characteristics result in lower
power losses in GaN HEMT in high-frequency applications. However, GaN HEMTs are
usually discretely packaged due to unique fabrication processes, which are preferable in
3D-SPS [19–21]. For low-power and high-integrated applications, the Si lateral diffused
MOSFET (LDMOSFET) is usually applied in PSiP and PwrSoC because of compatible
fabrication processes [22].
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Figure 2. FOMs of GaN HEMT and Si MOSFET. 
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The power inductor dominates core and coil losses and primarily determines inte-
gration levels. Although the magnetic core helps increase the inductance, the core loss
increases rapidly with frequency that harms the efficiency. For magnetic cores, their mag-
netic permeability, µi, of soft magnetic material decreases dramatically when the operating
frequency reaches a critical value, which causes the dramatic decrement of the inductance
value. In TDK Mn-Zn ferrites, MAGNETICS nanomaterial and alloy powders, their initial
relative magnetic permeability, µi, is shown in Figure 3 [23–25]. Figure 3 shows that the
permeability of magnetic materials decreases rapidly above 1 MHz. As the switching
frequency increases, high-frequency inductors evolve from magnetic-core inductors to
air-core inductors [26–28]. Without magnetic cores, air-core inductors do not suffer core
loss and have good linearity to frequency. The inductance value decreases dramatically due
to the removal of the magnetic core. In the literature and products, the typical inductance
values of solenoid and planar spiral inductors are given in Table 2. All the investigated
inductance values are less than 500 nH, which pushes the PoL power supply to operate at a
frequency above 1 MHz.

Table 2. Typical Inductance Values of Solenoid and Planar Spiral Inductors.

Inductor Type Literature Operating Frequency Inductance

Solenoid Inductor

0806SQ, 0807SQ,
0908SQ [29] 1~1000 MHz 5.5 nH~27.3 nH

1111SQ [29] 1~500 MHz 27 nH~47 nH
1515SQ, 2222SQ, 2929SQ

[29] 1~100 MHz 47 nH~500 nH

Planar Spiral Inductor

[30] 150 MHz 1.5 nH
[31] 10 MHz 2.7 nH
[32] 100 MHz 5.8 nH
[33] 10 MHz 220 nH
[34] 550 MHz 1.54 nH
[12] 450 MHz 0.85 nH

To address the above challenges, this paper analyzes integrated Si LDMOSFTs and
air-core inductors in PSiPs. In terms of the integrated Si LDMOSFET, with consideration of
parasitic resistors and capacitors, the size and parallel quantity optimization of integrated
Si LDMOSFET are provided to reduce the switching and conduction losses. In terms of air-
core inductors, with consideration of skin effect, quality factors of various air-core inductors
are calculated for the winding structure optimization to reduce coil loss. Furthermore,
combining the above optimizations, this paper predicts the efficiency boundaries of PSiP
approaches based on power losses of switches and inductors.

This paper is organized as follows. Section 2 analyzes power losses of an integrated
Si LDMOSFET to provide a size and parallel quantity optimization. Section 3 calculates
the quality factors of solenoid inductors and planar spiral inductors to optimize wind-
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ing structures. Section 4 predicts the efficiency boundaries of PSiP. Section 5 concludes
this paper.
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2. Power Loss Analysis of Integrated Si LDMOSFET

In PSiPs, integrated Si MOSFETs have the most severe heat dissipation and the easiest
thermal breakdown of all power devices. For PSiP, power loss caused by high frequency
is a great challenge in terms of designing power switches. Power losses of integrated Si
LDMOSFETs mainly include switching loss, driving loss, conduction loss and other power
losses [35,36]. The equivalent model and switching process of an integrated Si LDMOSFET
is shown in Figure 4. In Figure 4b,c, the gate voltage VGS exits the miller platform due to
the inductor in the output filter.
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Switching loss: At the period t1~t3 in turn-on and turn-off processes, the triangular
overlapping area of drain-source current and voltage are switching losses. Therefore,
according to the overlapping area, the switching loss is given by

Pon = 1
2 fsVin IoRG

[
CISS(VPL−Vth)

VDD−
VPL+Vth

2

+ CRSSVin
VDD−VPL

]
Po f f =

1
2 fsVin IoRG

[
CRSSVin

VPL
+ 2CISS(VPL−Vth)

VPL+Vth

]. (1)

Driving loss: At the period t0~t5 in turn-on and turn-off processes, gate voltage, VGS,
rises or falls via the charge, CGS, or discharge, CGD. The stored energies of CGS and CGD are
dissipated by the driving resistor, RG, which depends on the gate charge, QG. The driving
loss is given by

PG = fsQGVDD. (2)

Conduction loss: In on-state, the Si LDMOSFET is equivalent to the on-resistor, Ron,
dissipating the energy. Conduction loss is given by

Pcond = Io
2Ron

Vout

Vin
. (3)

Other power losses: Other power losses mainly include output capacitance power
loss and body diode power loss. The output capacitor stores the energy in off-state and
releases the energy via the conducting channel in on-state. Based on the stored and released
energies in a switching cycle, the output capacitance power loss is given by

Pds =
1
2

fsCOSSVin
2. (4)

The body diode power loss includes forward conduction loss and reverse recovery
loss. The forward conduction loss is caused by the forward body diode current during the
dead time. It is given by

Pd_ f = fsVF Iotd, (5)

where VF and td are the forward conduction voltage and forward conduction time of the
body diode.

The reverse recovery loss is caused by the body diode reverse recovery after carrying
the forward current. It is expressed as

Pd_r = fsVDRQrr, (6)

where VDR and Qrr are the reverse recovery voltage and reverse recovery charge of the
body diode.

Combining (1)–(6), the total power loss of M switches in parallel is given as

Pswitch = M(Pon + Po f f + PG + Pds + Pd_ f + Pd_r) +
Pcond

M

= M fs(X1 IoCISS + X2 IoCRSS + X3COSS + X4 Io + X5) + X6 Io
2 Ron

M

X1 = VinRG
2VDD(VPL−Vth)

(2VDD−(VPL+Vth))(VPL+Vth)

X2 = 1
2 VinRG

VinVDD
(VDD−VPL)VPL

X3 = 1
2 Vin

2, X4 = VFtd, X5 = QGVDD + QrrVDR, X6 = Vout
Vin

, (7)

where X1, X2, X3, X4, X5 and X6 represent coefficients in total power loss that do not
depend on switching frequency and output current.
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Based on the capacitance value per unit length and area, CISS, COSS and CRSS of the
integrated Si LDMOSFET are given by [37]

CRSS = CGD = WM LMCox
2 + WMCov

CISS = CGD + CGS = WMLMCox + 2WMCov

COSS = CGD + CDS = WM LMCox
2 + WMCov +

WMEMCj+(WM+EM)Cjsw
2

. (8)

Based on I–V characteristic of the integrated Si LDMOSFET in the deep linear area,
the on-resistance value is given by

Ron =
1

mnCox
WM
LM

(VDD −Vth)
. (9)

Based on (8) and (9), (7) can be derived as

Pswitch = M fs(Y1 IoWM + Y2WM + X4 Io + Y3) + Y4 Io
2 1

MWM

Y1 = X1(LMCox + 2Cov) + X2(LMCox + 2Cov)

Y2 = X3

(
LMCox

2 + Cov +
EMCj+Cjsw

2

)
Y3 = X5 + X3

EMCjsw
2 , Y4 = X6

LM
mnCox(VDD−Vth)

, (10)

where coefficients Y1, Y2, Y3 and Y4 are obtained from X1, X2, X3, X5 and X6 by excluding
the channel width, WM.

In (10), the power loss of the switch is determined by switching frequency, fs, output
current, Io, switch size, WM, and parallel quantity, M. As usual, fs and Io are determined by
the power supply requirements. In order to reduce power loss, WM and M are optimized
as follows.

• M = 1: According to (10), taking Vin = 5 V and the 350 nm process as an example,
the power loss is plotted with the integrated Si LDMOSFET size in Figure 5. It is
obvious that there are different optimal sizes to minimize power loss at different
switching frequencies and output currents [38]. This optimal size can be obtained by
the simulation scan.
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• M 6= 1: In fact, switch size is limited by the process. Therefore, the power switch is
composed of multiple units in parallel. According to (10), the power loss is plotted
with the output current in Figure 6. The size of a single unit is optimized at fs = 10 MHz
and Io = 0.25 A, according to Figure 5. In Figure 6, comparing M = 4 to all load current
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ranges, the parallel quantity of power switch changing with drain-source current is
more beneficial to improving overall efficiency [39].
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3. Quality Factor Analysis of Air-Core Inductors

In PSiPs, the power loss of air-core inductors can be increased due to high-frequency
effects. For megahertz PoL applications, power losses of air-core inductors are related to
the inductance current, geometric parameters of coil-wire, coil material, skin effect, eddy
effect, proximity effect, fringe effect, etc. Among many factors, the geometric parameters
and skin effect are highly related to the switching frequency. To calculate the power loss
of the air-core inductors, the inductance current is expanded into sinusoidal waves of
various frequencies. Their frequencies and amplitudes are fs, 2fs, 3fs, . . . and IL1, IL2, IL3, . . .
respectively. Upon consideration of the geometric parameters and skin effect, in [40], the
power loss of air-core inductors can be estimated by

Pind = Pind,DC + Pind,AC

Pind,DC = IL0
2RDC = IL0

2ρ l
A

Pind,AC = 1
2 ∑ ILn

2RAC,n = 1
2 ∑ ILn

2ρ l
ϕδn

. (11)

In (11), the inductance power loss consists of the DC loss (Pind,DC) and AC loss (Pind,AC).
Smaller RAC at the same inductance value is more beneficial for efficiency, especially in
reducing high-frequency power loss. In order to simplify the analysis, the quality factor, Q,
is optimized to decrease the AC power loss, as given by

Q =
2π fsL
RAC,n

, (12)

where higher Q means a lower AC resistance value at the same inductance value.
According to the profile, air-core inductors are classified into planar spiral inductors

and solenoid inductors, as shown in Figure 7, which are discussed in the following sections.
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3.1. Winding Structure Optimization of Planar Spiral Inductors

For a planar spiral inductor, the outer diameter, D, inner diameter, d, coil turn, N,
coil-wire thickness and width determine its profile and inductance value. Inductance
values of planar spiral inductors with different winding structures are uniformly expressed
as follows [40]:

L = q1µ0N2(D + d)
[
ln
( q2

T

)
+ q3T + q4T2

]
, T =

D− d
D + d

, (13)

where D and d are the outer diameter and inner diameter, respectively, T is the ratio
of difference and sum between outer and inner diameters, and N is the coil turn. The
coefficients q1, q2, q3 and q4 of different winding structures are given in Table 3.

Table 3. Coefficients p, q1, q2, q3 and q4 in different winding structures of planar spiral inductors.

Winding Structure Square Hexagon Octagon Circle

p 2 1.732 1.657 1.571
q1 0.3175 0.2725 0.2675 0.25
q2 2.07 2.23 2.29 2.46
q3 0.18 0 0 0
q4 0.13 0.17 0.19 0.19

Considering skin effect and coil length, the nth harmonic AC resistance values of
planar spiral inductors are given by

RAC,n = ρ l
ϕδn

δn =
√

ρ
nπ fsµ0

, l = p(D + d)N
, (14)

where the coefficient, p, of different winding structures are as given in Table 3.
Combining (13) and (14), the quality factor of planar spiral inductors is derived as

Qplanar = 2ϕ

√
πµ0 fsρ

n
q1N

p

[
ln
( q2

T

)
+ q3T + q4T2

]
. (15)

According to (15), the quality factor depends on the cross-section perimeter, ϕ, coil
turn, N, and T. For ϕ and N, the quality factor increases monotonically with them. For T,
the function-related T in Q is defined as

F(T) = ln
( q2

T

)
+ q3T + q4T2. (16)
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Based on (16), the relationships between F and T are plotted in Figure 8 (T < 1). Ac-
cording to Figure 8, at the same D (area constraint), increasing d is beneficial for improving
quality factor, Q.
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In general, the outer diameter D is constrained by the inductance value. In order to
improve the quality factor, d, N and ϕ should increase as much as possible. However, the
above measures are contradictory in the winding structures of equal width. Therefore,
in [41], wide outside winding and the narrow inside winding are applied to improve
the quality factor, as shown in Figure 9. The quality factor of the proposed winding
structure is calculated using the Greenhouse algorithm. Each turn of the winding structure
is approximated as a polygon. The inductance value is the sum of self inductances and
mutual inductances of all turns. The AC resistance value is the sum of AC resistance values
for all turns. Therefore, the quality factor can be calculated based on the inductance and
AC resistance values.
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3.2. Winding Structure Optimization of Solenoid Inductors

For a tightly winding solenoid inductor, the winding diameter, φ, coil turn, N, and
coil section diameter, dCu, determine its profile and inductance value. When the wind-
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ing structure is cylinder, the inductance value of the solenoid inductor is given by [40]
the following:

L =
kµ0πφ2N

4dCu
, (17)

where Nagaoka’s coefficient, k, depends on φ/(NdCu), as given in Table 4.

Table 4. Nagaoka’s coefficients with φ/(NdCu).

φ/(NdCu) 0.1 0.2 0.3 0.4 0.6 0.8 1

k 0.96 0.92 0.88 0.85 0.79 0.74 0.69

φ/(NdCu) 1.5 2 3 4 5 10 20

k 0.6 0.52 0.43 0.37 0.32 0.2 0.12

The length of the solenoid inductor is given by

l = Nπφ. (18)

Combining (14), (17) and (18), the quality factor of the solenoid inductor is derived as

Qsolenoid = π

√
πµ0 fsρ

n
NdCu

2
k

φ

NdCu
. (19)

According to (19), the quality factor depends on N, dCu and φ. For N and dCu, the
quality factor increases monotonically with them. For φ, the function -related φ in Q is
defined as

G
(

φ

NdCu

)
= k

φ

NdCu
. (20)

Based on Table 4 and (20), the approximation relationship between G and φ/(NdCu) is
plotted in Figure 10. According to Figure 10, at the same NdCu, increasing φ is beneficial
for improving quality factor, Q, which causes the large volume. Unlike in planar spiral
inductors, there is no optimized structure to improve the quality factor.
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4. Efficiency Boundary Prediction of PSiP

Power losses of PSiPs mainly include power losses of switches and inductors. Only
considering power losses of inductors and power switches, the PoL power supply efficiency
is expressed as

η =
Po

Po + Pind + Pswitch
=

1

1 + Pind
Po

+ Pswitch
Po

, (21)

where Po, Pind and Pswitch are the output power, power losses of inductors and power
switches, respectively.

In order to calculate the power losses of switches and inductors with the consider-
ation of switching frequencies and power levels, Vin = 5 V, Vo = 1.8 V, fs = 1~100 MHz,
4iL/IL0 = 0.4 and Po = 0.1~10 W are used in calculations.

For the power loss of integrated Si LDMOSFETs, optimized sizes of integrated Si
LDMOSFETs at 350 nm, 180 nm and 90 nm processes are calculated at different switching
frequencies and output currents according to (7) and (10). The parameters of optimized
integrated Si MOSFETs are given in Table 5. As the switching frequency increases, the
RDS of integrated Si MOSFET increases, and CISS, CRSS and COSS decrease, which trades
off power losses among switching loss, driving loss and conduction loss. Furthermore,
based on the parameters of Si LDMOSFETs, the power losses of Si LDMOSFETs, Pswitch, at
350 nm, 180 nm and 90 nm are shown in Figure 11a. Furthermore, the efficiency boundary,
Pswitch/Po, is calculated as shown in Figure 11b.
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Table 5. Parameters of Integrated Si MOSFETS with Optimal Sizes at Different Frequencies.

Process fs (MHz) Ron (mΩ) CISS (pF) CRSS (pF) COSS (pF)

350 nm
1 35 295 147 355
10 112 93 47 112

100 354 29 15 35

180 nm
1 22 208 104 253
10 69 66 33 80

100 217 21 10 25

90 nm
1 18 176 88 179
10 57 57 28 57

100 179 17 9 18

In Figure 11a, the optimized power loss of the integrated Si LDMOSFET is proportional
to fs1/2 instead of fs, which shows the potential for high-frequency switches. As the
switching frequency increases, the power loss of the integrated Si LDMOSFET increases at
a rate of fs1/2

. As the power level increases, the power loss of the integrated Si LDMOSFET
increases at a rate of Po. In addition, the power losses of the integrated LDMOSFEET
under more advanced processes are reduced due to reductions of the parasitic capacitors
and resistors.

For the power loss of air-core inductors, the required inductance value is calculated
according to the switching frequency and ripple ratio of the inductance current. Then, with
consideration of the optimized winding structures, the geometric parameters (D, d, φ) are
estimated based on the inductance value according to (13) and (17). Furthermore, based
on (14) and (18), the coil length is calculated according to inductance geometric shapes.
Finally, based on (11), the power losses of air-core inductors, Pind, with winding structure
optimizations are shown in Figure 12a. Furthermore, the efficiency boundary, Pind/Po, is
calculated as shown in Figure 12b. The following assumptions are introduced into the
calculations according to common engineering values:

• For the tightly winding solenoid inductor, its wire width and coil turn are set as 1 mm
and 10.

• For the planar spiral inductor, its thickness and coil turn are set as 100 µm and 10.
Since it has a wide outside winding and narrow inside winding structure, its width is
set as 1~2 mm.

In Figure 12a, as the switching frequency increases, the coil-wire length, l, and skin
depth, δ, both decrease. Based on calculations, since the effect of coil-wire length reduction
on power loss is greater than that of skin effect at 1~100 MHz, the power losses of air-core
inductors decrease as the switching frequency increases. As the power level increases, the
inductance current, IL, and ripple,4iL, increase. The increase of4iL results in reductions
of inductance, L, and coil-wire length, l. Therefore, the power losses of air-core inductors
are at the minimum value as the power level increases.

Combined with power loss calculations, Pswitch/Po and Pind/Po are shown in
Figures 11b and 12b. It can be seen that the main power losses at low and high frequencies
are from switches and inductors, respectively. Therefore, the directions of further reduction
of power losses at low frequency and high frequency are different. At low frequency, the
sizes of air-core inductors are slightly increased to reduce their DC and AC resistance val-
ues. At high frequency, advanced processes are applied to reduce the parasitic capacitance
values of Si LDMOSFETs. According to the above analysis, for reducing power loss to
improve switching frequency, PSiPs need to optimize the size of the integrated Si MOSFET
in advanced processes and optimize the winding structure of air-core inductors. At a high
enough switching frequency, air-core inductors are integrated in the chip, which represents
the trend from PSiP to PwrSoC. Reducing power loss is also a heat dissipation requirement
for the highly integrated PwrSoC package.
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According to Figures 11b and 12b, the efficiency boundaries of PSiPs are predicted and
verified in Figure 13 [42–61]. In order to eliminate the effect of input and output voltages
on efficiency, the efficiencies in the literature are normalized according to the following:

ηst =
Po

Po + (Pind + Pswitch)·Vout
Vin
· 5V

1.8V

=
η

η + (1− η)·Vout
Vin
· 5V

1.8V

, (22)

where ηst and η are efficiencies with and without normalization.
In Figure 13, the efficiencies found in state-of-the-art research are lower than those

of the predicted efficiency boundary, and most of them are close to the boundary, which
verifies the prediction based on the power loss analysis. The predicted errors are mainly
from power losses of the equivalent series resistor and controller. The above optimized mea-
sures reduce power losses and improve efficiency, which provides roadmaps for achieving
high-frequency PSiPs.
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5. Conclusions

This paper provides power loss optimizations for PSiPs in relation to integrated Si
LDMOSFETs and air-core inductors. For integrated Si LDMOSFETs, a size and parallel
quantity optimization is provided based on power loss analyzation. For air-core inductors,
quality factors are improved by winding structure optimization to reduce coil loss. The
power losses of the integrated Si LDMOSFET and air-core inductor are both reduced to less
than 10% of the output power at 1~100 MHz switching frequency and 0.1~10 W power
level. Based on the analysis, this paper predicts the efficiency boundary of PSiPs. The
efficiency prediction error is 1~15% at 1~100 MHz switching frequency and 0.1~10 W power
level. The predicted results are consistent with the findings of state-of-the-art research. To
improve the efficiency toward high-frequency PSiP, two technologies are proposed from
the perspective of switches and inductors.

• For power switches, a parallel quantity of integrated Si LDMOSFET is designed based
on power level. The size of each power switch is optimized based on switching
frequency and power level.

• For power inductors, the planar spiral inductor provides a low profile for mono-
lithic integration. An optimal winding structure with narrow inner and wider outer
windings dramatically reduces power losses.
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Nomenclature

fs Switching frequency
Vin Input voltage of PoL power supply
Vout Output voltage of PoL power supply
IL0, ILn DC value and nth harmonic amplitude of inductance current
∆iL Ripple of inductance current
Io Load current of PoL power supply
CGD Capacitance between gate and drain of integrated Si LDMOSFT
CGS Capacitance between gate and source of integrated Si LDMOSFT
CDS Capacitance between drain and source of integrated Si LDMOSFT
CISS Input capacitance of integrated Si LDMOSFET
COSS Output capacitance of integrated Si LDMOSFET
CRSS Reverse transfer capacitance of integrated Si LDMOSFET
RG Gate resistance of integrated Si LDMOSFET
Ron Drain-source on-resistance of integrated Si LDMOSFET
VDS Drain and source voltage of integrated Si LDMOSFT
VGS Gate and source voltage of integrated Si LDMOSFT
IDS Drain and source current of integrated Si LDMOSFT
VPL Miller voltage of integrated Si LDMOSFT
Vth Gate threshold voltage of integrated Si LDMOSFT
VDD Power supply voltage of driver
mn Electron mobility
WM Channel width of integrated Si LDMOSFET
LM Channel length of integrated Si LDMOSFET
EM Drain/source width of integrated Si LDMOSFET
Cox Gate oxide capacitance per unit area of integrated Si LDMOSFET
Cov Gate-to-source/drain overlap capacitance per unit width of integrated Si LDMOSFET
Cj Source/drain junction capacitance per unit area of integrated Si LDMOSFET
Cjsw Source/drain sidewall junction capacitance per unit length of integrated Si LDMOSFET
L Inductance value
l Coil-wire length of inductor
A, ϕ Cross-section area and perimeter of inductance coil-wire
µ0 Space permeability
ρ Resistivity of inductance coil-wire material
δn Skin depth of nth harmonic inductance current
RDC, RAC,n DC and nth harmonic AC equivalent resistances of inductor
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