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Abstract: The decrease in overall inertia in power systems due to the shift from synchronous generator
production to renewable energy sources (RESs) presents a significant challenge. This transition
affects the system’s stable frequency response, making it highly sensitive to imbalances between
production and consumption, particularly during large disturbances. To address this issue, this paper
introduces a novel approach using Multivariate Empirical Mode Decomposition (MEMD) for the
accurate estimation of power system inertia. This approach involves applying MEMD, a complex
signal processing technique, to power system frequency signals. The study utilizes PMU (Phasor
Measurement Unit) data and simulated disturbances in the IEEE 39 bus test system to conduct this
analysis. MEMD offers substantial advantages in analyzing multivariate data and frequency signals
during disturbances, providing accurate estimations of system inertia. This approach enhances the
understanding of power system dynamics in the context of renewable energy integration. However,
the complexity of this methodology and the requirement for precise data collection are challenges
that need to be addressed. The results from this approach show high accuracy in estimating the
rate of change of frequency (RoCoF) and system inertia, with minimal deviation from actual values.
The findings highlight the significant impact of renewable energy integration on system inertia and
emphasize the necessity of accurate inertia estimation in modern power systems.

Keywords: rate of change of frequency at the center of inertia (CoI RoCoF); multivariate empirical mode
decomposition (MEMD); power system inertia; renewable energy sources (RES); converter-interfaced
generation (CIG)

1. Introduction

On a global scale, the installed capacity of wind turbines alongside photovoltaic (PV)
installations experienced significant growth. This is a clear indication of the increasing
importance of renewable energy sources (RESs), with a clear stance that their share in total
production in the future should become even larger.

Reducing the share of synchronous generator production in favor of non-synchronous
production from RESs leads to a decrease in the overall inertia in the power system, and it
is precisely the system’s inertia that is responsible for the stable frequency response (higher
system inertia provides less sensitivity to the immediate mismatch between production
and consumption). Due to electro-mechanical coupling, the rotating masses of generators
provide kinetic energy to the grid (but also draw from it) in case of frequency deviation.

The grid frequency is directly linked to the speed of rotation of the synchronous
generator rotor and hence to the balance of active power, varying within acceptable limits,
and monitored within the system through the so-called rate of change of frequency (RoCoF).
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Reduced inertia will increase the RoCoF when the system is exposed to sudden disturbances,
such as a decrease or increase in consumption or a decrease or increase in production.

With insufficient inertia, frequency changes can be too rapid, causing uncontrolled
failures of consumers, generators, and interconnectors, potentially leading to a partial or
complete system breakdown [1,2].

In the process of decarbonization of the electric power system (EPS), the widespread
adoption of RESs plays a key role. According to the report [3], in order to achieve the
goals set in the Paris Agreement, the global share of electricity produced by wind should
be 21% by 2030, and 35% by 2060. The most commonly used wind turbines operate at
variable speeds to enhance the efficiency of wind energy conversion. However, this variable
speed operation leads to a decoupling between the generator rotation speed and the grid
frequency, managed by a converter. The variability of the primary energy source has
positioned wind farms to negatively impact the frequency stability of the electric power
system [4]. Due to the increased proportion of RESs, units connected to the grid via
power electronic converters will replace many conventional sources that previously used
electromechanical conversion with standard synchronous machines directly connected to
the power system. As management and protection concepts for traditional power systems
are based on the static and dynamic characteristics of synchronous generators, their absence
poses a risk of unreliable and unstable system operation [5].

Numerous approaches for estimating power system inertia can be found in the litera-
ture, including model-based and measurement-based methods [6]. Model-based inertia
estimation includes a single synchronous generator (SG) estimation [7] and regional system
inertia estimation [8]. Ambient data-based inertia estimation [9] and large disturbance-
based estimation methods [10,11] belong to measurement-based inertia estimation ap-
proaches. However, they rely on accurate models and may struggle with virtual inertia
estimation for converter-interfaced generators (CIGs) lacking replicated dynamics or known
control schemes.

The review [12] encapsulates various inertia estimation techniques, highlighting their
respective advantages and limitations. These include measurement-based methods, which,
while capable of utilizing actual system data, face issues with data reliability due to noise
and nonlinear variables. Transient signal-based methods are noted for their applicability in
both offline and online settings, yet they suffer from limitations like sample deficiency, cost,
and time constraints. The paper also discusses Artificial Neural Network (ANN)-based
models, which offer fast computation and robustness against noise but are complex and
face challenges in multi-area interconnected systems. Additionally, methods utilizing elec-
tromechanical oscillation parameters are considered, which, despite being robust against
the location of faults and RES penetration levels, are not suitable for ambient data and face
performance issues in the presence of noise and non-stationary oscillations. The review
also covers the second derivative of frequency data methods, recognized for their speed
and accuracy but requiring a complete dynamical model.

In recent times, the development of Wide Area Monitoring Systems (WAMS) has
enabled massive real-time measurements to ensure monitoring and control applications for
wide areas [13]. This paper applies an approach for estimating inertia that utilizes Phasor
Measurement Units (PMUs) during large disturbances in the power system.

In a steady state, the frequency across a power system is consistent, but disturbances
cause varying frequencies across different parts of the grid for some time. Disturbance
effects show up quicker in areas closer to the disturbances [14,15]. To accurately assess
the system’s average frequency, it is essential to gather frequency measurements from
various grid sections, ideally from each generator. The Center of Inertia (CoI) serves as
a representation of this average frequency, acting as a hypothetical hub connecting all
system generators. While current systems lack measurements from each generator, the
introduction of PMUs enables quicker and more precise data collection.
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In [16], available measurements of electrical and mechanical power from generators are
employed to derive estimates for the RoCoF and inertia constants within a three-generator
test system, utilizing the frequency of the CoI.

The scientific paper [17] introduces a novel method for estimating the RoCoF in
power systems, utilizing Interpolated Discrete Fourier Transform (IDFT) and Kalman
filtering. This approach aims to enhance accuracy and reduce latency in RoCoF estimation,
outperforming traditional methods. While the method offers advantages such as increased
accuracy and reduced estimation latency, potential challenges include its implementation
complexity and the need for specific hardware or software capabilities. Its effectiveness
may also vary across different power system configurations.

The paper [18] explores the impact of oscillations on RoCoF curve quality, employing
curve fitting and filtering to enhance data reliability. Selecting an optimal analysis range
is crucial due to the inertia estimation method’s sensitivity. Despite these challenges, the
method demonstrates reduced error rates and improved accuracy when appropriate data
ranges and processing techniques are utilized. This scientific paper [19] categorizes inertia
estimation methods into three groups: DFT-based methods, Kalman Filter techniques,
and other approaches like the orthogonal phase-locked method. While these methods are
recognized for their robustness and accuracy in frequency tracking, they face challenges
in real-time applications due to accuracy and computational demands. The paper further
identifies key areas for future research, emphasizing the development of AI techniques for
improved RoCoF prediction, the refinement of DFT and Kalman Filter methods, and the
need for enhanced real-time RoCoF tracking.

In [20], they present a method for estimating inertia in power systems, utilizing the
eigenstructure analysis of linearized dynamic equations to elucidate the relationship be-
tween inertia, eigenvalues, and eigenvectors. It incorporates Dynamic Mode Decomposition
(DMD) to extract these factors from synchronized measurements, notably from PMU. The
methodology challenges include the complexity of its implementation, reliance on accurate
PMU data, limited testing in diverse systems, high computational demands, and a possible
overdependence on theoretical models. Despite these challenges, the method presents a
sophisticated solution for inertia estimation, though it necessitates further refinement and
broader real-world testing.

The study [21] investigates methods for estimating the inertia of power systems, a
critical aspect in the era of increasing renewable energy sources. It applies swing equation
polynomial approximation and RV methods to evaluate power system inertia. The research
includes an analysis of frequency and RoCoF data from power disturbances in Taiwan,
utilizing noise filters to enhance data accuracy. While it introduces innovative approaches
relevant to modern power systems and has practical applications in improving power
system stability and efficiency, it faces challenges in complexity, its reliance on high-quality
data, and potential limitations in its scope.

Exploring methods for wind speed forecasting, the article [22] examines the applica-
tion of Empirical Mode Decomposition (EMD) along with its refined variations: Ensemble
EMD (EEMD), Complete Ensemble EMD (CEEMD), and Completed Ensemble EMD with
Adaptive Noise (CEEMDAN). The study found EEMD most effective in preprocessing for
wind speed forecasting. The paper presented an innovative approach combining Adap-
tive Robust Extreme Learning Machine (ARELM) with signal decomposition algorithms
like EMD, EEMD, CEEMD, and CEEMDAN, showing improved forecasting accuracy by
effectively managing complex data features and outliers. However, the complexity of
implementation, limitations under specific conditions, potential for overfitting, and the
need for further improvement in loss functions are acknowledged as challenges.

Examining advanced decomposition techniques like EMD, ensemble EMD, and varia-
tional mode decomposition (VMD) in the context of wind prediction, one study specifically
looks at their utilization within extreme learning machine (ELM)-based models [23]. These
techniques are primarily utilized to remove redundant noise or to amalgamate multiple
models for enhanced forecasting accuracy. The use of EMD is central to the approach
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presented in [24], offering significant advantages due to its fully data-driven nature, which
allows adaptability to different types of signals. This is crucial in handling the non-linear
and non-stationary data commonly found in natural phenomena like wind speed. Moreover,
EMD’s proficiency in extracting features from complex data is a key factor in improving
the accuracy of forecasts. EMD can suffer from mode mixing, where a single intrinsic mode
function (IMF) could contain signals of widely different scales. Additionally, the subjective
nature of selecting IMFs for further analysis can affect the reproducibility and consistency
of the results. Despite these challenges, the study’s proposed method stands out for its
adaptability and efficiency in the complex task of wind speed forecasting.

The paper [25] explores the use of Huang’s Empirical Mode Decomposition for es-
timating the rate of change of frequency (df /dt) and active power imbalance in power
systems. The research demonstrates that the EMD approach, along with other methods like
the Discrete Wavelet Transform and the Least Squares Method, can accurately estimate CoI
RoCoF. It was found that the differences in the estimation of df /dt at different buses in the
power system are small enough not to limit the choice of measurement buses and signal
analysis. This finding suggests the EMD method’s effectiveness for power system analysis,
especially in the context of non-linear and non-stationary signal processing. The research
emphasizes the capabilities of the approach for supervising contemporary electrical power
systems and recommends its application in creating sophisticated protection systems.

Inspired by the robust adaptive EMD, this paper is designed as an approach for estimating
power system inertia based on swing equation and signal decomposition algorithms.

Contributions are summarized as follows:

• This study introduces an approach for estimating CoI RoCoF in power systems. This
innovative approach leverages the EMD technique, enabling a more accurate estima-
tion of frequency change rates, which is crucial for assessing the stability and reliability
of power systems.

• This study uniquely integrates Multivariate Empirical Mode Decomposition (MEMD)
with RoCoF analysis. This combination is particularly effective in handling the dy-
namic and variable characteristics of power systems influenced by RESs. The applica-
tion of MEMD/RoCoF in this new context potentially enhances power system stability
and management, marking a significant contribution to this field.

• This research introduces a refined approach for estimating both the RoCoF and system
inertia with enhanced accuracy. This is achieved through a detailed analysis of system
frequency response during significant disturbances using the MEMD technique.

• This work provides valuable insights into the effects of non-synchronous renewable
energy sources on the dynamics of power systems. Understanding these impacts is
crucial for the future development and optimization of renewable energy integration
in power systems.

• The application of MEMD for inertia estimation in power systems represents a novel
approach that significantly advances the field beyond the scope of previous research.

2. Inertia of the Electric Power System

Each rotating machine (motor or generator) that is directly connected to the grid
provides a certain level of inertia to the system. In this regard, industrial consumers with
their induction motors also contribute some inertia to the system. However, the majority
comes from synchronous generators within conventional power plants. The inertia of a
synchronous generator involves the rotating masses of the drive turbine, shafts, and the
generator rotor, where kinetic energy is stored. The parameter used to quantify inertia is
called the inertia constant. It is expressed in seconds and represents the time required for
the unit to accelerate from rest to a synchronous speed when driven by a constant torque
equivalent to the ratio of the rated apparent power and synchronous speed. To assess
the inertial response, the inertia constant can also be defined as the time during which
the machine can provide active power corresponding to the rated apparent power solely
through the stored kinetic energy.
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As RESs replace conventional generators, the system’s inertia response diminishes,
leading to a faster RoCoF and lower frequency nadirs within a very short timeframe.
Lower-inertia systems show significantly lower-frequency nadirs and a higher RoCoF. Such
situations can trigger frequency relays and, in the worst-case scenario, cascade failures.
The solution for these scenarios involves incorporating virtual inertia into the system [26].

Virtual inertia combines control algorithms, renewable energy sources, energy storage
systems (ESS) like batteries, and power electronics to mimic the inertia of traditional syn-
chronous generators. This approach aims to compensate for the decreasing natural inertia
in EPS caused by the integration of RESs. This shift is due to the increasing dominance
of inverter technology in EPS, replacing conventional synchronous generators. Figure 1
presents the evolution of modern power systems with dominant inverter technology.
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While CIGs typically lack the traditional frequency response processes found in SGs,
such as inertia response and speed governor control, implementing virtual inertia through
power converter control allows the acquisition of non-rotating inertia. This approach,
utilized in CIG units with virtual inertia control, opens the possibility of defining inertia
considering CIGs in power systems.

Hsys =
∑NSG

i=1 HSG,i·SB,i + ∑NCIG
j=1 HCIG,j·SB,j

∑NSG
i=1 SB,i + ∑NCIG

j=1 SB,j
(1)

where

– Hsys is the equivalent apparent inertia constant of the system [s];
– SB,i is the rated apparent power of ith SG [MVA];
– SB,j is the rated apparent power of jth CIG [MVA];
– HSG,i is the inertia constant of ith SG based on its own rated apparent power [s];
– HCIG,i is the virtual inertia of jth CIG based on its own rated apparent power [s];
– NSG is the number of SGs in the power system;
– NCIG is the number of CIG units in the power system.

The typical values of inertia constant vary based on the types of SGs: around 1.75 to
4.75 s for hydroelectric power plants, 2 to 10 s for thermal power plants, and approximately
4 s for nuclear power plants [6].

The advent of WAMS enabled the derivation of the CoI frequency, offering a com-
prehensive view of the system’s frequency response to estimate disturbances resulting
from production loss using the generator rotor swing equation [27]. To apply the generator
rotor swing equation to a multi-generator system, and the following specific mathematical
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manipulations as outlined in references [28,29], the following equation for the generator
rotor swing can be formulated:

2HCoI
d f CoI

dt
+ DCoI∆ f CoI = ∆pCoI (2)

where D represents the damping of the system.
Equation (2) is commonly known as the center of inertia swing equation per unit. As

the focus of the paper lies on the early periods following a major disturbance, where the
frequency deviation term is much smaller compared to the second term on the left side of
the equation, this part of the equation can be neglected [30]. Consequently, Equation (2)
simplifies to

2HCoI
d f CoI

dt
= ∆pCoI (3)

This equation links the active power deficit with the CoI RoCoF shortly after the onset
of a generation unit outage, representing a large disturbance in the system. After the end
of the transient process, which lasts about 2–5 s, it can be assumed that there is a unique
frequency in the system—CoI frequency, which is a representation of the weighted average
of the generator’s frequencies.

3. Materials and Methods

This research assesses the power system’s inertia through the application of MEMD,
an element of the Hilbert–Huang Transform (HHT).

3.1. Multivariate Empirical Mode Decomposition (MEMD)

The fundamental approach of EMD involves separating the signal into natural IMFs [31].
Upon obtaining the IMFs, the application of the HHT makes it possible to determine the
amplitude, phase, and frequency of the present signal, enabling a time-frequency analysis
of the observed phenomenon. This approach has been successfully utilized in analyzing
the dynamic behavior of power systems [32–35]. In the end, the EMD process separates the
signal into a specific number of IMFs and a residue. The total of all IMFs combined with the
residual component enables the restoration of the original signal without any loss of data
or alteration. IMFs possess distinct characteristics: a local equilibrium near zero, all peaks
(or troughs) being higher (or lower) than zero, and the count of extreme points and zeros
being either identical or differing by no more than one. The average of the envelopes formed
by local maximums and those formed by local minimums is zero. Every IMF, regardless of
being linear or nonlinear, embodies basic oscillations with an equal count of extreme points
and crossings of the zero line.

m1(t) =
xup(t) + xlow(t)

2
(4)

where xup signifies the upper envelope and xlow indicates the lower envelope; the disparity
between the original signal x(t) and the mean value of the signal envelope m1(t) results in h1:

h1 = x(t)− m1 (5)

By iterating k times, h1k becomes an IMF:

h1k = h1(k−1) − m1k (6)

When the specified criteria are fulfilled [36], h1k transforms into the initial IMF:

c1 = h1k (7)
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The original signal x(t) is reduced by the acquired IMF function, and subsequent IMFs
are derived from the residual signals.

rn = rn−1 − cn−1 (8)

The iterative process concludes when one of the conditions is met: either the compo-
nent cn or the residue rn diminishes to a value below a predetermined threshold, or when
the residue rn turns into a monotonic function, making it impossible to extract any further
IMF functions. Regardless of whether the original signal has a zero mean value, the final
residue may not be zero. In cases where the signal shows a tendency towards growth or
decline, this final residue serves as an indicator of the signal’s overall trend. The original
signal is obtained by summing all IMF functions and the residue [36]:

x(t) =
n

∑
j=1

cj + rn (9)

An extended version of standard EMD, known as multivariate EMD (MEMD), is
developed for multivariate data. As highlighted by [37], MEMD exhibits properties
such as coherence and a data fusion algorithm. In this approach, data are scrutinized
within a p-dimensional domain, estimating the local p-dimensional mean by averaging
multiple envelopes.

In the MEMD procedure, the first step is to generate a series of directional vectors, K,
by utilizing a point set on a p-dimensional hypersphere generated with a low-discrepancy
Hammersley sequence. The procedure starts by initializing the residue of the p-dimensional
signal as r(t) = x(t) and i = 1. After that, the set of projections along each vector K is obtained:{

eθk (t)
}K

k=1 (10)

The next step is to identify the local maxima and minima within
{

eθk (t)
}K

k=1 by
interpolating the local maxima and minima with a cubic spline. Oner then determines the
average of the upper and lower envelopes by calculating their mean:

Emean(t) =
1

2K

K

∑
k=1

(Eθk
min(t) + Eθk

max(t)) (11)

The subsequent phase is to update r(t) = r(t) − Emean(t) and repeat steps until a stopping
criterion is met [36]. The process involves extracting the ith IMF denoted as Emean(t) and
subsequently updating residual r(t) from the original signal x(t) as:

r(t) = x(t)− Emean(t) (12)

3.2. RoCoF Estimation Using MEMD

The replacement of traditional generation with inverter-based resources is gradually
taking place. This makes the lack of rotational inertia common in modern power systems.
This results in an increasing RoCoF after contingencies, potentially leading to frequency
collapse. Precision in estimating RoCoF is vital for creating sophisticated operations and
control methods in modern power systems, as RoCoF is a key indicator of the frequency,
safety, and stability of these systems. Various approaches and papers describing RoCoF
estimation methods can be found in the literature. In this paper, the MEMD approach is
used to estimate RoCoF, the mathematical properties of which are presented in the previous
chapter as well as in the references [25,37].

Following a disruption in the power system that causes an imbalance between gen-
eration and consumption, generators either decelerate or accelerate to adjust to the new
situation. Despite individual generators slowing down at different rates (d∆ωi/dt), which
change throughout the process, the system as a whole slows down at a constant rate
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(d∆ωc/dt). As synchronized forces act, damping the oscillation in the stable response, the
frequencies of individual generators approach the frequency of the center of inertia. After a
relatively short time (t = t1), of the order of a few seconds, all generators practically adopt
the frequency values of the center of inertia, thereby reestablishing a unified frequency
within the system. This feature of the power system allows the application of an advanced
MEMD approach signal processing technique to be applied and used to assess the trend of
system deceleration or acceleration in a newly emerging situation after a disturbance.

In this paper, it is shown through an illustrative example that by using the technique
of empirical decomposition of the MEMD signal over frequency signals, it is possible to
estimate the value of the rate of change of frequency and thus the value of the rate of change
of the center of inertia frequency with high accuracy.

The first step requires access to the frequency signal from WAMS (PMU). Subsequently,
the MEMD algorithm segregates these signals into several IMFs and residuals. The resid-
uals, generated through the MEMD method, effectively capture the signal’s trend. It is
demonstrated that these residuals closely align with the calculated center of inertia, making
them well suited for estimating dfCoI/dt.

The extracted IMF is removed from the original signal fi(t), leading to the calculation
of the signal residual for subsequent IMF functions: r1 = fi(t) − c1. The aggregate of all
IMFs along with the residual constitutes the initial signal:

fi(t) =

(
n

∑
j=1

cj(t)

)
+ rn(t) (13)

where fi(t) signifies the generator frequency, cj(t) stands for IMFs, rn(t) indicates a residual
or a low-frequency trend, and n represents the overall count of IMFs.

In this context, research is specifically concentrated on accurately representing
ωCoI(t) using rn(t) and examining its suitability for use in the evaluation of the center of
inertia estimation.

Utilizing various iterations of EMD per signal, MEMD can produce the average modal
function and residue across the complete signal set. This enables the concurrent processing
of multiple signals, establishing a unified resolution encompassing all signals and their
residual elements.

The simultaneous decomposition of all measured data from PMU happens with
MEMD. It identifies scales shared among two or more signals. This unique alignment
ability allows in-depth analysis across multiple signals. For each variable, MEMD offers
IMFs and residuals separately. The combination of all modes and the leftover residual
mirrors the initial signal. Finding local extremities within MEMD employs real-valued
signal projections to form a multidimensional envelope. MEMD is an extended form of
EMD that breaks down multiple data channels at once to create consistent IMFs.

Following the first stage of locating local extremes, the subsequent step involves
matching the original data at those extreme positions to create multidimensional en-
velopes {eθv (t)}

V
v=1.

Compute the mean value by averaging across a collection of k directional vectors:

Emean(t) =
1
K ∑K

k=1 e
θk
(t). (14)

The last step, besides checking the stopping criteria [37], is the determination of
the residual:

res(t) = f (t)− Emean(t) (15)

3.3. Inertia Estimation Using RoCoF

In this study, alongside evaluating RoCoF and CoI RoCoF using the MEMD approach,
an estimation of the inertia constant of the power system will also be conducted using the
mentioned method based on RoCoF estimations.
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Let dfi/dt represent the locally estimated RoCoF at location (i). Additionally, it is
proposed that dfi/dt represents the residual obtained by empirically decomposing the
synchronized frequency measurement signals gathered from the various nodes within the
system (i). The residue of the observed decomposed signal accurately describes the change
of the center of inertia, making it suitable for estimating the rate of change of frequency
of the center of inertia [25,38]. Assuming that the locally estimated RoCoF is an adequate
approximation of the actual CoI RoCoF, the following can be written:

2HCoI
d f i
dt

|t=0+ = ∆pi (16)

Given that the CoI RoCoF is directly related to the size of the disturbance, there
is a concept to use this relationship to modify the estimation of inertia in response to
varying conditions within the system. The MEMD approach is applied to the time series
of frequency deviations following disturbances, where the residual indicates the trend
of the analyzed signal. This should be effective for evaluating the actual CoI RoCoF
(dfCoI/dt). The fluctuation in active power within the power system, such as a reduction
or increase in load or generation, is denoted as ∆p. The MEMD estimation results of the
frequency deviations represent the average gradient of the frequency on the observed time
interval ((((x(i+1) − xi))/∆t), ∆t = 0.01 s). The sampling rate is 100 Hz and ∆t represents the
time interval between consecutive data points. This approach employs a single window,
monitoring the frequency response immediately following a disturbance at t = 0.

Equation (17) derives the average frequency gradient across windows containing M
data samples. Each window spans a duration of (M − 1)∆t. This approach calculates the
average RoCoF, facilitating the estimation of the inertia constant:

RoCoF =
1
M

tend

∑
t=0

d∆ω(t)
dt

=
1
M

tend

∑
t=0

dres(t)
dt

(17)

Based on Equation (16), system inertia can be determined as:

H =
f0 ·∆p

2 · RoCoF
(18)

where f 0 denotes base system frequency. Governor control timing significantly relies on
the system’s inertia (H) to manage frequency response before critical levels. High inertia
ensures stable systems with low RoCoF; conversely, low inertia systems pose risks due to
high RoCoF, leading to rapid frequency spikes triggering protection systems. Given the
time-dependent nature of inertia related to intermittent converter-interfaced generation,
estimating and monitoring these values is crucial.

4. Results

The applied approach has been validated through simulation on the IEEE 39 bus
test system [39]. Simulations are conducted on the IEEE 39 bus test system modeled
in DIG SILENT Power Factory 2021 SP1 software (Gomaringen, Germany). It has been
established that the generating buses are equipped with PMUs. In the Section 4, the first
application of the MEMD method for estimating RoCoF will be presented, confirmed
through references [25,38]. Figure 2 is designed to illustrate the dynamic response of
operating generators following a specific disturbance scenario. The scenario entailed a three-
phase short circuit occurring at bus 38 at a time instant of 0 s. This fault was subsequently
cleared within 0.2 s. Concurrent with the fault clearance at 0.2 s, two generating units,
namely generators G9 and G10, experienced an outage. The graph in Figure 2 specifically
focuses on depicting the speed deviation in Hz for the remaining operational generators
in the aftermath of this disturbance. The presented speed deviation values are in terms of
(Hz), following the imposed disturbance of 0.108 (p.u.). A disturbance in the power system
can be caused by various factors, such as sudden changes in load demand, equipment
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failures, or faults in the transmission or distribution network. These disturbances can lead
to imbalances between power production and consumption, resulting in fluctuations in
the system frequency. This figure is crucial for understanding the impact of the simulated
short circuit and the subsequent generator outages on the stability and performance of the
power system.
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The signals depicted in Figure 2 underwent the MEMD algorithm for computing the
CoI RoCoF. This research was explicitly focused on representing ωCoI(t) as rn(t), delineating
the residual resulting from signal decomposition using the MEMD methodology. Figure 3
showcases these residuals, the remains after implementing the MEMD approach on the
signals depicted in Figure 2.
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Figure 3. Residuals of speed deviation obtained via MEMD.

By employing the MEMD algorithm, it is capable of generating an average pattern
and average residuals from the collective set of signals. This approach facilitates the simul-
taneous analysis of multiple signals, thereby yielding a unified solution that encompasses
all individual signals and their respective residuals.
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This characteristic can be utilized to obtain an averaged residual. In Figure 3, one
can observe the curve depicted in black, representing the average modal function and
residue across the complete signal set, which is utilized in this study to obtain CoI
RoCoF. The gradient calculation or backward derivative was applied to this time series
residual CoI using a calculation period of 0.01 s within an observed time of 2.5 s in
PowerFactory ((((x(i+1) − xi))/∆t),∆t = 0.01 s). To confirm the accuracy of the applied
approach for estimating CoI RoCoF, the calculation of the CoI RoCoF involves the
known total system inertia and the imbalance of active power in the system following a
disturbance, using Equation (18):

RoCoF = (f 0 × ∆p)/(2 × H) = (60 × 0.108)/(2 × 6.93) = −0.467 (Hz/s).

The formula for H = 1
Ssys

∑N
i=1 Hi·Si = 7.6969 (s) can be restated as follows. The

reciprocal of the system’s total apparent power Ssys = ∑N
i=1 Si equals the sum of individual

machine inertia constants Hi multiplied by their respective rated apparent power Si. Ssys
refers to the equivalent system’s apparent power, expressed in [MVA]; H is the system’s
inertia constant, measured in [s]; and Si and Hi are the rated apparent power and the
inertia constant of the ith generator. Additionally, there are N generators in the system.
Furthermore, 1080 [MW] denotes the generation power deficiency ∆p, and f 0 represents
the nominal frequency in [Hz].

The results for the gradient calculation or backward derivative applied to the time
series residuals of frequency deviation from generator terminals and residual CoI are
presented in Table 1. These calculations were performed using a calculation period of 0.01 s
within an observed time of 2.5 s. In addition, the DigSILENT PowerFactory provides the
rate of change of frequency. It calculates the RoCoF utilizing the backward derivative within
the PowerFactory, employing the same calculation period and observed time duration for
the assessment.

Table 1. The results of the evaluation of the rate of change of speed deviation using the MEMD method.

MEMD DigSILENT

dω1/dt [Hz/s] −0.43959 −0.42978
dω2/dt [Hz/s] −0.45777 −0.44485
dω3/dt [Hz/s] −0.44931 −0.45509
dω4/dt [Hz/s] −0.44713 −0.46232
dω5/dt [Hz/s] −0.45623 −0.46274
dω6/dt [Hz/s] −0.45834 −0.45025
dω7/dt [Hz/s] −0.45918 −0.45868
dω8/dt [Hz/s] −0.45961 −0.45756

dωCoI/dt [Hz/s] −0.4534 −0.45266

In addition, the outcomes from the MEMD analysis and the computation of dωCoI/dt
via DigSILENT were compared with the results generated by Equation (18). In order to
statistically process the results, the mean square and mean absolute errors are calculated.
Table 2 shows the results for mean squared error and mean absolute error. dωCoI/dt was
set to −0.467 (Hz/s).

MSE(dω/dt) =
∑N

i=1

( ∼
dωi/dt − dωCoI/dt

)2

N
(19)

MAE(dω/dt) =
∑N

i=1

∣∣∣∣ ∼
dωi/dt − dωCoI/dt

∣∣∣∣
N

(20)
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Table 2. Mean square error and mean absolute error.

MSE MAE

MEMD 5.30659 × 10−5 0.00538
DigSILENT 0.000118 0.00766

The error analysis conducted in this paper, encompassing mean square error and mean
absolute error, offers fundamental insights into methodological accuracy. Nevertheless, the
practical implications of these errors in power system operation and stability warrant fur-
ther exploration. In practical scenarios, inaccuracies in inertia estimation could significantly
impact the system’s frequency response and stability, leading to challenges in frequency
control and potentially escalating to broader system instabilities. Future research should
focus on detailed simulations and case studies to quantify the impacts of error margins on
operational strategies, stability margins, and grid reliability.

Within the scientific research, an analysis is conducted on the percentage error be-
tween the calculated values of dωCoI/dt using the MEMD method and calculations in the
DigSILENT PowerFactory 2021 SP1 software in comparison to the actual computed value
of dωCoI/dt, as expressed in Equation (18):

error =

 ∼
dωi/dt − dωCoI/dt

dωCoI/dt

· 100% (21)

The result of the estimation error (%) are shown in Table 3.

Table 3. Estimation error (%).

MEMD DigSILENT

Error (%) 0.57 0.73

To validate the proposed approach for estimating the inertia of the electric power system,
two cases were analyzed. The first case pertains to a system with dominant production using
synchronous generators. Three experiments were simulated, comprising one medium and
two large disturbance scenarios. For the medium scenario, an active power imbalance
of 0.05 p.u. was set, while for large disturbances, active power generation-consumption
differences of 0.1 (p.u.) and 0.108 (p.u.) were, respectively defined. The second case concerned
the estimation of the electric power system’s inertia on a modified IEEE 39 bus test system
with a share of electricity production from renewable energy sources (RESs). In addition,
disturbances were simulated as in the previous case, but the analyses were conducted with a
share of RES generation amounting to 10%, 15%, and 20%, respectively.

The residuals, obtained after applying the MEMD algorithm to PMU measurements
of speed deviation at generator terminals following a simulated active power imbalance
disturbance of 0.05 (p.u.) and 0.1 (p.u.), respectively, are depicted in Figure 4.

If the magnitude of the disturbance is accurately known, it becomes possible to
estimate the total system inertia. In addition, by applying the MEMD method to the speed
deviation signals during disturbances, CoI RoCoF values are determined for all three
simulated experiments. Knowing the value of CoI RoCoF and the imposed magnitude of
disturbance using Equation (18), the inertia values of the power system were established.
The results are presented in Table 4. The table displays both the actual inertia values
obtained by subtracting the share of inertia of the generating units that tripped, causing an
imbalance in the active power in the power system. Additionally, the table also presents
the error in percentages.
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Table 4. Estimated inertia for different disturbance scenarios.

Disturbance Scenario ∆P (p.u.) H(s), Actual Value H(s), Estimated Error (%)

0.05 7.57 7.50 0.92
0.1 7.32 7.42 1.73

0.108 6.93 7.14 3.03

During another disturbance, different wind penetration levels were examined to assess
the impact of renewable integration on inertia distribution. The results, depicted in Figure 5,
highlight the outcomes across various wind penetration percentages under a scenario of
active power imbalance of 0.05 (p.u.). The CoI location undergoes a significant excursion
because of the installation of wind plants. For validating the simulation model, the effects
of wind generation on system frequency responses are analyzed by modeling diverse levels
of renewable generation penetration. The selected penetration rates include 10%, 15%, and
20%, respectively.
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The MEMD approach was employed to analyze the frequency response data depicted
in Figure 5. It identified the average modal function and residue across the entire signal set.
The residue predominantly represents the slowing trend of the power system following the
imbalance in active power.

The observed trend illustrates a substantial decrease in the system’s frequency re-
sponse as the penetration rate of renewable generation increased. For instance, at a 10%
renewable penetration rate, the RoCoF measured 0.242 Hz/s. This value escalated to
0.235 Hz/s with a 15% penetration scenario and reached 0.258 Hz/s with a 20% share of
RESs. A notable increase in RoCoF is evident, particularly at the 20% RES penetration
level, compared to scenarios without renewable generation, where the CoI RoCoF value
amounted to 0.2 Hz/s.

The nadir frequencies were 58.57 Hz, 58.79 Hz, and 59.06 Hz for 15%, 10%, and 20%
renewable penetration, respectively. Furthermore, there was a significant drop of 0.48 Hz
observed at nadir frequencies. These outcomes emphasize the necessity for the precise
estimation and distribution of inertia, appropriate assessment of inertia requirements, and
the implementation of additional strategies to mitigate the issue of declining frequency
response, especially in systems with higher RES penetration levels.

Following the previously outlined methodology, considering the active power im-
balance per unit (p.u.) and the CoI RoCoF using Equation (18), the inertia values of the
power system were estimated depending on the level of RES penetration. Table 5 outlines
the results.

Table 5. Comparison of estimated inertia after disturbances with actual values and literature-based
values at different renewable energy integration levels.

RESs (%) H(s) Actual Value H(s) Estimated H(s) the Literature [40] Error (%)

10 6.98 7.02 6.55 0.57
15 6.05 6.37 6.44 5.29
20 5.16 5.81 5.52 12.60

A comparative analysis was conducted with the methodology outlined in the research
paper [40]. This approach is notable for its use of data-driven techniques, the application
of system identification for model estimation, and the novel use of frequency gradient
mapping for inertia extraction. The methodology emphasizes the importance of accurate
inertia estimation in power systems with significant renewable energy penetration. Com-
parative analysis focuses on the methodologies and outcomes of both approaches. Despite
the distinct approaches employed, the results presented in this paper align closely with the
findings of the referenced study, especially in the context of inertia estimation in power
systems heavily reliant on renewable energy sources. This correlation not only validates the
presented approach but also reinforces the reliability of research outcomes. The consistency
in results between the two studies indicates that the proposed approach yields satisfactory
and comparably accurate outcomes in terms of inertia estimation within power systems.
Thus, research contributes a robust and dependable method for inertia estimation in the
evolving landscape of power systems, further establishing the potential and applicability
of the approach in real-world scenarios. Additionally, the table also presents the error in
percentages according to actual values of inertia.

Figure 6 displays comparisons between actual and estimated inertia constant values.
The technique successfully estimates the inertia constant for both simulated scenarios, one
without RES penetration and the other with RES penetration.
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5. Discussion

This study introduced an approach designed for systems with the integration of
converter-interfaced generation to calculate the inertia constant, focusing primarily on
accounting for the impact of frequency response dispersion. This discussion centers on the
working hypotheses:

1. According to the outcomes of the IEEE 39 bus test system simulation, when the
distribution of inertia becomes more uneven, there is a possibility of the RoCoF being
excessively restricted within the low-inertia systems.

2. The proposed method introduced a decomposition technique MEMD for extracting
low-frequency components from the signal and signal trends. The MEMD method
was applied to time series data of frequency deviation following disturbances.
The resulting residual indicates the pattern of the signal under analysis and is
expected to be effective in evaluating the RoCoF. The residue primarily signifies
the decreasing trend in the power system after an active power imbalance. This
is supported by the results obtained for both the mean square error and mean
absolute error, with the mean square error calculated at 5.30659 × 10−5 and the
mean absolute error at 0.00538.

3. The MEMD can generate the average modal function and residue for the entire
signal set, facilitating the simultaneous processing of multiple signals and providing
a comprehensive resolution covering all signals and their residual components. This
simultaneous decomposition of PMU measurement data with MEMD identifies
common scales among various signals, enabling thorough analysis across multiple
signals. This characteristic is utilized to resort to estimating the CoI RoCoF. The
MEMD estimation results of the frequency deviations represent the average gradient
of the residual representing the center of inertia frequency on the observed time
interval ((((x(i + 1) − xi))/∆t), ∆t = 0.01 s). During the estimation of CoI RoCoF, errors
ranging from 0.42% to 1.35% were identified, depending on the imposed imbalance
in active power. For an imbalance of 0.108 (p.u.), a percentage error of 0.57% was
identified in estimating the CoI RoCoF. Such low values of percentage errors indicate
a promising potential for applying the MEMD approach to estimate CoI RoCoF in
modern power systems.

4. When accurately known disturbance magnitudes are present, estimating the total
system inertia H becomes feasible. Additionally, when the MEMD method is applied
to speed deviation signals during disturbances, CoI RoCoF values are determined
for simulated experiments. Knowledge of the CoI RoCoF value and the imposed dis-
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turbance magnitude allows the establishment of the power system’s inertia constant.
The calculated percentage errors of the estimated inertia constant compared to the
actual inertia constant ranged from 0.92% to 3.03%.

5. To validate the simulation model, the impact of wind generation on system frequency
responses was analyzed. This involved modeling various levels of renewable gener-
ation penetration, specifically focusing on penetration rates of 10%, 15%, and 20%,
respectively. The aim was to understand how different levels of renewable energy
integration affect the system’s frequency responses. The frequency response of the
system showed a notable decrease as renewable generation penetration increased
and there was a significant increase in the RoCoF compared to scenarios without
renewables. Additionally, there was a considerable drop in nadir frequency with
wind generation increase. In these conditions, the inertia constant of the system was
estimated using the MEMD approach, and the percentage errors of the estimation
were recorded. The errors ranged from 0.57(%) to 12.6(%). These results emphasize
the advantage of using the MEMD approach for precise inertia estimation and allo-
cation. It highlights the importance of assessing inertia requirements accurately and
implementing strategies to mitigate the decline in frequency response, particularly in
systems with increased levels of renewable energy penetration.

It is crucial to emphasize the significant importance of effectively monitoring, control-
ling, and managing the power system, particularly in scenarios involving the integration of
converter-interfaced generation, especially during large system disturbances. To adequately
respond to imposed changes, understanding the system and accurately predicting key
parameters such as the inertia constant is essential. Therefore, the prediction process today
represents a significant and intricate task, requiring reliable and relevant input data, as
well as a thorough analysis and differentiation of the parameters within predictive models
that have the most significant impact on the outcome. The future modernization of power
systems will rely on predictions of system parameters critical for efficient system operation
in conditions dominated by renewable energy generation.

If the approach presented in the paper considered solar or hydro energy, the dynamic
inertia estimation of the power system could change. Solar and hydropower sources have
different characteristics compared to traditional sources. Solar energy, being intermittent
and dependent on weather conditions, could introduce greater variability and uncertainty
in the inertia estimation process. Conversely, hydroelectric systems share similarities
with traditional power plants in terms of mechanical inertia. Therefore, when integrating
solar or hydro resources, adjustments in the modeling approach and stability assessment
are crucial. These adjustments must account for the unique operational behaviors and
characteristics of solar and hydro energy sources, which significantly differ from con-
ventional generation methods. Future work is essential to underscore the importance
of a tailored approach in system modeling and stability evaluation, particularly in the
context of the non-dispatchable and intermittent nature of renewable resources. This nu-
anced understanding is essential for developing effective strategies for grid management
and policy implications, especially in relation to inertia and frequency regulation in a
renewable-dominant energy landscape.

Adapting and expanding the MEMD/RoCoF methodology for modern power systems
involves an approach that acknowledges the unique characteristics of various generation
types and the evolving nature of power systems. By integrating more diverse data sources,
such as those from renewable energies like solar and wind, and leveraging real-time data an-
alytics, the methodology becomes more robust in handling the variability and intermittency
of these sources. Incorporating advanced forecasting techniques enhances the system’s
ability to anticipate and respond to disturbances or inertia changes. This approach requires
scalability and flexibility to manage complex and large power systems and a collaborative
framework among stakeholders for effective data sharing and decision-making. Such an
approach ensures that the MEMD/RoCoF methodology remains relevant and effective
in the face of the dynamic challenges posed by modern power systems. To adapt and
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expand the MEMD/RoCoF methodology for diverse power system configurations and
challenges, it is necessary to enhance the MEMD model to better handle the variability and
intermittency of renewable energy sources like wind and solar. Also, real-time data from
various power generation sources can be used to improve the accuracy and responsiveness
of the RoCoF calculations. It is essential to ensure that the methodology is scalable to handle
large and complex power systems, and flexible enough to adapt to new technologies. By
focusing on these areas, the MEMD/RoCoF methodology can be effectively adapted to
meet the evolving challenges and configurations of modern power systems. To effectively
integrate these methods into the standard operational practices of power system operators,
and to adapt existing infrastructure and regulatory environments, it is essential to establish
protocols for using MEMD in system operations. These protocols should align with current
industry standards and practices. Additionally, it is necessary to adapt existing infrastruc-
ture to support the integration of converter-interfaced generation and the application of
MEMD, which may involve software and hardware upgrades. Furthermore, initiating pilot
projects to test and demonstrate the effectiveness of these methods in real-world scenarios
is crucial. Our future research is based on implementing forecasting models that predict
potential system disturbances or inertia changes, enabling operators to proactively manage
system stability.

6. Conclusions

The concluding considerations refer to the advantages of using MEMD for evaluating
the RoCoF and consequently, for estimating the inertia of the power system if the distur-
bance magnitude is known. This study demonstrates that if the measured synchronized
time series obtained from PMUs during system disturbances exhibit a certain trend (either
rising or falling), the final residue after applying the MEMD approach will precisely show
the trend of the observed signals. By employing MEMD to analyze system frequency
signals, particularly during disturbances, this research offers a novel and effective ap-
proach for estimating RoCoF and system inertia. The method’s ability to accurately capture
low-frequency components and signal trends greatly enhances the precision of inertia
estimation, which is crucial for maintaining system stability in modern power systems.
This paper not only advances understanding of power system dynamics in the era of
renewable energy but also sets the stage for future research and development in this critical
area, including the adaptation of operational practices and infrastructure to support these
advanced analytical techniques.

In conclusion, alterations to system parameters were carefully tracked under different
disturbance scenarios involving varying levels of renewable energy generation. The calcu-
lated inertia values were effectively cross-referenced with actual data and results presented
in the literature, revealing minimal variance.
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Abbreviations

MEMD Multivariate Empirical Mode Decomposition
RoCoF rate of change of frequency
EPS Electric Power System
PMU Phasor Measurement Unit
CoI RoCoF Rate of change of frequency of center of inertia
RESs Renewable energy sources
CIG Converter-interfaced generation
PV Photovoltaic
SG Synchronous generator
WAMS Wide-Area Monitoring Systems
CoI Center of inertia
ESS Energy Storage Systems
EMD Empirical Mode Decomposition
HHT Hilbert-Huang Transform
IMF Intrinsic mode functions
ANN Artificial Neural Network
DFT Discrete Fourier Transform
IDFT Interpolated Discrete Fourier Transform
DMD Dynamic Mode Decomposition
EEMD Ensemble EMD
CEEMD Complete Ensemble EMD
CEEMDAN Completed Ensemble EMD with Adaptive Noise
ARELM Adaptive Robust Extreme Learning Machine
ELM Extreme Learning Machine
VMD Variational Mode Decomposition
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