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Abstract: With the rapid advancement of industrial automation and artificial intelligence technolo-
gies, particularly in the textile industry, robotic technology is increasingly challenged with intelligent
path planning and executing high-precision tasks. This study focuses on the automatic path plan-
ning and yarn-spool-assembly tasks of textile robotic arms, proposing an end-to-end planning and
control model that integrates deep reinforcement learning. The innovation of this paper lies in the
introduction of a cascaded fuzzy reward system, which is integrated into the end-to-end model
to enhance learning efficiency and reduce ineffective exploration, thereby accelerating the conver-
gence of the model. A series of experiments conducted in a simulated environment demonstrate the
model’s exceptional performance in yarn-spool-assembly tasks. Compared to traditional reinforce-
ment learning methods, our model shows potential advantages in improving task success rates and
reducing collision rates. The cascaded fuzzy reward system, a core component of our end-to-end
deep reinforcement learning model, offers a novel and more robust solution for the automated path
planning of robotic arms. In summary, the method proposed in this study provides a new perspective
and potential applications for industrial automation, especially in the operation of robotic arms in
complex and uncertain environments.

Keywords: fuzzy reward; end-to-end network; trajectory planning; forward kinematics; deep rein-
forcement learning

1. Introduction

In an era marked by rapid advancements in industrial automation and artificial in-
telligence, robotic technologies are increasingly finding applications across a spectrum of
fields, with a notable presence in the textile industry [1–4]. In this context, the automated
operation and meticulous path planning of robotic arms have become crucial in elevating
both the efficiency of production processes and the quality of end products. This develop-
ment has spurred extensive research by scholars globally into intelligent control algorithms
for robotic arms [5–8], leading to substantial advancements. Significantly, the utilization of
deep reinforcement learning (DRL) algorithms for the control of robotic arms has gained
prominence, positioning it as a key research focus within this evolving landscape.

Current research in DRL predominantly focuses on methods based on value functions,
such as deep q-learning (DQN) and its variants, as well as on methods founded on policy
gradients, like the policy gradient (PG) algorithm. However, these methodologies often
encounter challenges when they are applied to continuous action spaces, particularly in
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terms of learning efficiency and path-planning effectiveness in sparse reward environ-
ments. For instance, Sangiovanni B et al. employed the DQN-NAF algorithm to control
an industrial robotic arm model within the V-REP virtual environment [9]. By crafting
a well-structured dense reward function, they successfully enabled the robotic arm to
perform tasks effectively while avoiding obstacles in the environment. Similarly, Mah-
mood A R and colleagues utilized the trust region policy optimization (TRPO) algorithm to
adeptly control a UR5 robotic arm to reach target points [10]. Their research emphasized
the challenges and issues encountered when applying reinforcement learning algorithms to
the control of real robotic arms. Wen S and others delved deeper into the application of the
deep deterministic policy gradient (DDPG) algorithm for robotic arm motion planning [11].
They not only examined motion planning in environments with and without obstacles but
also proposed improvements to the DDPG algorithm, incorporating transfer learning [12]
to accelerate the algorithm’s convergence rate. In a notable advancement, Xu Jing et al.
developed a model-driven DDPG algorithm [13] that replaced explicit reward functions
with a fuzzy system (FS), enabling the successful accomplishment of pin insertion tasks
using a six-degree-of-freedom robotic arm. In this study, the states in the DRL algorithm
included observations of interactive forces and momentum during task execution, and a
corresponding fuzzy reward system (FRS) was designed to achieve continuous control
over the action space. This method was validated in both simulation and real-world tests,
achieving a 100% success rate.

Advanced algorithms such as proximal policy optimization (PPO) and DDPG have
undeniably made strides in improving the efficiency of robotic arm control. Yet, they
grapple with prolonged training cycles and languid convergence rates in real-world ap-
plications [14]. Additionally, the utility of these model-based DRL methods is somewhat
hampered by their limited adaptability across varied environments and tasks, a critical
aspect in diverse industrial scenarios like textile manufacturing. Robotic arms in these
settings encounter a spectrum of complexities and uncertainties. In contrast, the wide
applicability of data-driven reinforcement learning, particularly end-to-end control mech-
anisms for robotic arms, garners significant attention. Nonetheless, the application of
reinforcement learning to high-degree-of-freedom industrial robotic arms is not without its
challenges. Chief among these is the inefficacy in action selection, contributing to extended
training durations and delayed convergence. This core challenge is attributed to reliance on
uncertain exploration methods dependent on reward-function modeling, which becomes
particularly pronounced in environments with sparse reward structures.

To address the challenges posed by sparse rewards in robotic arm path planning,
researchers have focused on enhancing the versatility of reinforcement learning algorithms.
For instance, Kalashnikov D and colleagues introduced the QT-Opt algorithm [15], which
involved training a neural network to act as a robotic arm controller using data from
580,000 grasping attempts made by seven robotic arms. Yahya A and others proposed the
Adaptive Distributed Guided Policy Search (ADGPS) [16], enabling multiple robotic arms
to train independently and share experiences, thereby reducing trial-and-error and finding
optimal paths more efficiently. Additionally, Iriondo A et al. employed the Twin Delayed
Deep Deterministic Policy Gradient (TD3) method [17] to study the operation of picking up
objects from a table using a mobile manipulator. Ranaweera M and colleagues enhanced
training outcomes through domain randomization and the introduction of noise during the
reinforcement learning process [18]. These methods share a core principle of incorporating
probabilistic approaches to significantly reduce the impact of ineffective actions. However,
they still necessitate an extensive exploration time and can result in unproductive actions.

In pursuit of solutions to mitigate ineffective exploration in reinforcement learning,
a cohort of researchers has turned to transfer learning paradigms. Notably, Finn C et al.
formulated the guided cost learning (GCL) algorithm [19], predicated on the MaxEnt IOC
framework, to enforce trajectory constraints on robotic arms with an innovative twist: uti-
lizing human-demonstrated paths as optimal guides for training. Expanding this concept,
Ho J and team introduced the Generative Adversarial Imitation Learning (GAIL) algo-
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rithm [20], adeptly selecting trajectories closely mirroring human demonstrations, thereby
curtailing inefficient maneuvers and enhancing the training process’s speed. In a similar
vein, Sun Y et al. ingeniously melded DQN with behavioral cloning to develop the D3QN
algorithm [21], markedly diminishing exploration randomness in initial training phases.
Furthermore, Peng X B et al. devised the deep mimic approach [22], ingeniously segment-
ing the reward function into an aggregate of imitation-based exponential components,
thereby refining the reinforcement learning process. Lastly, Escontrela A and collaborators
unveiled the AMP algorithm [23], which deftly dissects the composite reward function into
separate components of imitation and objective, consequently boosting the practicality of
action generation. These methodologies shine in utilizing viable trajectory optimization
solutions as constraints in reinforcement learning; although, their generalizability tends to
lag behind that of the primary class of methodologies in this field.

In an effort to tackle the inherent issues of learning efficiency and the efficacy of
path planning in DRL algorithms applied to end-to-end control models, this research
innovatively proposes a reward architecture grounded in fuzzy decision making. This
framework is meticulously crafted to augment both the efficiency of the learning process
and the effectiveness of exploration pathways. Critically, the integration of a cascaded
FRS significantly bolsters the precision and resilience of path planning, marking a notable
advancement in the domain of DRL.

This research makes significant contributions in the field of robotic control, which are
enumerated as follows:

(1) It innovates a multifaceted FRS that intricately considers aspects such as positional
accuracy, energy efficiency, and operational safety, thereby enabling a more nuanced
representation of a robot’s endpoint dynamics.

(2) It pioneers the application of this FRS in a cascaded format for specific operational
tasks, culminating in the development of a groundbreaking cascaded fuzzy reward archi-
tecture.

(3) It applies this novel cascaded fuzzy reward system (CFRS) within an end-to-end
control paradigm, where its practical effectiveness in facilitating end-to-end planning is
rigorously demonstrated.

This manuscript is systematically structured as follows: The second section sets the
stage by elucidating the research backdrop, focusing on the intricate details of FRSs and the
core tenets of end-to-end DRL. The third section rigorously outlines the architecture and
theoretical underpinnings of the CFRS. Section four validates the proposed methodology’s
efficacy and scalability through a series of methodical experiments in a simulated setting,
highlighting the significant reduction in collision rates to near 5% and showcasing the
capabilities of the end-to-end self-supervised learning framework within the realm of
model-free DRL. The paper culminates in the fifth section, which synthesizes the research
findings and casts a vision for prospective avenues of inquiry in this domain.

2. Background
2.1. Fuzzy Reward System

In the domain of reinforcement learning, environmental feedback manifests as reward
signals, indicating the efficacy of an agent’s actions in specific states. To optimize learning
efficiency, it is imperative for the reward function to be defined with clarity and precision,
incorporating parameters that directly influence the agent’s decision-making process and
the dynamics of their interactions [24]. The accuracy of the reward function is crucial,
as it significantly influences the computational complexity required. Furthermore, multi-
criteria decision making in this context often demands a flexible approach to defining
optimality [25]. Central to this discussion is the FRS, a computational construct grounded in
fuzzy logic for robust information processing and decision making. This system comprises
four integral elements: a fuzzifier, a knowledge base (encompassing rule bases or databases),
a fuzzy inference engine, and a defuzzifier [26]. Among FS, the two prevalent types are
Mamdani-type FS [27] and Sugeno-type FS [28], distinguished by their methodologies in
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deriving precise outputs from fuzzy inputs—Mamdani through defuzzification and Sugeno
via weighted averages.

In Mamdani-type FS, the formulation of fuzzy rules incorporates fuzzy linguistic
values for both conditions and consequences, ensuring a nuanced interpretation of data
inputs and outputs. This precision has led to the widespread adoption of the Mamdani-
type FS as the de facto standard in the field. Central to its architecture are four pivotal
components: a fuzzification module for converting crisp inputs into fuzzy sets, a fuzzy
inference engine for processing fuzzy logic, a knowledge base (KB) which is the nucleus of
the system housing the fuzzy rules and data, and a defuzzification module for translating
fuzzy conclusions back into precise outputs. The KB is an amalgamation of a rule base (RB)
and a data base (DB), where the DB is characterized by scaling functions and membership
functions (MFs) delineating the fuzzy sets, and the RB entails an array of IF-THEN fuzzy
rules. An exemplar rule in the Mamdani FS might be articulated as

x1 is Ai
1 and x2 is Ai

2 . . . and xn is Ai
n then y is Ci (1)

In the framework of the Mamdani FS, the intricate network of fuzzy rules is indexed
using i ranging from 1 to N, with N signifying the aggregate count of these rules. The
system’s input fuzzy sets are denoted as An, while X = (x1, x2, . . . , xn) and y embody the
linguistic variables for input and output within the Mamdani framework. The term ‘and’
functions as a fuzzy conjunction operator, orchestrating the interplay between rules. For
each rule, Ai

n and Ci(i = 1, 2, . . . , N) represent the fuzzy sets pertaining to the ith input
variable and the output under the nth rule, correspondingly. In this context, Mamdani’s
fuzzy sets are articulated through MFs, with triangular fuzzy numbers [29] and trapezoidal
fuzzy numbers [30] being the predominant choices.

Completely overlapping triangular MFs represent a specific category of triangular
fuzzy numbers. In this case, each membership function constitutes a triangular fuzzy
number, where the two vertices at the base of each triangle precisely coincide with the
midpoints of the base edges of the adjacent triangles. This is illustrated in Figure 1.
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When representing a triangular fuzzy number using three parameters for its left,
middle, and right points, the number of required parameters for a fuzzy variable with m
MFs is m− 2. It is important to note that in the context of completely overlapping triangular
MFs, these parameters are not equal and must satisfy specific mathematical relationships.
For instance, as illustrated in Figure 1, for a fuzzy variable V with five MFs, the number of
parameters is three (namely a, b, c), adhering to the relationship 0 < a < b < c < 1. Lastly,
the defuzzifier converts the fuzzy output back into a crisp reward output.
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In this study, we integrated the FRS into the DRL framework to optimize both conver-
gence speed and path efficiency during model training. Specifically, the FRS plays a dual
role in the DRL algorithm: firstly, by enhancing the value of rewards based on experience, it
increases the efficiency of sample utilization during learning; secondly, it steers the robotic
arm towards the targeted goal.

Initially, the FRS analyzes the current state of the robotic arm and its environment,
including position, speed, and task-specific characteristics, along with the anticipated
target state, to generate a fuzzified reward value. This reward not only reflects the effect
of the robotic arm’s current action but also considers the likelihood of achieving long-
term goals. Implementing this fuzzified reward mechanism within the DRL algorithm’s
learning process enables the robotic arm to gradually learn how to make optimal decisions
in complex textile tasks by experimenting with different actions and observing the resultant
fuzzy rewards. This approach not only enhances the algorithm’s adaptability to uncertain
environments but also improves the efficiency of the training process.

2.2. End-to-End DDPG

In this study, we designed a model-free end-to-end DRL framework based on the
DDPG algorithm, as illustrated in Figure 2. The DDPG algorithm is a DRL method based on
the Actor–Critic framework, well-suited for decision making in continuous action spaces.

Figure 2. Model-free end-to-end DRL framework.

Within this framework, we integrated steps such as state acquisition, feature extrac-
tion, reward adjustment, DDPG-network updating, decision making, and environmental
interaction. Initially, in the state acquisition phase, to comprehensively capture three-
dimensional spatial and geometric information, we employed the Kinect depth camera for
data perception. The Kinect is capable of collecting multimodal signals, including color
and depth images [31]. Initially designed for indoor human–computer interaction, it has
been successfully applied in various automation scenarios. As described in [32], algorithms
for contour and spatial positioning of planar shapes can be detected using Kinect. Figure 3
shows RGB and depth images captured at 640 × 480 px resolution in our work, used for
extracting features such as obstacles, current location, and target positioning. This step is
crucial for processing high-dimensional input data and extracting key information.

Subsequently, in the reward-adjustment phase, we introduced an FRS to dynamically
adjust and optimize the reward values. This system generates fuzzified rewards based
on the current state and actions of the robotic arm, as well as environmental feedback.
The network-updating phase is the core of the DDPG algorithm. In this phase, the Actor
network is responsible for generating decision actions, while the Critic network evaluates
the expected return of these actions. The algorithm continuously learns and optimizes the
control strategy for the robotic arm by minimizing the Critic network’s loss function and
updating the Actor network using policy gradients. Finally, in the decision making and
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environmental interaction phase, the algorithm interacts with the environment based on
actions generated by the Actor network and learns from the environmental feedback. This
process continues in a loop until the algorithm converges and identifies the optimal control
strategy. The following is the pseudocode for this Algorithm 1.
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Algorithm 1 End-to-End DDPG Algorithm.

1: Initialize: Actor network A
(
θA), Critic network C

(
θC)

2: Initialize: Target networks A′
(

θA′
)

, C′
(

θC′
)

3: Initialize: Replay buffer R
4: Initialize: Learning rate α, discount factor γ

5: for each episode do
6: Observe initial state s0
7: for each step t do
8: Extract features ft from state st
9: Select action at = A

(
ft
∣∣θA)+ noise

10: Execute action at and observe reward rt and new state st+1
11: Adjust reward rt using fuzzy reward system
12: Store transition (st, at, rt, st+1) in R
13: Sample a mini-batch of transitions (s, a, r, s′) from R

14: Update Critic by minimizing loss: L = 1
N ∑

(
r + γC′

(
s′
∣∣∣θC′

)
− C

(
s
∣∣θC))2

15: Update Actor using sampled policy gradient:
16: ∇θA J ≈ 1

N∇αC
(
s, a

∣∣θC)∇θA A
(
s
∣∣θA)

17: θA′ ← τθA + (1− τ)θA′

18: θC′ ← τθC + (1− τ)θC′

19: end for
20: Update episode
21: end for

3. Cascaded Fuzzy Reward System (CFRS)

One crucial aspect of DRL algorithms is the reward function, which fundamentally
shapes the agent’s learning strategy and the direction for network optimization. Crafting
an ideal explicit reward function to meet long-term goals is a formidable task, chiefly
because mapping relationships from complex state spaces to reward values can be nonlinear,
making the manual description of the relationships between reward components highly
challenging [33]. Initial research focused predominantly on single-objective optimization,
primarily centered on position control [34,35], simplifying the reward function as follows:

rpos = −epos = −
∣∣∣∣pc − pt

∣∣∣∣ (2)

Here, ||·|| represents the Euclidean norm, pt = (xt, yt, zt) is the position vector of the
target yarn spool, pc = (xc, yc, zc) denotes the current position vector of the Tool Center
Point (TCP), and epos refers to the position error of the TCP. However, solely using the
reward function defined in Equation (2) to guide the Critic’s assessment of the current
strategy proves insufficient [2]. In specific scenarios like path planning for textile robotic
arms, multiple factors such as energy consumption and safety need consideration, often
entailing conflicts and trade-offs. Therefore, a flexible approach is required to balance
these aspects. Researchers have proposed multi-objective optimization methods [36],
balancing multiple factors through the linear combination of different objective functions.
However, this approach can render the model complex and difficult to interpret, and
computational efficiency becomes a concern in large-scale problems. To address this, Xu
Jing et al. introduced a method known as the FRS [13]. Integrating prior expert knowledge
into the reward system, FRS can comprehensively evaluate various aspects of robotic
assembly tasks. Not only does this system enhance learning efficiency, but it also prevents
the agent from getting trapped in local optima. However, this method might face difficulties
in handling nonlinear and conflicting objectives.

This section will detail the additional factors considered, the philosophy of the FRS,
and its construction process.
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3.1. Additional Factors

In general, the cost function for safety should be a non-negative function that decreases
as safety increases. It should also be smooth, i.e., its derivatives are continuous throughout
its domain, as many optimization algorithms, such as gradient descent, require the func-
tion’s derivatives. Based on this analysis, we have defined the following sub-functions for
the safety cost:

Cost function for motion range:

rlim =
6

∑
i=1

exp
(
− (θimax − θi)(θi − θimin)

σ2

)
(3)

where θi(i = 1, 2, 3, 4, 5, 6) represents the angle of the ith joint, and [ θimin, θimax] define a safe
motion range for that angle. This function rapidly increases as the joint angles approach
their limits, with σ as a parameter adjusting the function’s growth rate.

Cost function for safe distance:

ra f f =
1

1 + exp
( dmin−dsa f e

δ

) (4)

where dmin is the minimum distance between the robotic arm and the nearest person or
object in the environment, dsa f e is a predefined safe distance, and δ is a parameter adjusting
the function’s growth rate. This function is monotonic, increasing as the distance between
the robotic arm and other objects or humans in the environment decreases.

3.2. Fuzzy System

In this study, we use these defined parameters as input for fuzzy evaluation: safety
distance cost ra f f , motion range cost rlim, and positional error rpos. We have segmented the
fuzzy sets of the FRS into five intervals: {VB, B, M, G, VG}, corresponding, respectively,
to Very Bad, Bad, Medium, Good, and Very Good. For an FRS with three inputs, the
number of fuzzy rules can be as high as 125. Managing such a large rule set is complex and
time-consuming, potentially impacting the algorithm’s learning efficiency. Therefore, we
adopt a two-layer FS, reducing the rule number for a 3-input FRS to 50.

As shown in Figure 4, the first layer of the two-layer FRS includes an independent FS,
taking ra f f and rlim as inputs. The output of the first layer, combined with rpos, serves as the
input for the second-layer FS, allowing further inference. The output of the second-layer FS
represents the reward value integrating all three input factors. Within this two-layer FRS,
the total number of rules in the system is reduced to 50. The aforementioned parameters
are normalized within the range (0, 1) and input into the system. Triangular MFs, as per
Equation (5), are used for fuzzification, transforming each parameter into five fuzzy values:
VG, G, M, B, and VB.

f (x) =


0 x ≤ a
x−a
b−a a ≤ x ≤ b
c−a
c−b b ≤ x ≤ c
0 x ≥ c

(5)

The parameters a, b, and c in Equation (5) represent values within the triangular MFs,
where a and c determine the width of the function, and b determines its position.

After parameter fuzzification, fuzzy inference is conducted based on the established
rule base. A rule base, as shown in Table 1, is formulated based on the experiences of
path planning for textile robotic arms. Additionally, the AND operation it is used for
fuzzy inference.
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Ri(x) = min
(

µA(i)(x), µB(i)(x)
)

(6)

Table 1. Fuzzy rule base.

Input2
Input1 VG G M B VB

VG R1 R2 R3 R4 R5
G R6 R7 R8 R9 R10
M R11 R12 R13 R14 R15
B R16 R17 R18 R19 R20

VB R21 R22 R23 R24 R25

In this context, A and B represent fuzzy sets. The AND operation computes the
minimum of the membership degrees of both sets, and the output fuzzy value’s membership
degree is determined based on the rule base. Subsequently, the obtained fuzzy values
undergo a defuzzification process. Since numerous fuzzy values are produced following
fuzzy inference, which are not directly usable; a defuzzification method is employed to
obtain clear values that meet our requirements.

In our study, the centroid method is utilized for defuzzification. Concurrently, we
introduce reward weights to balance the importance among different objectives. The
weights for the safety distance cost, motion range cost, and positional error are designated
as C1, C2, and C3, respectively.

The selection of Ci typically depends on the specific task requirements and environ-
mental conditions. For instance, in a variable industrial environment where a robotic arm
might need to respond to sudden situations, such as emergency obstacle avoidance in a
task site, safety may take precedence over motion time, thereby prioritizing C3 over C1.
Conversely, if motion time is more critical than energy consumption then C1 would be
favored over C2. In an open warehouse environment where the robotic arm is responsible
for moving heavy objects, the efficiency of the motion range becomes more significant, thus
necessitating an increased weight for C1 to optimize path-planning efficiency. Meanwhile,
due to less stringent safety requirements in such open spaces, the weight for C3 is compara-
tively lower. In a high-risk textile-workshop environment, where the robotic arm operates
in tight spaces, safety is paramount. Therefore, C3 is assigned the highest weight to ensure
the robotic arm maintains a safe distance and prevents collisions with surrounding objects.
In contrast, the weights for C1 and C2 are relatively low in this scenario.

R(X) =
∑25

i=1 Ci∏n
j=1 vi

j(xi)

∑25
i=1 ∏n

j=1 vi
j(xi

) (7)
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Here, X = [x1, x2, x3, . . . , xn] represents the input state sequence, R(X) is the output
after defuzzification, vi

j(xi) is the triangular membership function, and Ci is the weight of
the ith fuzzy rule’s output, with the reward weights being determined using objectives
and experience.

In summary, the FRS avoids reliance on precise explicit reward functions while meeting
the flexible control needs of the task. With simple adjustments, the FRS can also be adapted
to various other application scenarios. Next, we introduce a cascaded structure into the
FRS, thereby optimizing overall efficiency.

3.3. Cascaded Structure

In the path planning of intelligent robotic arms, particularly within the complex
milieu of the textile industry, traditional integrated path-planning methods may encounter
challenges such as high computational complexity, poor real-time performance, and weak
adaptability to different task stages [37,38]. Therefore, this study introduces a novel
CFRS, segmenting the entire path-planning process into distinct phases like initiation,
mid-course obstacle avoidance, and alignment for placement. Each phase possesses its
specific optimization goals and constraints, equipped with a dedicated fuzzy reward
rule base.

In the initial phase’s fuzzy reward rule base, the priority is primarily on the robotic
arm’s motion smoothness and safety. A key rule states “If the robotic arm’s speed is low
and it is far from obstacles, then the reward is high”. The specific rules are illustrated in
Table 2, with the fuzzy logic system’s output depicted in Figure 5. Such rules help ensure
the robotic arm avoids sudden movements or collisions with objects in the environment
during the initial stage.

Table 2. Fuzzy rule base at the beginning stage.

rlim

raff VG G M B VB

VG VG VG G M B
G VG G G M B
M G G M M VB
B M M M B VB

VB B B B VB VB

rpos

rt VG G M B VB

VG VG VG VG G M
G VG VG G M B
M G G M B VB
B M M B VB VB

VB B B VB VB VB
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During the mid-course obstacle-avoidance phase, the focus of the fuzzy reward rule
base shifts to safety and energy efficiency. The rules may become more complex, considering
multiple sensor inputs and the dynamic state of the robotic arm. A principal rule is “If the
robotic arm maintains a safe distance from the nearest obstacle and consumes lower energy,
then the reward is high”. The detailed rules are presented in Table 3, with the fuzzy logic
system’s output shown in Figure 6.

Table 3. Fuzzy rule base for intermediate obstacle-avoidance phase.

rlim

raff VG G M B VB

VG VG VG G M M
G VG VG G M B
M VG G M B VB
B G M B VB VB

VB M M B VB VB

rpos

rt VG G M B VB

VG VG VG VG VG G
G VG VG G G M
M G G M M B
B M M B VB VB

VB B B VB VB VB

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20 
 

  

Figure 5. Output of the fuzzy logic system during the initial stage: The figure on the left represents 
the first layer, while the right figure illustrates the second layer of the fuzzy logic system. 

During the mid-course obstacle-avoidance phase, the focus of the fuzzy reward rule 
base shifts to safety and energy efficiency. The rules may become more complex, consid-
ering multiple sensor inputs and the dynamic state of the robotic arm. A principal rule is 
“If the robotic arm maintains a safe distance from the nearest obstacle and consumes 
lower energy, then the reward is high”. The detailed rules are presented in Table 3, with 
the fuzzy logic system’s output shown in Figure 6. 

Table 3. Fuzzy rule base for intermediate obstacle-avoidance phase. 𝒓𝒂𝒇𝒇 𝒓𝒍𝒊𝒎 VG G M B VB 

VG VG VG G M M 
G VG VG G M B 
M VG G M B VB 
B G M B VB VB 

VB M M B VB VB 𝑟௧ 𝑟௣௢௦ VG G M B VB 

VG VG VG VG VG G 
G VG VG G G M 
M G G M M B 
B M M B VB VB 

VB B B VB VB VB 
 

  
Figure 6. Output of the fuzzy logic system during the mid-course obstacle-avoidance stage. The
figure on the left depicts the first layer, and the right figure showcases the second layer of the fuzzy
logic system.

In the alignment and placement phase, the fuzzy reward rule base emphasizes preci-
sion and stability. The rules in this stage are highly refined to ensure accurate alignment
and secure placement of the target item. A leading rule is “If the end-effector’s positional
error is within an acceptable range and stability indicators meet the preset threshold, then
the reward is high”. These rules are detailed in Table 4, with the fuzzy logic system’s output
in Figure 7.

To ensure coherence and efficiency in the path-planning process, the CFRS considers
smooth transitions between different phases. This transition mechanism is based on the
robotic arm’s current position, the target position, and the safety distance ra f f . Specifically,
when the robotic arm approaches the goal of the current phase or the present safety distance
becomes too short, it switches to the fuzzy logic of the initial phase or the placement phase.



Appl. Sci. 2024, 14, 851 12 of 19

Table 4. Fuzzy rule base for the alignment placement stage.

rlim

raff VG G M B VB

VG VG VG G M B
G VG VG M B B
M VG G M B VB
B G M B VB VB

VB M M VB VB VB

rpos

rt VG G M B VB

VG VG VG VG G M
G VG VG G M B
M VG G M B VB
B G M B VB VB

VB M M VB VB VB
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4. Simulation Environment and Tasks

In this study, we constructed a highly physically simulated system, as illustrated in
Figure 8. To the right of the robotic arm is a desktop, upon which several obstacles and
target yarn spools are placed. The spools have a diameter and height of 20 cm, and the
rectangular obstacles measure 32 × 22 × 12 cm. To the left is a spacious platform, serving
as the preparation area for the yarn-spinning machine, indicating the target placement
location for the spools. Additionally, a horizontal beam is situated above, which the robotic
arm should avoid colliding with during operation. Moreover, a humanoid model is placed
nearby as one of the obstacles in the task environment.

During the initial phase of the transfer task, the robotic arm is positioned at point A or
its vicinity. Additionally, a red yarn spool, the object to be grasped and placed, is located
beneath point B on the table.

The process of grasping and placing the yarn spool involves a series of precise actions.
Firstly, the robotic arm’s end effector must vertically descend, insert its claws into the
central hollow of the spool, expand them, and then lift the spool using frictional force,
eventually placing it at point C on the left platform with appropriate posture. To increase
the generalizability of the problem, only one target spool is placed in the virtual twin
platform (directly below Region 1), but its position may vary in different simulations to
accommodate diverse possibilities.
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The movement from point A to B involves the end effector of the robotic arm moving
a short distance along the -x axis, then along the y-axis, followed by continued movement
along the -x axis, approaching the yarn spool with appropriate posture, and finally lifting
the spool along the z-axis. If the robotic arm were to move directly from point A to B, it
would inevitably collide with the beam in the environment.

Therefore, the entire grasping-placing task is divided into a continuous trajectory
consisting of the following segments:

(1) The yarn spool appears at any location on the table, and the TCP of the robotic
arm moves from the initial position A along the trajectory of segment 1 to the preparatory
position B with appropriate posture. Point B is located above the center of the spool along
the z-axis, potentially in any position within Region 1.

(2) The robotic arm moves along trajectory segment 2 from the preparatory position B
to the placement position C (which can be randomly designated within Region 2), contracts
its claw, and places the spool on the platform.

(3) The arm resets and moves back to the vicinity of the initial position A.
This simulation platform enables large-scale strategy training, yielding a rich and

high-quality training dataset. These data can be directly applied to the trajectory planning
and generation of real-world robots. More importantly, this simulation system not only aids
in policy transfer and the implementation of safety constraints but also considers diverse
production scenarios and environmental variables in simulations. This feature allows for
providing more comprehensive and precise training data for real-world robot operations,
thereby validating the robustness and reliability of robots under various environmental
conditions. Additionally, the system allows for preliminary testing and optimization of
safety and stability in a safe, controlled virtual environment.

5. Experiments

According to the specifications described in Section 4, we constructed a comprehensive
simulation experiment environment. This environment utilizes RGB and depth images
captured using three Kinect cameras as the state inputs for the network model, and joint
space variables as the output control commands for the network model. The training
termination criterion of the network model is set such that the distance between the target
and the end effector is less than 10 mm, and the maximum Euler angle of the target relative
to the end effector is less than 3 degrees. Throughout the simulation cycle, targets are
randomly set within the operational space of the robotic arm. Simultaneously, the model
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undergoes training of the deep neural network based on feedback from the Kinect cameras
and executes grasping tasks with various objects.

Our experiments addressed the following questions: (1) How does the end-to-end
DRL model for planning compare with other manually programmed DRL model baselines?
(2) Can the end-to-end-planning DRL model learn multiple viable planning behaviors for
unseen test scenarios? (3) Can the CFRS, compared to a single-rule FRS, further enhance
performance?

5.1. Baseline Comparison with End-to-End DDPG

This subsection will present and discuss the results of the comparison experiment
between end-to-end DDPG and baseline DDPG.

In the experiment, baseline DDPG [39] was trained on trajectories 1, 2, and 3, described
in Section 4, and named BS1, BS2, and BS3, respectively. These three segments were
sequentially concatenated to form BS0, with its experimental results determined solely
using the data from BS1, BS2, and BS3, without independent experiments. Subsequently,
the end-to-end DDPG, described in Section 2, was used to train on trajectories 1, 2, and
3, named ETE1, ETE2, and ETE3, respectively. Finally, end-to-end DDPG was used for
comprehensive training on trajectories 1, 2, and 3, named ETE0. The parameters for the
aforementioned DDPG are provided in Table 5.

Table 5. Parameter settings of DDPG in the experiment.

Parameters Value

Motion space actions 6
Training rounds episodes 1000

Maximum steps 2000
Learning rate 0.003

Discount factor γ 0.99
Exploring factor ε 0.9

Soft update factor τ 0.005
Batch size 64

Explore noise OU noise (µou is 0, and θou 0.2)

In our study, we conducted a quantitative analysis of success rates and collision rates.
Specifically, two algorithm models, each trained through 400 k iterations, were applied
to different trajectories within the same scenario. During the experimental process, we
conducted 2000 experiments in a simulated environment using the reward function defined
using Equation (2). The success rate was calculated based on whether the robotic arm
reached the target point within each episode, i.e., an error distance of less than 10 mm, and
the percentage of all experimental cycles in which the target was achieved. The collision
rate was determined using the percentage of experimental cycles in which the robotic arm
collided with the surrounding environment.

As shown in Figure 9, within the same algorithm, trajectory 2 required less time,
and exhibited better success and collision rates compared to the other two trajectories,
indicating its relative simplicity. This finding was corroborated by the description in
Section 4. Notably, the time consumption for BS0 in the table is the sum of the time taken
for the three baseline segments, with the success rate and collision rate being the average of
these three baseline performances. In test scenarios, our end-to-end DRL model achieved a
success rate of 90.1% and a collision rate of only 5.7%. Despite a slight increase in training
time, the end-to-end DDPG showed significant advantages in terms of task success rate
and collision reduction compared to the baseline model. This can be attributed to the deep
network’s precise mapping of state–action relationships and efficient execution of more
complex tasks. Next, we will comprehensively assess the adaptability of the algorithm
model to environmental changes in complex environments.
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5.2. Generalization Ability

In DRL, a model’s generalization ability is a critical evaluation metric [40]. To empiri-
cally explore the adaptability of our model in different test environments, we constructed a
series of test scenarios with varying complexity (e.g., number and distribution of obstacles)
and conducted quantitative tests on the strategy success rates of both algorithms under
different obstacle conditions. The results are shown in Table 6.

Table 6. Strategy success rate when changing complexity.

Obstacles
Number 3 4 5 6 7

Baseline
success 0.892 0.765 0.643 0.562 0.513

End-to-end
success 0.940 0.931 0.924 0.901 0.876

It is evident that the performance of strategies is negatively impacted by increased
occlusion and complexity in obstacle-avoidance tasks. Notably, these high-complexity
scenarios presented greater challenges for traditional baseline methods, mainly because
these methods rely on manually extracted, localized state inputs. Such limited information
is insufficient to accurately represent the robotic arm’s motion dynamics and potential
conflicts in complex environments. This limitation further highlights the superiority and
robustness of our proposed end-to-end DRL model in complex scenarios.

Relatively speaking, our model, capable of comprehensive analysis of and feature
extraction from RGB and depth images, offers a higher-dimensional state space represen-
tation. This enriched state representation allows the model to identify effective trajectory
planning and execution strategies in environments with more obstructions and obsta-
cles. Further, we will introduce the CFRS, demonstrating significant improvements in the
model’s convergence and robustness during training.

5.3. Cascade Fuzzy Reward System

To address the challenges of sparse rewards and signal delays in DRL, this study
introduces a CFRS based on fuzzy logic. We conducted ablation experiments comparing
the CFRS with both a unique reward system (URS) and a unique fuzzy reward system
(UFRS).

Data from Figure 10 reveals that models employing URS converge more slowly, achiev-
ing convergence around 250 k episodes, indicating limitations in global optimization. In
contrast, UFRS models converge within approximately 120 k episodes, demonstrating
faster optimization speeds. Most notably, CFRS models converge within just 100 k episodes,
illustrating the effectiveness of cascaded fuzzy rewards in efficient signal propagation and
rapid global optimization.
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Figure 10. Training of different reward systems.

Figure 11 focuses on the trends in collision rates under different reward systems. The
URS model initially experiences a rapid decrease in collision rates but later stabilizes around
20%, possibly due to settling at local optima induced by its simplistic reward mechanism.
UFRS shows a significant initial decrease in collision rates, with fluctuations within the
15–20% range, indicating some robustness in dynamic environments. CFRS, on the other
hand, exhibits a continual decrease in collision rates, eventually stabilizing at a low level of
around 5%, further proving its robustness and efficiency in practical operations.
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In summary, the introduction of the CFRS significantly enhances the model in terms
of convergence speed, stability, and reduced collision rates. This design not only promotes
rapid global optimization of the algorithm but also enhances the model’s robustness and
reliability in complex environments. Therefore, the CFRS provides an efficient and robust
reward mechanism for DRL in complex tasks such as robotic arm path planning.

5.4. Real World Experiment

In this section, we present a series of experiments conducted in real-world environ-
ments to validate the practical performance of our model. The objective of these experi-
ments was to assess the model’s capability in handling path planning and task execution in
actual physical environments.

The experiments involved maneuvering a robotic arm from various starting points
to designated target locations, as illustrated in Figure 12. These images demonstrate the
model’s performance in navigating narrow spaces and executing complex path planning.
Key performance indicators, including the success rate of tasks, precision in path planning,
and the time taken to complete tasks, were recorded and presented in graphical form
to validate the efficacy of the model. Comparative analysis indicates that our model
outperforms traditional methods in handling specific challenges, highlighting its potential
in real-world-application scenarios.
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In summary, these experimental results validate the practical performance of our
model, providing a foundation for future applications in similar environments.

6. Conclusions

The end-to-end-planning control model based on DRL, proposed in this study, demon-
strated significant efficacy in automatic path planning and yarn-spool-assembly tasks for
textile robotic arms. The introduction of the CFRS effectively enhanced learning efficiency,
accelerated convergence, and showcased remarkable robustness. These achievements not
only provide strong support for the automation process in the textile industry but also
demonstrate the immense potential of DRL in handling complex and highly uncertain
tasks. Overall, this research not only advances the frontier in robotic arm control algorithms
but also provides empirical evidence for the broad application of DRL in automation and
robotics, indicating its vast potential in real-world industrial environments.

Despite the notable performance of our model in path planning and yarn-spool-
assembly tasks for textile robotic arms, it has certain limitations. Specifically, the model
may face challenges when dealing with extreme or unforeseen environmental conditions.
For instance, the current model may not adequately account for extreme variations in
the environment, such as sudden mechanical failures or unexpected operational errors.
Future work could involve applying the model to a wider range of scenarios, such as
various types of automated robotic arm tasks, to validate and enhance its generalizability
and applicability.
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