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Abstract: The systems that use parallel kinematic structures in additive manufacturing technology are
particularly notable for their ability to provide exceptional precision and efficiency in the fabrication
of intricate geometrically shaped items. This study introduces a novel system paradigm with five
degrees of freedom, specifically developed to tackle existing additive manufacturing issues. In the
proposed design, by incorporating rotational motions along the x and z axes, contributions were
added to the efficiency of typical three-degrees-of-freedom (3-DOF) systems, resulting in a total
of five degrees of freedom. In this way, it is aimed at increasing product durability, improving
surface integrity, and saving production time. In this study, the conceptual design of the system was
defined. Mathematical analyses were then used to determine the kinematic and dynamic models
of the system, and a proposed model-based control technique was revealed. To evaluate the axis
movement performance of the system, two different control techniques were used, and real-time test
studies were conducted. The first control technique was the proportional–integral–derivative (PID)
controller, and the second method was the sliding mode control (SMC) method, which was used to
increase the performance of the system during trajectory tracking. The experimental results showed
that the SMC method provides a reasonably good trajectory tracking response and a steady-state
error compared to the classical PID controller.

Keywords: rapid prototyping; additive manufacturing; robotic manufacturing; prototype manufacturing;
sliding mode control (SMC); PID control; 5-DOF 3D printer; dynamic; kinematic; robotic control

1. Introduction

Additive manufacturing technology has brought about a profound shift in the man-
ufacturing sector in recent years and is widely regarded as a fundamental pillar of the
third industrial revolution. Additive manufacturing technology is an essential manufac-
turing strategy that responds to today’s more complicated and personalized production
demands. Additive manufacturing, in contrast to conventional manufacturing processes,
employs a layer-by-layer approach to create products, thereby reducing material waste.
This technique has a broad spectrum of applications, spanning from prototype manu-
facturing to the manufacture of intricate components. An important benefit of additive
manufacturing is its ability to enhance design flexibility. The capacity to generate pieces
of complexity that cannot be produced using conventional techniques provides designers
and engineers with enormous freedom. This fosters creativity and expedites the process
of developing new products. As per the article published in The Economist magazine in
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April 2012, this technique has generated significant attention in both theory and application
within the industry, particularly due to its ability to manufacture goods with intricate
geometries [1,2]. Furthermore, the noteworthy aspect of smart additive manufacturing lies
in its potential to be very customizable [3–6]. This approach, whereby each component
may be independently manufactured, provides the chance to address client requirements
promptly and efficiently. This attribute confers a competitive edge in the market when
faced with the requirements of customized goods. Due to its benefits, such as the ability
to adapt designs, quickly create prototypes, customize products, and save on materials,
this technology has the capacity to enhance production procedures while simultaneously
improving product quality and customer happiness. Hence, organizations are increasingly
prioritizing the augmentation of their investments in additive manufacturing technology
as a crucial strategy to uphold their competitive edge and promptly adapt to evolving
market demands.

In traditional production methods using machine tools or printers with three lin-
ear degrees of freedom, additional add-ons called supports are used. These supports,
while necessary, contribute to higher production costs and add complexity to the pro-
cess. Recently, there has been a significant effort to advance additive manufacturing
technology to address the constraints of traditional three-axis systems. Within these
advancements, the creation of systems with diverse kinematic structures or more de-
grees of freedom has significant importance. Utilizing additive manufacturing technol-
ogy, the utilization of robotic systems equipped with multi-axis parallel kinematic struc-
tures facilitates the production of complex-shaped components. These methods circum-
vent restrictions and enable items to be manufactured more effectively [7]. Within this
framework, the improvement of additive manufacturing technology and the use of new
kinematic structures could lead to better and more competitive solutions in business set-
tings. This can be achieved by enhancing crucial aspects, such as product durability,
surface integrity, and production efficiency. Parallel kinematic mechanisms are preferred
in design studies for additive manufacturing technologies because they have the poten-
tial to provide greater precision, stiffness, agility, and processing speed compared to
Cartesian systems.

In the past two decades, four-degrees-of-freedom (4-DOF) parallel mechanisms have
garnered significant attention due to their inherent advantages, such as a relatively large
workspace, compact structural features, notable load-bearing capabilities, and relatively
straightforward motion control [8,9]. Various parallel robots capable of Schöenflies motion,
such as H4, I4, Par4, and C4 mechanisms for high-speed pick-and-place manipulations,
have been developed [10–13]. Initially, the H4 machine, based on the Delta robot concept,
a 3T-1R parallel kinematic machine (PKM), was proposed, and its position and velocity
relationships were analyzed. It was demonstrated that the H4 principle could serve as the
foundation for a complete family of machines [14,15]. Subsequently, scholars in the field
have designed and studied various types of 4-DOF parallel manipulators. Rolland [16]
designed two 4-DOF parallel mechanisms. Briot et al. [17] presented a partially decoupled,
four-degrees-of-freedom 3T1R parallel manipulator with high load-carrying capacity. Yi
Lu et al. [18] proposed an over-constrained RRPU + 2UPU parallel manipulator (PM)
with three legs. Briot et al. [19] introduced a novel 4-DOF decoupled parallel manipu-
lator with Schönflies motions [20] called the Pantopteron-4. Yang et al. [21] presented a
hierarchical approach for the type-synthesis of limb structures of the PKMs, with 3T1R
motion with a variable rotational axis. In machining processes, particularly milling, it
is crucial that the tool remains perpendicular to the workpiece surface throughout the
machining process to avoid errors and ensure high-quality machining. However, existing
4-DOF parallel mechanisms either have a rotational DOF around the vertical axis or two
rotational DOFs suitable for pick-and-place and positioning tasks. Studies have shown
that using parallel kinematic structures with different layouts may shorten the time it
takes to produce parts by increasing the number of degrees of freedom to four, mostly
through turning around the z-axis [22]. A further investigation included the creation of a
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delta-type parallel kinematic framework that had the capability to rotate along the x-axis.
This advancement enhanced the system’s maneuverability [23]. Another study presented
a high-speed parallel robot that exhibited Schönflies motion. In this study, the robot had
great potential for achieving efficient and rapid pick-and-place manipulation in packag-
ing manufacturing lines. The robot was equipped with four identical appendages and
a solitary platform. The robot’s small shape and single-platform idea provided it with a
strong potential for dynamic responsiveness. The movement properties of the proposed
robot are examined using a line graph approach that relies on Grassmann line geometry.
This approach also incorporates a generalized Blanding rule to facilitate the translation
between line graphs representing movements and restrictions. Afterward, the inverse
kinematics is calculated, and the problem of singularity in the robot is examined using
both qualitative and quantitative methods [24]. A novel parallel robot, Heli4, with four
degrees of freedom, was provided in [25]. It drew inspiration from Delta architecture but
was specifically engineered to surpass its constraints by including an articulated traveling
plate. Contrary to the majority of articulated traveling plates, Heli4’s moving plate was
very small in size. Another research study introduced a novel parallel mechanism with
four degrees of freedom that was specifically designed for manipulating heavy objects in
a wide operating area [26]. The four degrees of freedom consisted of three translational
movements and one rotational movement around a specified axis. This kind of mechanism
is uncommon; the majority of parallel mechanisms typically contain either three or six
degrees of freedom. Another study presented a specialized parallel manipulator with
four degrees of freedom, which was designed for the purpose of pick-and-place tasks. Its
development was aimed at achieving very high velocities. This research demonstrated
that its design was well-suited for handling rapid changes and fluctuations. It was a
development of the Delta, H4, and I4 robot designs, including the strengths of these robots
while addressing their limitations [27]. Another example is an adaptive slicing method that
can create ideal slices for five-axis hybrid layered manufacturing, allowing for deposition
without the need for support structures. In contrast to the existing adaptive slicing method,
this methodology differs not only in the thickness of each layer but also in the direction
in which the object is sliced. The laser-aided manufacturing process (LAMP), a five-axis
system that integrates both material additives and removal processes, was created at the
University of Missouri-Rolla and serves as an illustrative example. The multi-degree-
of-freedom technology enables the LAMP to construct a component with little support
structures [28]. A novel creation called the unmanned robotic delta weapon platform
(URDWP) is provided in [29]. The URDWP is an automated, teleoperated unmanned
weapon system that securely retains and controls the actions of weaponry. This innovation
is primarily characterized by the use of a delta robot equipped with three or more parallel
kinematic chains (axes). Combat vehicles and unmanned defense vehicles are already
equipped with remotely triggered weapons that are operated by robotic remote weapon
platforms. Another work focused on the examination of the kinematics and dynamics of
a new linearly actuated 4-DOF parallel kinematic machine. This machine was capable of
performing three translational motions and one rotating motion. To achieve this objective,
the inverse kinematic relations for position, velocity, and acceleration were determined
using the closed-loop vector theorem. Next, the dynamics of the mechanism were analyzed
using Euler’s approach. Subsequently, a simulated dynamic model of the system was
created [30].

Considering the aforementioned limitations, this paper proposes and develops a novel
kinematic system design with a parallel kinematic structure as part of a range of research
initiatives aimed at tackling the present obstacles in additive manufacturing technology.
In contrast to conventional systems that include only three linear degrees of freedom, this
research achieved five degrees of freedom by including rotational motions on the x and
z axes. This feature was designed to enhance product durability, enhance the quality of
wavy surfaces, and save manufacturing time.
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In line with the above, the primary contribution of this paper is a novel 5-DOF par-
allel kinematic mechanism (3T2R), which, unlike its predecessors, has a rotational DOF
around the x and z axes. In addition to the new proposed design, sliding mode control
is performed for the first time in the literature on a multi-axis proposed system with five
degrees of freedom for high-accuracy trajectory tracking control. In order to show the
advantages of sliding mode control over the other classical control techniques, the classical
PID method was applied to the proposed system as a second control approach. The design,
implementation, and evaluation of a classical PID method and sliding mode control tech-
niques for the motion control of a novel multi-axis system with five degrees of freedom are
provided as the secondary contributions of this paper. The concept design of the proposed
system, which includes mechanical components, is first presented, and then the kinematic
and dynamic model of the system is determined via mathematical analysis. Then, the
position analysis of the proposed system is realized. In order to determine the real-time
performance of both controllers, experimental studies were conducted. Experimentally,
it was validated that sliding mode control is an efficient and robust control method for
the proposed system motion, including unmodeled dynamics. According to the experi-
mental results, it was observed that the mathematical modeling for the proposed system
was correct; the SMC method increased the trajectory tracking performance compared
to the classical PID method during motion, and SMC is a more robust controller against
the uncertainties of the system. The main contribution of this study to the literature is
to offer a new perspective on production technologies, directing transformation in the
industry, shaping future manufacturing processes, and triggering industrial innovation.
The proposed system is presented in the literature as a production model that is more
flexible, sustainable, cost-effective, precise, and capable of achieving high work speeds
compared to traditional additive manufacturing methods.

The organization of the rest of the paper can be summarized as follows: The designed
system structure, the kinematic and dynamic analysis of the 3D printer are presented in
Section 2. Section 3 describes both the classical PID controller and nonlinear sliding mode
control strategies. Section 4 presents the experimental findings, and Section 5 provides
concluding remarks.

2. Design and Modelling of a 3D Printer with five Degrees of Freedom

The 3D printer system, seen in Figures 1 and 2, comprises a stationary platform and
a movable platform that are interconnected with four kinematic chains. This platform
consists of two PR (Pa)U and two PR (Pa)R kinematic chains. In the system, the terms R, P,
U, and Pa correspond to rotary, prismatic, universal joint, and parallelograms, respectively.
The fundamental element of kinematic chains is the planar, four-bar parallelogram structure.
The parallelogram construction utilizes four separate linear rail systems to provide accurate
control. The carriages, which form the parallelogram structure, are joined to each link via
ball joints. The second and third arms are attached to the moving platform with ball joints,
whereas the first and fourth arms have an indirect connection to the moving platform.
Each connecting part is connected to the moving platform using a rotary joint. The present
manipulator’s moving platform has a construction that enables three degrees of freedom
for translational movement and one DOF for rotating movement in the x-direction. This is
shown in Figures 1 and 2. Utilizing a turntable enables the provision of rotating motion
along the z-axis.
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2.1. Inverse Kinematics of the Proposed 5-DOF 3D Printer Machine

Kinematic analysis refers to the process of determining the angular locations of the
ties needed for a moving platform to achieve a certain position and orientation when
the initial position and orientation values are specified. Precise kinematic analysis is
essential for accurate system control and for efficiently determining the dynamic model
of the system. Multiple approaches exist in the literature for the kinematic analysis of
parallel processes. The methodologies included in this study are the Denavit-Hartenberg
method, the geometric approach, the vector algebra method, and the Bezout method [31–34].
Furthermore, in recent years, researchers have used Nelder-Mead and genetic algorithms
for the purpose of kinematic analysis [35,36]. The research used the vector algebra approach
to conduct an inverse kinematic analysis of the mechanism. Figure 3 displays a vector



Appl. Sci. 2024, 14, 1482 6 of 27

representation of the system, which is used for the study. The index ‘i’ denotes a single
kinematic chain out of several chains that are identical to each other. Figure 3 shows that
the global coordinate system has an origin denoted as {O}, and it is determined by the
xo, yo, and zo components.
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For each prismatic joint, the vector ai is used, connecting the origin of the global
coordinate system and the beginning of the rail. The local starting point of the rail is the
vector di, which is connected to the prismatic joint, i, on the car. The magnitude of the
li vector seen in the figure is equal to the length of the ith connecting arm. Additionally,
the vector ci is a vector connected to the ith connector, starting from the midpoint of the
spherical joints and ending at the rotary axis of the connector. However, for cases i = 2.4,
the vector ci is equal to 0 due to the structure of the mechanism. The vector bi is fixed
at the centre of the moving platform {P}, as indicated in Figure 3. At the same time, the
vector bi expresses the position of the parallelograms determined by the local frame. All
the kinematic relationships are defined considering the fixed platform attached to the
global frame {O}. Based on Figure 3, the vector equation for the ith kinematic chain can be
expressed as Equation (1).

O p + ORP
Pb i =

Oa i +
Od i +

Ol i +
Oc i, (1)

The vector must be defined according to the global coordinate system using the
transformation formula provided in the following equation:

Ob i =
ORP

Pb i, (2)
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The expression denoted as ORP in Equation (2) is a rotation matrix that is only de-
fined in the x-direction, as shown in Equation (3), owing to the specific attributes of the
mechanical system.

ORP = Rx(θ) =

1 0 0
0 cosθx −sinθx
0 sinθx cosθx

, (3)

In Equation (1), the vectors Od i and Oc i are consistently aligned in the same direction.
Due to this rationale, given that d̂i represents the unit vector of vector di, Equation (1) may
be restated as Equation (4) as follows:(

p + bi − ai − ci d̂i

)
− Li = di d̂i, (4)

In Equation (4), ci and di denote the magnitudes of the vectors ci and di, respectively.
The vector expression Li is represented as li and its value is provided. Equation (4) defines
a sphere with a centre p + bi − ai − ci d̂i and radius li on the left side and a line running
from the origin along d̂i on the right side. Hence, the resolution of Equation (4) entails
the point of convergence between a line and a well-defined sphere in a three-dimensional
space. By using the above equivalences, the equation for di, may be derived as shown in
Equation (5).

di = −ci + d̂T
i (p + bi − ai)±

√
l2
i − (p + bi − ai)

T
(

I3×3 − d̂i d̂T
i

)
(p + bi − ai), (5)

Equation (5), obtained through vector analysis, characterises the scenario in which the
mechanism is situated at a certain position and orientation. Using this equation, one may
determine the necessary length di for the mechanism to achieve the specified position and
orientation values.

2.2. Velocity and Acceleration Kinematics

To obtain the velocity vector
.
p of the mobile platform of the mechanism, Equation (4)

has to be differentiated with regard to time.

.
p +

.
θ î × bi =

.
di d̂i + ωli × li, (6)

The variable
.
θ, represents the amplitude of the angular velocity of the moving platform

in this equation. Performing the scalar multiplication of Equation (6) with the li vector
yields Equation (7).

.
di =

li
d̂i.li

.
.
p +

(
î × bi

)
.li

d̂i.li

.
θ, (7)

Equation (7) was used to derive the matrix representation of the velocity kinematics
of a mobile platform, transitioning from an angular format to a linear one. Equation (8)
illustrates the outcome. 

.
d1
...
.
d4

 =


l1

T

d̂1.l1
(b1×l1).î

d̂1.l1
...

...
l4

T

d̂4.l4
(b4×l4).î

d̂4.l4


[ .

p
.
θ

]
= J

[ .
p
.
θ

]
, (8)

The symbol J, as defined in Equation (8), denotes the Jacobian matrix of the system.
The acceleration expression of a moving platform was obtained by taking the derivative of
the velocity expression in Equation (6).

..
p +

..
θ î × bi +

.
θ

2
î ×

(
î × bi

)
=

..
di d̂i +

.
ωli × li + ωli × (ωli × li), (9)
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Performing the dot product of both sides of this equation with the vector li yields the
formula for the acceleration of the prismatic joints in the system:

.
p +

.
θ î × bi =

.
di d̂i + ωli × li, (10)

2.3. Dynamic Analysis
2.3.1. Inverse Dynamics

The primary objective of inverse dynamics analysis for any mechanism is to ascertain
the requisite forces or torques at the end actuator of the mechanism in order to precisely
track a certain trajectory. Essentially, these forces or torques are seen as a mathematical
function that relies on the location, velocity, and acceleration of the system’s joints, as well as
the position of the mobile platform. The Euler technique was used in this work to deduce the
analytical dynamic model of the specified system. The Euler approach stands out from other
techniques, such as Lagrangian, due to its ability to address the computational time issue
in real-time applications and provide a closed-form model in [37–41]. The Euler approach,
applicable to any kinematic chain, treats each link as a rigid body. These connections
may be individually examined and then merged. By using this method, the force or
torque expressions that arise between the legs may be readily exposed. Consequently, this
investigation included analysing the connections of each kinematic chain, beginning with
the parallelogram and extending to the moving table, individually and sequentially.

Figure 4 displays a three-dimensional perspective of the mechanism and the geometric
indices used in dynamic modelling. Given that the Euler technique was used to study
each leg separately, it is necessary to assign each leg to its own local coordinate system.
In order to address this issue, individual coordinate frames are denoted as {Li} being
positioned inside each parallelogram structure. The connecting points of the connectors
and parallelograms for each chain are represented by Ai, Bi, Ci, and Di as illustrated in
Figure 4. Furthermore, the Ei and Di points denote the central points of the ball joints
used for mounting the parallelogram onto the carriages utilized in the mechanism. On the
other hand, the Gi and Mi points indicate the central points of the attachments utilized for
connecting the parallelogram to the moving table in the mechanism.
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Figure 4 displays the separate kinematic chains, with each component represented by
circled integers ranging from one to eight. Gi

j denotes the centroid of each element, with
the upper symbol i denoting the chain number and the lower sign j denoting the element
number. Figure 5 displays the intricate free body diagram that is used in the dynamic
analysis of the fully designed mechanism.
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Given the similarity between the first and third kinematic chains, as well as the third
and second kinematic chains, Figure 5 only provides detailed information on the first
and fourth kinematic chains, together with the forces and torques acting on them. The
spherical joints, i F j,k (j = 2, 6, 7) seen in Figure 5, indicate the resultant force exerted on
each leg of the parallelogram. In this context, the superscript i denotes the quantity of
kinematic chains, the subscript j denotes the quantity of components, and k denotes the
quantity of the joints used for connection in the parallelogram’s legs. The forces and torques
applied to the parallelogram connections via the connectors employed in the mechanism
are denoted as i F j,k, i Mj,k (j = 3, 5) respectively. The forces and torques applied to the
center of mass of each connecting component are denoted as i FGj

, i MGj , respectively.

The terms i FRj
, i MRj (j = 6) represent the rotational forces and torques that occur in the

joints. In addition, ui,k, vi,k, as seen in Figure 5, denote the vectors that extend towards
the connecting points Ai, Bi, Ci, and Di of the parallelograms. The symbol γi denotes
the vector that spans from the spherical joints to the center of mass of each leg of the
parallelogram. As commonly understood, all forces and torques may be determined based
on the reference point of the overall coordinate system of the mechanism using the Euler
equation, which is represented as ∑ Mo = Ioα + ω × Ioω. In order to do this, we began by
considering the moment equilibrium of both connections (k = 1, 2) for each parallelogram
around the points Ei and Fi. Subsequently, we established their corresponding expressions
reflected along the n̂i axis. The mathematical representation of this scenario is provided in
Equations (11) and (12).
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(
ui,1 ×i F3 + γi ×i FG4 + vi,1 ×i F5

+Li ×i F6,1 +
i MG4

)
· n̂i +

(
i M3,1 +

i M5,1

)
· n̂i = 0 (11)

(
−ui,2 ×i F3 + γi ×i FG4 − vi,2 ×i F5 + Li ×i F6,2

+MG4

)
· n̂i +

(
iM3,2 +

i M5,2

)
· n̂i = 0 (12)

The equations i FG4
and i MG4

, which are presented in Equations (11) and (12), respec-
tively, are defined as shown in Equations (13) and (14).

i FG4
= mi

(
g −i al

)
, (13)

i MG4
= −

{
ωi × (Io ,iωi) + Io,i

.
ωi

}
, (14)

Here, g is the gravitational acceleration and mi is the mass of the leg of the par-
allelogram. Io,i =

(
O
Li

Ti

)(
ILi

)( O
Li

Ti
T
)

is the inertia matrix. This matrix is expressed
in the global reference frame of the parallelogram and the origin of the global frame.
The expression ILi = IGi + ml∥Li∥2diag(0, 1, 1) is the inertia matrix of the parallelogram
with respect to the origin of the global reference coordinate system shown in Figure 3.
O
Li

Ti =
[

Li
∥Li∥

n̂i × Li
∥Li∥

n̂i

]
, i = 1, . . . , 4 is the equation placed on the {Li} leg according

to the global coordinate system. It represents the transformation matrix of the local coordi-
nate system. Equations (1) and (2) are added mathematically, and at the same time, consid-
ering that the legs in the system are connected to the system with the help of rotary joints,
in other words, considering the equation provided in i M3,k · n̂ =i M5,k · n̂ = 0, k = 1, 2,
Equation (15) is obtained via the following:

(Li × n̂i) ·
(

i F6,1 +
i F6,2

)
= 2

(
γi ×i FG4 +

i MG4

)
· n̂i, (15)

Furthermore, by considering the balance of the moment components around Ei, Fi
along the ŝi axis of the local coordinate system associated with the parallelograms, we
obtained Equation (16).(

Li ×
(

i F6,1 +
i F6,2

))
· ŝi + 2

(
γi ×i FG4 +

i MG4

)
· ŝi = 0, (16)

By using the vector identity (a × b) · c = (c × a) · b, Equation (16) may be rewritten as
Equation (17).

(Li × ŝi) ·
(

i F6,1 +
i F6,2

)
= 2

(
γi ×i FG4 +

i MG4

)
· ŝi, (17)

By substituting the formulas derived from Equations (15) and (17) into the correspond-
ing arms of the parallelograms in each kinematic chain, we obtain the following systems
of equations: [

N
S

]
8×12

1F6,1 +
1 F6,2

...
4F6,1 +

4 F6,2

 =

[
RN
RS

]
, (18)

Equations (19)–(22) express N, S, RN , and RS, respectively.

N =

(L1 × n̂1)
T 0 0

0
. . . 0

0 0 (L4 × n̂4)
T


4×12

, (19)

S =

(L1 × ŝ1) 0 0

0
. . . 0

0 0 (L4 × ŝ4)


4×12

, (20)



Appl. Sci. 2024, 14, 1482 11 of 27

RN = 2


(
γ1 ×1 FG4 +

1 MG4

)
· n̂1

...(
γ4 ×4 FG4 +

4 MG4

)
· n̂4

, (21)

RS = 2


(
γ1 ×1 FG4 +

1 MG4

)
· ŝ1

...(
γ4 ×4 FG4 +

4 MG4

)
· ŝ4

, (22)

To derive the dynamic model of the system, it is necessary to articulate the forces and
moments exerted on the connections located on the top moving platform of the system, as
seen in Figure 2. To achieve this objective, by referring to Figure 5, the cumulative forces
exerted on the mobile platform can be mathematically represented using Equation (23).

i FR6
=i F6,1 +

i F6,2 −i FG6 , i = 1, 3, (23)

In this context, the symbol i FR6
denotes the forces exerted on the connection by the

rotary joint, and can be mathematically represented by Equation (24).

i FG6
= m6

(
g −i aCon

)
, i = 1, 3, (24)

Similarly, based on the free body diagram shown in Figure 2, the moment components
along the axis passing through, 1R6 and 3R6, can be represented by the equilibrium equation
provided in Equation (25).

(
r4 ×

(
4F7,1 +

4 F7,2

))
· î +

(
r2 ×

(
2F7,1 +

2 F7,2

))
· î =

(
rG8 × FG8

)
· î + MG8 · î + (rP × F8) · î + M8 · î −1 MR6 · î −3 MR6 · î, (25)

Here, the symbol i MR6
, i = 1, 3 indicates the moments exerted on the moving platform

by the rotary joint of the connections. The symbols F8 and M8 represent the external forces
and moments that are exerted on the moving platform, respectively. The forces and
moments are explicitly represented by Equations (26) and (28).

FG8 = m8(g − aCP), (26)

MG8 = −
{

.
θ

2
î ×

(
IG8 î

)
+

..
θ IG8 î

}
, (27)

Considering the fact that i MR6
, i = 1, 3 does not have any components along î, in

other words, considering the 1MR6
· î =3 MR6 · î = 0, relationship, Equation (25) can be

rewritten as follows:(
î × r4

)
·
(

4F7,1 +
4 F7,2

)
+

(
î × r2

)
·
(

2F7,1 +
2 F7,2

)
=

(
rG8 × FG8 + MG8 + rP × F8 + M8

)
· î, (28)

Furthermore, the total forces exerted on the mobile platform can be precisely described
as stated in Equation (29).(

4F7,1 +
4 F7,2

)
+

(
2F7,1 +

2 F7,2

)
+1 FR6 +

2 FR64 = FG8 + F8, (29)

By substituting the expression for i FR6
, i = 1, 3 from Equation (23) into Equation (26),

Equation (30) can be derived.(
1F6,1 +

1 F6,2

)
+

(
2F7,1 +

2 F7,2

)
+

(
3F6,1 +

3 F6,2

)
+

(
4F7,1 +

4 F7,2

)
= 1FG6

+3 FG6 + FG8 + F8, (30)

By using Equations (18), (28), and (30), the concept of force equality can be expressed
in the form of a matrix, as shown in Equation (31).
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1F6,1 +

1 F6,2
2F7,1 +

2 F7,2
3F6,1 +

3 F6,2
4F7,1 +

4 F7,2

 = Γ−1Ψ =


I3×3 I3×3 I3×3 I3×3

0
(
î × r2

)T
0

(
î × r4

)T

N
S


−1

.


1FG6

+3 FG6 + FG8 + F9(
rG8 × FG8 + MG8 + rP × F8 + M8

)
· î

RN
RS

, (31)

By treating the carriages and parallelograms as a unified rigid body, the equation
below represents the combined forces acting on them:

i F1 = −
{

i FG2
+ 2iFG4 +

(
iFj,1 +

i Fj,1

)}
, j = 6 f or i = 1, 3 and j = 7 f or = 2, 4, (32)

The equation represented by i F1 denotes the forces exerted on the car by the rails used
in the mechanism. The force FG2 mentioned in the equation is defined as follows:

i FG2
= m2

(
g −

..
di d̂i

)
, (33)

Here, m2 is the mass of the car. In this case, the value of the i F1 force acting on the
system and extending along the vector d̂i, that is, the force fa, can be defined as follows:

i f a =
i F1 · d̂i, (34)

As a result of these studies, Equation (35), which is based on Equations (31), (32), and (34),
shows the matrix form of the inverse dynamic model of the system. This equation can be
defined in the standard form used in control theory, as in Equation (36).


1 f a

...
4 f a

 =

d̂T
1 0 0

0
. . . 0

0 0 d̂T
4


Γ−1Ψ +


1FG2

+ 2
(

1FG4

)
...

4FG2
+ 2

(
4FG4

)

, (35)

τ = M(q)
..
q + C

(
q,

.
q
) .
q + G(q), (36)

2.3.2. Dynamic Modeling of Stepper Motors Used in a 3D Printer

To achieve a certain path with the intended five-axis 3D printer, the actuators in the
system need to be accurately controlled to move at a specific velocity and angle. A total
of five hybrid stepper motors were used in the system’s construction. There is no precise
theoretical electromechanical equivalent model available to mathematically analyze these
motors. To unveil the dynamic model of these motors, the magnetic equivalent circuit
model was used instead of the electromechanical equivalent circuit [42–44]. The electrical
equations for the phases of a stepper motor can be expressed using the magnetic equivalent
circuit model, as shown in Equations (37) and (38).

Ua = Ria + L
d
dt

ia − Kmωsin(pθ), (37)

Ub = Rib + L
d
dt

ib − Kmωcos(pθ), (38)

The variables ia, Ua, ib and Ub in the above equation represent the control currents
supplied to the A and B phases, as well as the corresponding phase voltages. However,
the variables R and L represent the resistance and inductance values of the motor phases,
while Km represents the motor torque constant, ω and and θ represent the angular speed
and position of the motor, and p represents the number of rotor teeth of the stepper
motor. The mechanical structure of the system establishes a direct relationship between
the angular position (denoted as θ) of the motor and its linear position (denoted as dT

i in
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Equation (35)). The motor’s output torque, which is influenced by the control current, can
be mathematically represented as follows:

Km{−iasin(pθ) + ibcos(pθ)} − TL = J
dω

dt
,+Kvω (39)

In the above equation, J, Kv, and TL indicate the motor shaft’s inertia, the coeffi-
cient of viscous damping, and the torque exerted on the motor shaft by the load, respec-
tively. By using the Park transformation on the voltage and torque equations stated in
Equations (36)–(39), we obtained the voltage and torque expressions specified on the d − q
axis, as shown in Equation (40).

Ud = Rid + L d
dt id − Lpωiq,

Uq = Rid + L d
dt iq − Lpωid + Kmω,

Tmotor = Kmiq − J dω
dt − Kvω,

(40)

By equating Equation (40), which represents the motor output torque expression, with
the inverse dynamic equation of the mechanical system, Equation (41) is obtained. This
provides the dynamic equation for the whole system.

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = Kmiq − J

..
q − Kv

.
q, (41)

Equation (41) can be restated as Equation (42) via the execution of mathematical
procedures.

(M(q)− J)
..
q +

(
C
(
q,

.
q
)
+ Kv

) .
q + G(q) = Kmiq, (42)

Equation (42) can be simplified to Equation (43);

M(q)
..
q + N

(
q,

.
q
)
= Kmiq = τ(t), (43)

Here, N
(
q,

.
q
)
=

(
C
(
q,

.
q
)
+ Kv

) .
q + G(q).

3. Controller Design
3.1. PID Controller Design

A PID control equation is an equation that mathematically expresses the behavior
of a proportional–integral–derivative controller [45]. The control equation is generally
calculated as expressed in Equation (44). In Equation (44), u(t) represents the control signal.
The expression e(t) is used as an error representation. The difference between the set point
and the output of the actual process, that is, r(t) is the reference desired value, y(t) is the
output of the system, and e(t) = r(t)− y(t).

u(t) = ki

t∫
0

e(t)dt + kpe(t) + kd
de(t)

dt
, (44)

The equation involves three coefficients: kp, ki, and kd. The proportional coefficient,
kp, directly influences the output based on the error. The integral coefficient, ki, determines
the cumulative effect of the error over time. Lastly, the derivative coefficient, kd, governs
the impact of changes in the error on the output. The integral

∫ t
0 e(t)dt represents the

accumulation of mistakes over a period of time. This equation governs the output of the
PID controller. To expedite the attainment of the desired set point and minimize error, this
equation incorporates the immediate error value, its cumulative total, and its rate of change.
The parameters kp, ki, and kd are used to fine-tune the performance of the controller.
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3.2. Sliding Mode Controller Design (SMC)

In the sliding mode control system, joint space trajectories are compelled to reach
a sliding manifold within a finite time, known as the reachability phase. Subsequently,
these trajectories are constrained to indefinitely remain on the manifold during the sliding
phase [46]. The objective of the tracking control issue in the joint space is to precisely move
the joint position q to the desired location qd. This difference between the q and qd can be
defined as the tracking error

∼
q.

∼
q = q − qd, (45)

The sliding surface is determined using the following equation:

s =
.
∼
q − λ

∼
q, (46)

where λ = diag[λ1, λ2, . . . , λ4] represents a diagonal positive definite matrix serving as a
weighting parameter. The design of the controller can be expressed as the task of deriving
a control law for the input vector τ that satisfies the individual sliding conditions of the
following form:

1
2

d
dt

si
2 ≤ −ηi|si| (ηi > 0), (47)

Fulfilling Equation (47) results in the surface becoming an invariant set. Moreover, it
suggests that disruptions or unpredictable changes may be accepted without affecting the
stability of the surface as a fixed set. The optimal approximation τ̂ of a control rule that
would result in

.
s = 0 is as follows:

τ̂ = M̂
..
q + N̂ − As, (48)

where M̂ and N̂ are estimates of M and N, and A = diag[a1, . . . a4] is a diagonal positive
definite constant matrix. To fulfill the sliding condition defined in Equation (47) in the
presence of uncertainties in the dynamics, the term τ̂ could be introduced to ensure
discontinuity across the surface. Consequently, the control input becomes the following:

τ = τ̂ − Fsgn(s), (49)

Substituting Equation (49) into Equation (43) leads to the following:

M
.
s + (N + A)s = ∆f − Fsgn(s), (50)

where ∆f represents the estimation error, defined as ∆f =
(
M̂ − N

) ..
q +

(
N̂ − N

)
, and it is

assumed that the estimation error is bounded by a known quantity denoted as F.

|∆ f |bound ≤ F, (51)

In order to demonstrate the convergence to the sliding mode, the variable s must
approach zero within a specified duration. In order to achieve this objective, the Lyapunov
approach may be used to derive a control rule that ensures the stability of the system.
Choosing a Lyapunov function can be defined with the following equation:

V =
1
2

sTMs (52)

Since M is the symmetric and positive definite, then ̸= 0 V > 0. Additionally, differen-
tiating Equation (52) and using Equation (50), the following equation is true:

.
V = sT[−(N + A)s + ∆f − Fsgn(s) + Ns] = ∑n

i=1 si[∆fi − Fisgn(si)]− sTAs ≤ 0 (53)
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Using Equation (51) for the si > 0 and si < 0 conditions, Equation (53) provides
an exponentially stable system. In practical applications, the control rule described in
Equation (49) may lead to rapid and repetitive oscillations known as chattering, particu-
larly in situations involving high frequency switching. In order to decrease the control’s
chattering activity, the high-frequency switching function sgn may be approximated using
a smooth-bounded saturation function sat.

Figure 6 illustrates the block diagram of the sliding mode control implementation for
the manipulator, showcasing that the input is the desired trajectory of the manipulator
involving both translation and orientation motions. The controller employs the inverse
kinematic Equations (5) and (6) to transform the desired position and orientation of the
manipulator into the necessary actuator angles. These angles are subsequently utilized as
set-points for the six local controllers. The controller then executes the required control
actions on the hybrid stepper motor drivers, enabling the accurate rotations of each input
link and achieving the desired angles.
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4. Experimental Results

The concept design of the 5-DOF robotic system with a parallel kinematic structure is
shown in Figure 7. All values related to the limbs of the proposed system are presented in
Table 1.
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Table 1. Measurement values of all the mechanical subcomponents used in the system’s design.

Parameters Values

l1,3,4 461 (mm)

l2 561 (mm)

c1,3 30 (mm)

c2,4 0 (mm)
Pr2 [0; 196; 21] (mm)
Pr4 [0; 226; 21] (mm)
PrE [0; 99; −50.37] (mm)
PrP [0; 98.5; −222] (mm)

P IP

4.5 0 0
0 2.6 −0.01
0 −0.01 2.6

× 10−2(kg·m2)

msad,1−4 0.64 (kg)

ml,1,3,4 0.36 (kg)

ml,2 0.43 (kg)
Li Il,1,3,4 diag(0.009; 6.5; 6.5) × 10−2(kg·m2)

Li Il,2 diag(0.01; 11.5; 11.5) × 10−2(kg·m2)
mCon,1,3 0.25 (kg)

mp 6.62 (kg)
Pb1 [−53; −98.5; −25] (mm)
Pb2 [0; 97.50; −4] (mm)
Pb3 [243; −91; −42] (mm)
Pb4 [29; 243; −42] (mm)

First of all, the operating performance of the designed system was evaluated. Trans-
lational and rotational motion experiments were conducted in the specified reference
trajectory based on the established kinematic equation and control algorithm. The block
diagram of the 5-DOF parallel 3D printer control system is shown in Figure 8. As can be
seen in the figure, microprocessor coded STM32F405RB ARM Cortex M4 168 MHz (Texas
Instrument, USA) and TMC262 stepper motor drivers were used in this study. The main
task of the microprocessor was to produce the appropriate PWM signals needed by the
stepper motor drivers according to the kinematics and controller equations. In addition,
the microprocessor could simultaneously read the encoder information connected to the
motors from the digital ports and use them as feedback information. The resolution per
revolution of each encoder was 4096. The angular position accuracy was 0.002 degrees
thanks to the 4x quadrature feature of the microprocessor. Two-phase Nema23 stepper
motors (Oriental Motor USA Corp., Torrance, CA, USA) were used in the designed system.
The coil resistance of these motors was 1.4 ohm, the inductance was 2.5 mH, the holding
torque was 1.45 Nm, and the acceleration torque was 1.1 Nm.

Four distinct tests were conducted on the proposed system shown in Figure 7. The
tests aimed to evaluate the system’s mobility and compare the performance of the sliding
mode controller with the standard PID controller. The performance of the four stepper
motors in the planned system was evaluated based on the kinematic equation and control
algorithms that were created. The tests assessed the translational and rotational capacities
of the moveable table, which was coupled to the stepper motors, based on the specified
reference. The control parameters used in all experiments for the controllers used in this
study were Kp = 5.135, Ki = 1.136, Kd = 0.022, and λ = 2.74.
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4.1. Case One

First of all, we aimed for the moving table to move from the starting coordinates
x = 0, y = 0, z = 0, and θ = 0o to the reference coordinates x = 0, y = 0, z = 15 cm, and
θ = 0o in 1.5 s. In other words, the movable table was intended to move 15 cm upwards in
the z coordinate without any orientation changes. In order for this reference to be realized
by the system, according to the kinematic equations, the first and third motors must turn to
the right at an angular position value of 12.54 radians, and the second and fourth motors
must turn to the right in a similar manner at an angular position value of 19.32 radians.
According to kinematic analysis, the reason why the first and third motors rotate less
than the second and fourth motors is that the connection points of the second and fourth
motors to the moving table are different compared to the first and third motors. According
to the experimental results, the angular position changes of the motors are presented in
Figure 9a,b. In all the drawn graphs, zoom images were included in order to clearly show
the system settling time, steady-state error, and corresponding controller performance.
When Figure 9a,b is examined, it is seen that if the motors in question are moved with
sliding mode control instead of PID control, the table reaches the reference value faster.
In other words, while the settling time of the motors was faster with the sliding mode
controller, the steady-state error values were lower. In addition, in order to compare the
performance of the proposed sliding mode controller with the classical PID controller, the
root-mean-square error (MSE) and integral-square error (ISE) values of the system response
occurring after the settling time were calculated, and these values are presented in Table 2.
Since the sliding mode controller was based on the system model, a faster and more robust
response was achieved. In addition, lower average error and integral error values were
obtained in the SMC controller compared to the PID controller. The sliding mode controller
produced better results than the traditional PID controller because it was based on the
dynamic model of the system and was robust against disturbance effects during the motion.

Table 2. Outcomes of the case one applications.

Case 1 Settling Time (s) MSE ISE

Motor 1 SMC 0.512 6.94 × 10−4 4.82 × 10−7

Motor 3 SMC 0.511 6.49 × 10−4 4.21 × 10−7

Motor 1 PID 0.557 0.002 4.15 × 10−6

Motor 3 PID 0.551 0.0022 4.94 × 10−6

Motor 2 SMC 0.786 0.002 3.90 × 10−6

Motor 4 SMC 0.778 0.002 3.97 × 10−6

Motor 2 PID 0.818 0.0062 3.81 × 10−5

Motor 4 PID 0.805 0.0056 3.09 × 10−5
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case one.

4.2. Case Two

As another reference value, the moving table moved from the starting coordinate of
x = 0, y = 0, z = 15 cm, and θ = 0o to the reference coordinate of x = 15 cm, y = 0,
z = 15 cm, and θ = 0o in 1.5 s. In other words, the movable table was intended to move
15 cm to the right only on the x-axis at a height of z = 15 cm without any orientation. In
order for this reference to be realized by the system, according to the kinematic equations
of the system, the first and third motors must turn leftward at an angular position value
of −18.23 radians, and the second and fourth motors must turn rightward at an angular
position value of 15.87 radians. According to the experimental results, the angular position
changes of the motors are presented in Figure 10a,b. In this experiment, in order to compare
the performance of the proposed sliding mode controller with the classical PID controller,
the MSE and ISE values of the response occurring after the settling time were calculated,
and these values are presented in Table 3. Although the torque values falling on the motor
shafts are higher in this translational movement, a faster and more robust response was
provided because the sliding mode controller is model based. As a result, lower average
error values and integral error values were obtained in the SMC controller compared to the
PID controller.
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case two.

Table 3. Outcomes of the case two applications.

Case 2 Settling Time (s) MSE ISE

Motor 1 SMC 0.784 0.0017 2.92 × 10−6

Motor 3 SMC 0.783 0.0018 3.24 × 10−6

Motor 1 PID 0.829 0.0057 3.25 × 10−5

Motor 3 PID 0.816 0.0049 2.45 × 10−5

Motor 2 SMC 0.65 0.0012 1.46 × 10−6

Motor 4 SMC 0.648 0.0011 1.26 × 10−6

Motor 2 PID 0.697 0.0044 1.93 × 10−5

Motor 4 PID 0.683 0.0038 1.46 × 10−5

4.3. Case Three

In the third experimental study, we aimed for the moving table to move from the
starting coordinates x = 0, y = 0, z = 15, and θ = 0o to the reference coordinates
x = 0, y = 15 cm, z = 15 cm, and θ = 0o in 1.5 s. In other words, the movable table was
intended to move 15 cm to the right only on the y-axis at a height of z = 15 cm without
any orientation. In order for this reference to be realized by the system, according to the
kinematic equations, the first and third motors must turn to the right at an angular position
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of 11.45 radians, and the second and fourth motors must turn to the right at an angular
position of 23.11 radians. According to the experimental results, the angular position
changes of the motors are presented in Figure 11a,b. A similar situation was obtained in
this experiment, and the obtained values are presented in Table 4. In particular, the MSE
and ISE values were lower in the sliding mode controller, and the targeted reference values
were reached in a shorter time, resulting in lower settling times.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 27 
 

kinematic equations, the first and third motors must turn to the right at an angular posi-
tion of 11.45 radians, and the second and fourth motors must turn to the right at an angu-
lar position of 23.11 radians. According to the experimental results, the angular position 
changes of the motors are presented in Figure 11a,b. A similar situation was obtained in 
this experiment, and the obtained values are presented in Table 4. In particular, the MSE 
and ISE values were lower in the sliding mode controller, and the targeted reference val-
ues were reached in a shorter time, resulting in lower settling times. 

 
(a) 

 
(b) 

Figure 11. (a) Position change of the motors for case three. (b) Position change of the motors for 
case three. 

Table 4. Outcomes of the case three applications. 

Case 3 Settling Time (s) MSE ISE 
Motor 1 SMC 0.471 6.30 × 10−4 3.96× 10−7 
Motor 3 SMC 0.468 5.59 × 10−4 3.13× 10−7 
Motor 1 PID 0.532 0.0034 1.16 × 10−5 
Motor 3 PID 0.518 0.0026 6.87 × 10−6 
Motor 2 SMC 0.95 0.0039 1.49 × 10−5 
Motor 4 SMC 0.946 0.0035 1.20 × 10−5 
Motor 2 PID 0.959 0.0114 1.29 × 10−4 
Motor 4 PID 0.951 0.0095 9.07 × 10−5 

Figure 11. (a) Position change of the motors for case three. (b) Position change of the motors for
case three.

Table 4. Outcomes of the case three applications.

Case 3 Settling Time (s) MSE ISE

Motor 1 SMC 0.471 6.30 × 10−4 3.96× 10−7

Motor 3 SMC 0.468 5.59 × 10−4 3.13× 10−7

Motor 1 PID 0.532 0.0034 1.16 × 10−5

Motor 3 PID 0.518 0.0026 6.87 × 10−6

Motor 2 SMC 0.95 0.0039 1.49 × 10−5

Motor 4 SMC 0.946 0.0035 1.20 × 10−5

Motor 2 PID 0.959 0.0114 1.29 × 10−4

Motor 4 PID 0.951 0.0095 9.07 × 10−5
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4.4. Case Four

Finally, we aimed for the moving table to orient itself from the initial coordinates
x = 0, y = 0, z = 15, and θ = 0o to the final coordinates x = 0, y = 0, z = 15 cm, and
θ = 10o in 1.5 s. In other words, the movable table was intended to rotate only 10 degrees to
the right around the x-axis without any translational movement. In order for this reference
to be realized by the system, according to the kinematic equations of the system, the
first and third motors must turn leftward at an angular position value of −7.21 radians,
and the second and fourth motors must turn rightward at an angular position value of
19.15 radians. According to the experimental results, the angular position changes of the
motors are presented in Figure 12a,b. It is inevitable that different torque values affect the
motors in the orientation movement, which is one of the most important features of the
desired movement. When Figure 12a,b and Table 5 are examined, the performance of the
sliding mode controller is quite better than that of the classical PID controller. Although
higher torque values affected the motor shafts, the sliding mode controller was not affected
by this situation and successfully performed these difficult reference trajectories faster and
with lower error values.
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Table 5. Outcomes of the case four applications.

Case 4 Settling Time (s) MSE ISE

Motor 1 SMC 0.321 2.72 × 10−4 7.39 × 10−8

Motor 3 SMC 0.317 2.65 × 10−4 7.04 × 10−8

Motor 1 PID 0.402 0.0018 3.08 × 10−6

Motor 3 PID 0.384 0.0014 2.03 × 10−6

Motor 2 SMC 0.791 0.0019 3.52 × 10−6

Motor 4 SMC 0.787 0.0019 3.78 × 10−6

Motor 2 PID 0.823 0.0065 4.22 × 10−5

Motor 4 PID 0.805 0.0054 2.91 × 10−5

4.5. Case Five: Experimental Outcomes of Producing a Real Part

In this part of the experimental study, real parts were produced using the designed
system and the results are shared herein. By using printers with degrees of freedom of more
than three axes, limitations, such as the need for support in the manufacture of complex
parts, are eliminated, and the print time is reduced due to the use of a 5-DOF parallel
mechanism. In addition, due to the possibility of defining the print directions of the parts,
increasing the strength of the final part can be achieved. By using a five-axis 3D printer,
the parts that normally require support with angles greater than 45 degrees can be printed
without the need for a support system and do not use a support system at all. It is expected
that due to the lack of support, a significant improvement is achieved in the surface quality
of the final product, and the strength of the final piece increases due to the ability to print
in different directions. The speed and quality of printing also increase, and the cost of
printing decreases.

According to the advantages of the five-axis printer compared to the three-axis printer,
it is necessary to print a part using the three-axis printer. Therefore, to print the part using
both printers, it is necessary to check the output parameters and examine the advantages
and disadvantages of both printers. According to the conducted studies, it is expected that
the surface quality of the part produced using a five-axis printer is better than that of a
three-axis printer. Among the reasons for the superiority of the surface quality in five-axis
printing, parts that need support for manufacturing can be printed without support. In
five-axis printing, the direction of the nozzle can always be set perpendicular to the surface,
which is known as tangential printing. In the following, the same part is produced with
two different printers, and different parameters in the part produced by each printer are
compared with each other. The selected piece for this research was an elbow-shaped
pipe. This piece was produced once by a three-axis printer (Figure 13a,b) and another
time using a five-axis printer (Figure 14a,b). In each of the devices, parameters such as
print time, surface quality, appearance of the part, etc., were checked and compared with
each other.

According to the examination of the parts produced by both methods and due to
the layer-by-layer method of creating a 3D printer, the surface on which the nozzle is
perpendicular during printing has better mechanical properties than the other direc-
tions. On this basis, the part produced with a five-axis printer is stronger than the
three-axis mode.

Also, due to the fact that during the removal of the support, the surface of the piece
is damaged and becomes rougher, parts printed with a 3D printer have a lower level of
quality. In addition, when printing perpendicular to the surface in the five-axis print-
ing, a smoother surface texture is observed on the surface of the parts produced using
this method. The production speed for the part shown in Figure 14, with the five-axis
method being approximately three times that of the part produced in Figure 13 with the
three-axis method.
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Regarding the temperature of the printing parts, considering that the material se-
lected for printing was PLA, the standard temperature range for printing is approximately
190 to 220 degrees Celsius. In this research, the printing temperature was 200 degrees
Celsius. Additionally, Simplify 3D software, which was used to produce the G-codes of
this part, adjusted the temperature of the layers of the different parts by adjusting the print
speeds at different stages, and hence, there were no special complications or distortions of
the surfaces of the parts due to the lack of adjustment of the print temperature.
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5. Discussion

The research introduces a novel robotic system with a parallel kinematic framework,
including five degrees of freedom. This system represents a significant advancement in
additive manufacturing technology. The system is notable for its parallel kinematic struc-
ture, which allows for increased precision and the possibility of better operating speed.
Furthermore, the ability to rotate along the x and z-axes facilitated the creation of intricate
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product geometries, hence expanding the range of potential applications in numerous
industries. The potential benefits of this design for the industry include enhanced product
quality, expedited production processes, and the simplified manufacturing of intricate
components. Moreover, an increased number of degrees of freedom provides designers and
engineers with a greater level of adaptability in the manufacturing environment. Neverthe-
less, more investigation and analysis are required to facilitate the commercialization of this
innovative design and assess its feasibility on a large-scale industrial level. For instance,
the inclusion of the nozzle architecture in 3D printers is necessary for the system, and it is
vital to conduct performance evaluations of the system. Ongoing work is being conducted
on the system, and further studies are scheduled to assess the production performance
of the system. Furthermore, its purpose is to assess the system’s control performance in
relation to newly established control strategies. Furthermore, the investigation will assess
the appropriateness of the design for various sectors of the industry and its superiority
compared to alternative manufacturing techniques.

In future work, material production tests will be carried out by adding a nozzle
and a drilling component to the designed system. In addition, fractional order PID and
adaptive sliding mode control methods will be developed to further strengthen the control
performance of the system.
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