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Abstract: This study investigates the influence of positional isomerism on the physicochemical
characteristics of polymeric matrices by examining polyo-anisidine (POA) and polyp-anisidine
(PPA) in conjunction with TiO2 nanoparticles. The synthesis of POA@TiO2 and PPA@TiO2 involved
chemical oxidative polymerization. X-ray diffraction analysis revealed the anatase structure of
TiO2 nanoparticles. Transmission electron microscopy confirmed the successful integration of TiO2

nanoparticles within the polymer matrix. Moreover, FTIR and UV–Vis spectroscopy confirmed the
effective interaction between the nanoparticle and the polymer. TGA indicated that POA@TiO2

exhibited a lower weight loss than PPA@TiO2, suggesting an enhancement in thermal stability.
Although the incorporation of TiO2 nanoparticles led to a reduction in the electrical conductivity of the
pristine polymers (PPA and POA), the resultant nanocomposites retained high conductivities within
the range of 0.08 to 0.34 S.cm−1. Furthermore, the POA-based polymer matrix displayed promising
electrochemical properties. Significantly, the adherence of the POA layer to TiO2 nanoparticles
suggests potential practical applications.

Keywords: poly(o-anisidine); poly(p-anisidine); titanium dioxide; isomers; electrochemical properties

1. Introduction

Conducting polymers (CPs) play an important role in material nanoscience and tech-
nology [1] due to their exceptional characteristics and versatile applications. These poly-
mers are characterized by polyconjugated structures, which endow them with distinct
electrical properties and stability, setting them apart from conventional polymers [1]. These
polyconjugated structures have revolutionized the development of various electronic and
electrochemical devices, leading to widespread applications in diverse areas [2], including
metallic coatings, diodes, sensors, and microelectronic devices [2–4].

The continuous advancement of CPs and nanocomposites has brought attention to
the impact of isomeric functional groups on their properties, highlighting the need for in-
depth investigations in this area. Understanding how the positioning of functional groups
within isomeric polymers affects their behavior and characteristics is crucial for optimizing
their performance in various technological applications. They have an essential role in
the domain of material science and technology [1]. Polyconjugated structures present in
conducting polymers are widely used to determine electrical properties and their stability,
which are unique to other conventional polymers [1].
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Among the different types of conducting polymers, polyaniline (PAni) and polypyrrole,
along with their derivatives, hold particular significance in both academic research and
industrial applications [5]. These polymers exhibit a unique combination of electrical
conductivity, mechanical flexibility, and chemical stability, making them highly desirable
for a wide range of technological advancements. Researchers have extensively explored
their properties and functionalities, paving the way for their integration into various
cutting-edge technologies.

Given their ability to conduct electricity, these polymers have found use in the devel-
opment of rechargeable batteries, contributing to the ongoing quest for more efficient and
sustainable energy storage solutions. Moreover, their application to metallic coatings has
facilitated the production of corrosion-resistant materials, enhancing the durability and
longevity of various industrial components. Additionally, their role in the field of sensors
has enabled the creation of highly sensitive and selective devices for detecting a wide range
of substances and environmental changes. Furthermore, their integration into diodes, tran-
sistors, and microelectronic devices has revolutionized the landscape of modern electronics,
enabling the development of smaller, faster, and more efficient electronic components.
Continuous research and development in this field has not only expanded the fundamental
understanding of conducting polymers but has also facilitated the development of novel
materials with enhanced properties and functionalities. As a result, conducting polymers
continue to be a key area of focus for scientists and engineers, driving innovation and
progress in the realm of material nanoscience and technology.

Anisidine is a compound with a methoxy-aromatic amine group (methoxy aniline),
considered a pollutant decomposition product of azo dyes. The methoxy (-OCH3) group po-
sition has been specified between the three isomers of ortho-, meta-, and para-anisidines [6].
It is inexpensive and has good solubility in water [7]. Additionally, poly(o-anisidine) is
a polyaniline derivative with high stability and good mechanical properties. However,
regarding human health hazards, it is classified as an inhalation toxicant due to its ability
to form methemoglobin associated with humans and found in cats [6]. On the other hand,
poly (P-anisidine) is a polyaniline isomer that increases a material’s specific capacitance
and presents high stability as well as poly(o-anisidine) due to the methoxy group. Both
polymers exhibit interesting characteristics such as high surface areas, electrochemical
stability, and excellent redox [1].

Over the past decades, semiconductor photocatalysis has attracted considerable at-
tention as an affordable and uncomplicated technology for wastewater treatment. Thus,
extensive research has been conducted on nanostructured metal-oxide (MO) semiconduc-
tors such as TiO2 [8,9]. Despite being one of the more commonly employed photocatalytic
materials [10], TiO2 has a relatively wide band gap ranging from 3.0 to 3.3 eV [8,11]. As
a result, bare TiO2 only exhibits photoactivity under UV excitation, making it a disad-
vantage from this perspective. For this reason, researchers are exploring and developing
TiO2-based photocatalyst systems with an improved visible-light response [10,11]. This
effect has been obtained by coupling conducting polymers (PCs) with TiO2 photocatalysts,
improving TiO2 photocatalytic efficiency [8,12]. However, conjugated polymers and their
derivatives can act as photosensitizers and have shown excellent stability due to their
extending π-conjugated electron systems. Therefore, the synergistic impact of combining
these two types of materials (CPs and TiO2) to create a composite (CP@TiO2) may enhance
one another and improve photocatalysis features including stability, quick reaction, and
recovery [13]. On the other hand, pure TiO2 is typically considered an insulating material
that is known for its high surface area. Hence, incorporating TiO2 into a CP matrix can
lead to synergistic effects and increase the available surface area for electrolyte interactions,
potentially improving charge storage and increasing electrical conductivity and electro-
chemical properties [14]. Understanding the interplay between phase structure and TiO2
addition is crucial for tailoring materials to meet specific requirements in photocatalyst and
energy storage applications.
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The main objectives of this work are to highlight the important role of a functional
group’s position in isomers for polymer and nanocomposite properties, as well as to
characterize the final composite obtained by doped isomers with TiO2 oxide such as FTIR,
XRD, diffraction, TG analysis, and electrochemical properties.

2. Materials and Methods
2.1. Materials and Chemicals

The two isomers of anisidine (monomers), P-Anisidine (PA) and O-Anisidine (OA)
(from Aldrich, Madrid, Spain.), were used as received. Chemicals such as perchloric acid
(HClO4, 70% purity), hydrochloric acid (HCl, 37% purity), titanium (IV) oxide (TiO2, 99.98%
purity), ammonium persulfate (APS, 98% purity), N-methyl-2-pyrrolidone (NMP), and
ammonia solution (NH4OH, 25% purity) used in this work were of analytical purity and
supplied by Merck KGaA (Darmstadt, Germany). The ultrapure water used in all the
experiments was obtained from the Elga-Lab Water-Pure lab system.

2.2. Chemical Synthesis of Hybrid Materials

The two polymers (PPA and POA) and their corresponding nanocomposites with
TiO2, PPA@TiO2, and POA@TiO2 were prepared via chemical oxidation [15–17]. Firstly, the
desired TiO2 was dispersed in (1M) HCl under magnetic stirring for 30 min to activate the
surface of TiO2 nanoparticles. Afterward, 0.25 mol of PA or OA monomers were prepared
and preserved at room temperature in HCl. We added 0.5 g of a TiO2-activated mass to the
previous solution, stirred it for 1 h to obstruct nanoparticle agglomeration, and allowed
the electrostatic interaction to deposit monomers onto the TiO2 surface. Then, an APS (1M)
was added dropwise at room temperature for 24 h. Afterward, the precipitates were placed
in 50 mL of NH4OH (1M) at 25 ◦C while stirring for 2 h. Finally, the resultant mixtures
were filtered, rinsed several times with H2O, and dried for 24 h at 65 ◦C [15,18,19].

Figure 1 depicts the polymerization process of PPA@TiO2 and POA@TiO2 nanocom-
posites [20]. In an acidic environment, the surface charge of TiO2 becomes positive, causing
Cl– ions to adhere to the nanoparticle surface to balance the positive charges. Simulta-
neously, the monomers (PA or OA) undergo transformation into cationic anilinium ions
under the same acidic conditions. This process causes electrostatic attraction between the
Cl– ions attached to the surface and the cationic anilinium ions.
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Figure 1. Schematic representation of polymer@TiO2 nanocomposite preparation.

2.3. Physicochemical Characterization

The crystal structures of the prepared samples were studied using a Bruker CCD-Apex
(Madison, WI, USA) model X-ray diffractometer (XRD). The specific micromorphology of
the samples was observed by transmission electron microscopy (JEOL-JEM-2010; Peabody,
MA, USA). A Hitachi U-3000 spectrophotometer was used to obtain UV–visible spectra. A
Bruker–Alpha spectrophotometer (Varian, Inc., Palo Alto, CA, USA) was used to measure
FT–IR and evaluate the functional units of the samples. A Hitachi STA–7200 instrument
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(Fukuoka, Japan) was used to perform thermogravimetric analysis (TGA) under nitro-
gen. About 10 mg of nanocomposites were heated to 900 ◦C with a heating rate of
20 K.min−1 [18,19].

2.4. Electrochemical Analyses

We studied the electrochemical behavior of the samples using cyclic voltammetry
(CV). The material was initially dissolved in NMP. Subsequently, the dissolved polymers
were extracted from the nanocomposites [15]. Afterward, a small volume of the resultant
solution was deposited onto a glassy carbon electrode with a geometrical area of 0.07 cm2.
The solution was dried using an infrared lamp to eliminate NMP. Electrochemical tests were
conducted with a conventional 3–electrode cell setup. RHE (reversible hydrogen electrode)
and platinum (Pt) were employed as reference and counter electrodes, respectively. A 1M
solution of HClO4 was used as the electrolyte for all experiments, which were performed
at a 50 mV.s−1 scan rate.

2.5. Electrical Conductivity Characterization

We used LucasLab resistivity equipment (Rochester, NY, USA) with 4-in-line probes to
perform conductivity assessments. Before taking measurements, the materials underwent
a drying process for 24 h. Pellets, each possessing a diameter of 0.013 cm, were fashioned
using a mold of FTIR. These pellets were created by subjecting the materials to a pressure
of 7.4 × 108 Pa.

3. Results and Discussion
3.1. FTIR Analysis

Figure 2a displays the FTIR spectra of TiO2 nanoparticles, POA, PPA, POA@TiO2, and
PPA@TiO2. The locations of characteristic bands associated with the respective chemical
bonds are summarized in Table 1.
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Figure 2. (a) FTIR analysis and (b) XRD powder diffraction patterns of TiO2 nanoparticles and PPA,
POA, POA@TiO2, and PPA@TiO2 nanocomposites.
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Table 1. IR peaks of TiO2 nanoparticles and PPA, POA, POA@TiO2, and PPA@TiO2 nanocomposites.

Peak Assignment POA PPA POA@TiO2 PPA@TiO2 TiO2

–NH Stretching vibrations 3185 3198 3271 3246 //
–CH Stretching vibrations 2933 2998 2846 2840 //
Quinonoid 1591 1572 1581 1566 //
Benzenoid 1499 1504 1508 1501 //
–C–N 1338 1375 1393 1305 //
B–N+H–B & Q=N+H–B 1018 1040 1024 1024 //
C–O aromatic 1116 1154 1123 1166 //
CH3 group 1418 1450 1449 1443 //
C–O–C 1283 1295 1246 1248 //
TiO // // 716–556 729–571 825–544

The bands of TiO2 nanoparticles are associated as follows: the band at 3449 cm−1 is
ascribed to stretching vibrations of the surface OH– or adsorbed H2O molecules; a band at
1634 cm−1 can be assigned to a vibration of –OH on the surface of TiO2, and the bands at
825 cm−1 and 661 cm−1 are due to Ti–O stretching modes [21].

The results in Table 1 demonstrate some differences between PPA and POA. The
IR spectrum of pure POA exhibited a characteristic absorption band at 3185 cm−1 due
to N–H stretching vibrations [22–24]. The bands at 2933 cm−1 are indicative of C–H
stretching vibrations [25]. The two bands at 1591 cm−1 and 1499 cm−1 correspond to the
quinoid and benzenoid groups, respectively [26,27]. The band at 1116 cm−1 is associated
with C–O aromatics [12]. Moreover, a band appearing at 1418 cm−1 may be due to the
presence of a CH3 group or aromatic characteristics [28]. The band observed at 1283 cm−1

can be attributed to the C–O–C vibrations of the ether group [12,29]. Additionally, the
bands observed at 1146 cm−1 and 1338 cm−1 may be related to C–N and C=N stretching
modes [22,30]. The band at 1018 cm−1 corresponds to the 1–4 substitution on the benzene
ring [26,27] and the bands at 925 cm−1 and 809 cm−1 may be due to the C–H out–plane
bending vibrations of 1,2,4 trisubstituted aromatic rings [23]. Therefore, these distinctive
spectral features confirmed successful POA formation by FTIR spectroscopic analysis.

The findings presented in Table 1 highlight notable disparities between PPA and
POA, notably in the position and intensity of their respective bands. IR spectra reveal that
POA@TiO2 and PPA@TiO2 nanocomposites exhibit the principal characteristic bands found
in pure polymers (POA and PPA). However, the discernible shift in all bands suggests
an interaction between pure polymers and TiO2. Moreover, the presence of Ti–O bands
between 716 cm−1 and 556 cm−1 in the FTIR spectra of nanocomposites serves as definitive
evidence of the successful integration of TiO2 into the polymer matrix. This finding
substantiates the notion of a chemical interaction occurring between TiO2 nanoparticles and
the polymer structure, influencing spectral characteristics and affirming their amalgamation
within composite materials [28,31].

3.2. XRD Analysis

The XRD patterns depicted in Figure 2b illustrate the XRD analyses of the POA
polymer, PPA polymer, TiO2 nanoparticles, and PPA/TiO2, POA/TiO2 nanocomposites.
The XRD pattern of PPA and POA conducting polymers exhibits a broad peak around 2θ
(20◦–30◦). This specific value indicates an amorphous nature [30], possibly attributed to
polymer chains scattering at interplanar spacings [23].

The XRD of both the POA@TiO2 and PPA@TiO2 nanocomposites was compared to
those of the polymers (PPA and POA) and revealed distinct features. Notably, prominent
peaks were observed at 2θ values of 25.28◦, 36.9◦, 37.81◦, 38.57◦, 48.05◦, 53.85◦, 55.03◦,
62.12◦, 62.69◦, and 68.76◦ and were ascribed to the (101), (103), (004), (112), (200), (105), (211),
(204), and (116) crystal planes of anatase TiO, respectively [28,32]. These findings decisively
confirm the presence of TiO2 within both POA and PPA matrices. The XRD analysis also
indicated that TiO2 retains its structural integrity even after dispersion within the polymer
matrix following the polymerization process [28]. Additionally, a small, low-intensity peak
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around 32◦, observed specifically in the hybrid material, likely corresponds to the presence
of polymer@TiO2 materials via a chemical oxidation method [21], further supporting the
successful integration and structural integrity of the hybrid materials.

3.3. Electrical Conductivity (EC)

The EC of polymers hinges significantly on the mobility and quantity of charge
carriers, closely linked to the material’s morphology and chemical composition. Factors
such as type, crystallinity degree, and tactile properties are pivotal in evaluating polymers’
electrical traits [33,34]. EC was determined for all products that underwent the previously
described experimental conditions; the results are displayed in Table 2. As shown in Table 2
the polymer solids exhibited notably high conductivity at standard room temperature.
Specifically, the POA sample displayed a conductivity of approximately 0.34 S·cm−1,
whereas the PPA sample showed a lower conductivity of 0.22 S·cm−1. This discrepancy
confirms that the PPA sample holds the least concentration of emeraldine salts, whereas
the POA boasts the highest concentration. However, the introduction of nanocomposites
resulted in a considerable decrease in conductivity levels. This reduction primarily stems
from stereochemical variations among these nanocomposites.

Table 2. The EC values of POA, PPA, and PPA@TiO2, POA@TiO2 nanocomposites.

Samples PPA@TiO2 POA@TiO2 PPA POA

EC (S.cm−1) 0.08 0.09 0.22 0.34

The oxidized polymer displayed an almost linear structure, contributing to a minimal
ionization potential because of the robust delocalization of electrons. This structural char-
acteristic significantly impacts its conductivity. In this context, the decline in conductivity
of nanocomposites suggests that the presence of TiO2 nanoparticles hampers or disrupts
electron transportation pathways within the polymers. This interference likely occurs by
potentially diminishing the length of polymer chains, which affects the material’s overall
conductivity.

3.4. UV–Visible Analysis

Figure 3a presents the UV–visible spectra of POA, PPA, and PPA@TiO2, POA@TiO2
nanocomposites, where these materials were dissolved in an NMP solution. The three
samples show two peaks: A peak near 298–378 nm, which can be attributed to transitions
in the benzenoid structure [35,36], and a peak around 452–530 nm, which may correspond
to quinine–imine group transitions [36,37]. These results reveal that polymer deprotonation
by NH4OH forms emeraldine bases [38].
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Intense band changes after inserting TiO2 nanoparticles and a notable redshift of
the peaks were observed for pure polymers compared to nanocomposites. The redshift
distribution of POA@TiO2 was larger than PPA@TiO2 likely due to interchain species,
which profoundly impact the conjugated polymers’ process [28]. These results are in accord
with nanocomposites’ decreased conductivity (various transitions are included in Table 3).
The continuous variation in the UV–visible peaks’ wavelength and intensity confirms the
interaction between polymers and nanoparticles.

Table 3. Absorption bands and redox peaks of prepared materials.

Materials Redox Peak (V) Absorption Band (nm)

Epa1 Epc1 Epa2 Epc2

PPA 0.40 0.36 0.04 0.74 0.71 0.03 328 503
POA 0.41 0.30 0.11 0.67 0.51 0.16 298 530

POA@TiO2 0.45 0.28 0.17 0.67 0.56 0.11 314 512
PPA@TiO2 0.43 0.33 0.10 / / / 318 452

3.5. TGA Analysis

In this work, TGA analysis was used to test the thermal stability of TiO2 nanoparticles,
POA, PPA, POA@TiO2, and PPA@TiO2. The TGA profiles as a function of temperature in
all synthesized materials are shown in Figure 3b.

The TGA curve of TiO2 presents minor weight loss below 450 ◦C, which can be
associated with the elimination of H2O, ethanol, and partial dihydroxylation of TiO2
nanoparticles [12].

The TGA of all samples underwent four weight loss steps. An initial weight loss (5%)
at temperatures over 120 ◦C was attributed to the evaporation of entrapped H2O, solvent,
and monomers in the samples [39–41]. The second step of decomposition takes place at
160 ◦C to 450 ◦C and corresponds to the elimination of the oxidant. The third step of weight
loss was observed in the range of 300 ◦C–500 ◦C and attributed to the removal of the acid
dopant. Finally, the complete decomposition of polymer chains began near 500 ◦C and
continued up to 630 ◦C for PPA and its nanocomposite PPA@TiO2 [41]. By contrast, it was
700 ◦C for POA, and even after 700 ◦C, total decomposition did not occur [42]. POA@TiO2
showed lower weight loss between 410 ◦C and 800 ◦C and the residue remaining in this
zone provided an approximate estimate of filler content.

Moreover, at temperatures up to 600 ◦C, 62.5% of the PPA and 47% of the POA had
decomposed. The POA@TiO2 nanocomposite presented greater thermal stability with
a total mass loss of 25%. By contrast, PPA@TiO2 presented a higher mass loss of 32%.
These results indicate that the interaction between the TiO2 particles and polymer chains
may have limited the thermal motion of TiO2 particles and provided thermal stability to
nanoparticles [43].

The weight mass loss of the three prepared polymeric samples displayed finite dif-
ferences in their thermogravimetric analysis, indicating a minor decrease in the polymers’
weight mass loss compared to nanocomposites. Therefore, the nanocomposites’ thermal
degradation presents higher stability than polymers. Additionally, the results show that
the TGA curve of POA@TiO2 lost less weight than the PPA@TiO2 nanocomposite.

3.6. Electrochemical Study

CV was performed to test the polymers’ electroactivity. Figure 4 shows the CV
curves of PPA, POA, POA@TiO2, and PPA@TiO2 materials obtained in HClO4 (1M) at
50 mV.s−1 scan rate. Regarding POA, three overlapping redox processes were observed.
The first occurred at 0.45/0.20 V and resulted in a potential peak separation (Ep) of 250 mV.
Another redox pair at 0.86/0.74 V presented an Ep close to 120 mV. This redox process was
assigned to the leucoemeraldine/emeraldine and emeraldine/pernigraniline transitions,
respectively [23,30].



Appl. Sci. 2024, 14, 2106 8 of 11

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 13 
 

 
total mass loss of 25%. By contrast, PPA@TiO2 presented a higher mass loss of 32%. These 
results indicate that the interaction between the TiO2 particles and polymer chains may 
have limited the thermal motion of TiO2 particles and provided thermal stability to nano-
particles [43]. 

The weight mass loss of the three prepared polymeric samples displayed finite dif-
ferences in their thermogravimetric analysis, indicating a minor decrease in the polymers’ 
weight mass loss compared to nanocomposites. Therefore, the nanocomposites’ thermal 
degradation presents higher stability than polymers. Additionally, the results show that 
the TGA curve of POA@TiO2 lost less weight than the PPA@TiO2 nanocomposite. 

3.6. Electrochemical Study 
CV was performed to test the polymers’ electroactivity. Figure 4 shows the CV curves 

of PPA, POA, POA@TiO2, and PPA@TiO2 materials obtained in HClO4 (1M) at 50 mV.s−1 
scan rate. Regarding POA, three overlapping redox processes were observed. The first 
occurred at 0.45/0.20 V and resulted in a potential peak separation (Ep) of 250 mV. Another 
redox pair at 0.86/0.74 V presented an Ep close to 120 mV. This redox process was assigned 
to the leucoemeraldine/emeraldine and emeraldine/pernigraniline transitions, respec-
tively [23,30]. 

The POA had similar CV shapes and peak potentials to the POA@TiO2 nanocompo-
site; however, the peak pairs were shifted to higher potentials and lower intensity. The CV 
profile of the PPA@TiO2 nanocomposite shows a unique redox process corresponding to 
0.43/0.33 V and Ep = 100 mV, which corresponds to the leucoemeraldine/pernigraniline 
reaction [15]. Therefore, CV results may have been due to an earlier (lower) POA oxida-
tion potential, i.e., higher POA reactivity than PPA [39]. Additionally, the anodic and ca-
thodic peaks of PPA were symmetrical (EP/2C = EP/2a), indicating that the relevant redox 
events were highly reversible [40]. This reversible system corresponds to the p-doping of 
the polymer (oxidized) and n-doping of the polymer (reduced) represented by the oxida-
tion wave and reduction wave, respectively. These findings show that the electrochemical 
properties of anisidine isomers depend on functional groups’ (-OCH3) relative position to 
one another, their arrangement in the polymer chain, and the existence of metal oxides in 
the polymer matrix. 

 

Figure 4. CV recorded on glassy carbon electrode modified by synthesis samples in HClO4 (1 M) at a
50 mV.s−1 scan rate.

The POA had similar CV shapes and peak potentials to the POA@TiO2 nanocomposite;
however, the peak pairs were shifted to higher potentials and lower intensity. The CV
profile of the PPA@TiO2 nanocomposite shows a unique redox process corresponding to
0.43/0.33 V and Ep = 100 mV, which corresponds to the leucoemeraldine/pernigraniline
reaction [15]. Therefore, CV results may have been due to an earlier (lower) POA oxidation
potential, i.e., higher POA reactivity than PPA [39]. Additionally, the anodic and cathodic
peaks of PPA were symmetrical (EP/2C = EP/2a), indicating that the relevant redox events
were highly reversible [40]. This reversible system corresponds to the p-doping of the
polymer (oxidized) and n-doping of the polymer (reduced) represented by the oxidation
wave and reduction wave, respectively. These findings show that the electrochemical
properties of anisidine isomers depend on functional groups’ (-OCH3) relative position to
one another, their arrangement in the polymer chain, and the existence of metal oxides in
the polymer matrix.

3.7. TEM Analyses

Figure 5 displays TEM images of TiO2 nanoparticles and POA@TiO2 and PPA@TiO2
nanocomposites. TiO2 presents an almost spherical shape and uniform nanoparticle size
with a diameter of about 100 nm, similar to those reported in the literature [44–46]. More-
over, all products had a spherical morphology, which was likely induced by absorbing
monomers on the surface of TiO2 through H-bonding and electrostatic attraction after
HCl acidified the TiO2 spheres. The TiO2 surface was modified during the acidification
stage, and no other surface treatments were necessary [43]. Moreover, TEM images of the
nanocomposites indicate that TiO2 particles were successfully dispersed into the polymer
matrix [47].
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4. Conclusions

In this study, two polymers incorporating the positional isomers para-anisidine (PPA)
and ortho-anisidine (POA), along with their respective polymer@TiO2 nanocomposites,
were prepared via in situ chemical oxidation with HCl as a dopant and APS as an oxidant.
The physicochemical properties of all samples were influenced by positional isomeric
differences. Significantly, POA demonstrated higher electrical conductivity and favorable
electrochemical responses. Various analytical techniques, including XRD, TEM, FTIR, and
UV–visible spectroscopy, confirmed the successful integration of TiO2 into the polymer
matrix. This confirmation was evident through observed shifts in the peaks and bands
within the spectra, indicating interactions between nanoparticles and the polymer. TGA
revealed that the presence of nanocomposites improved the thermal stability of the poly-
mers. Additionally, the electrochemical characteristics of POA@TiO2 outperformed those
of PPA@TiO2.
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