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Abstract: In this study, an antimicrobial plant-based film was developed using pectin which is incor-
porated by different percentages of nanoemulsified trans-cinnamaldehyde (TC). The nanoemulsion
of TC was incorporated into pectin to form films containing TC at concentrations of 5.00%, 3.33%,
2.50% and 2.00% (w/w). The nanoemulsion of TC was formed by using soybean lecithin as an emulsi-
fier and had a zeta potential of −57 mV and an average size of 106 nm. The analysis showed that the
addition of emulsified TC enhanced the light barrier properties, but the opacity of films increased due
to the increase in light absorption, coalescence, and light-scattering phenomena. Films containing the
nanoemulsion of TC exhibited reduced tensile strength and elasticity due to structural discontinuities
in the film network caused by the presence of the nanoemulsion of TC, while elongation at break
increased for TC concentrations of 2.50% and 2.00%. The films retained their infrared spectra, but
their thermal stability decreased slightly. The incorporation of TC nanoemulsion significantly reduced
the glass transition temperature, as shown by the differential scanning calorimetry analysis. The
active films showed antimicrobial activity against Listeria innocua and Escherichia coli, indicating their
potential for various food applications.

Keywords: active film; trans-cinnamaldehyde; food packaging; nanoemulsion; antimicrobial activity

1. Introduction

The preservation of food is greatly influenced by the role of food packaging, which
shields it from chemical, biological, environmental, and physical harm during transporta-
tion and storage. Effective food packaging ensures the safe distribution of products to
consumers in optimal conditions. In addition, microbial contamination causes food to
spoil and is responsible for over 25% of food lost before it is consumed [1]. The excessive
use of petroleum-based plastics has led to serious environmental problems, with annual
global plastic production exceeding 350 million tons. Alarmingly, our oceans contain
approximately 85% of plastic waste, posing a serious threat to the environment and hu-
man health [2]. Food packaging accounts for approximately 45% of non-biodegradable
plastics [3]. In response to growing environmental concerns and the demand for natural
compounds, scientists have been focused on developing biodegradable food packaging
with biological activities due to their environmentally friendly properties. Biopolymer-
based materials derived from plant, animal, and microbial sources have attracted attention.
These materials can be enzymatically degraded by microbes [4]. Over the past two decades,
extensive research has been conducted on biopolymers for food packaging applications as
alternatives to petroleum-based plastics [5,6]. Biopolymer packaging materials are naturally
derived from lipids, proteins, or polysaccharides [7]. Among these, polysaccharides such
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as cellulose, alginate, starch, chitosan, pectin, gum, carrageenan, and pullulan have great
potential for the development of food packaging [8,9]. In particular, pectin has attracted
considerable attention. Pectin is a group of structurally heterogeneous polysaccharides
widely distributed in the primary cell walls and middle lamella of plants. It consists of
β-(1-4)-linked D-galacturonic acid with galactose and rhamnose [10]. Its structural and
macromolecular properties vary depending on the used source [5]. Although apple po-
mace and citrus peel are the primary sources for commercial pectin production, there is an
increasing demand for alternative sources to obtain pectin with different functional groups
by more effectively utilizing food by-products [11,12]. Pectins have the carboxyl group of
the sugar moiety in their structure, which may be partially esterified with a methyl group
and partially or completely neutralized with one or more bases [13]. Based on the degree
of esterification (DE), pectin can be classified to low methyl pectin (LMP) with less than
50% esterification and high methyl pectin (HMP) with more than 50% esterification [11].
The pectin properties depend on many factors, mostly including the source, extraction
method, molecular weight, degree of methyl esterification, etc. [13]. Gel formation is one of
the most important properties of pectin. LMP forms gel in the presence of calcium ions,
which involves electrostatic interactions resulting in the formation of an eggbox model
stabilized by hydrogen bonds and van der Waals interactions between the methylated
groups and free carboxyl groups [14]. To prepare a pectin film-forming gel with adequate
mechanical strength, rupture strength and viscosity, the molecular weight needs to be
more than 300 kDa [13]. In the food industry, pectin finds various uses as a gelling agent,
thickening agent, and stabilizer. Additionally, its applications extend beyond food to
non-food sectors like the medical and pharmaceutical industries [11]. Due to its excellent
film-forming properties, biocompatibility, biodegradability and non-toxicity, pectin is con-
sidered also an effective biopolymer for the production of film packaging [15]. Pectin-based
films can be produced by different techniques such as solution casting and extrusion [16].
Because of its simplicity and the fact that it does not require special tools, solution casting
is the most commonly used method on a laboratory scale [13]. The amorphous structure of
pectin allows the incorporation of additives and facilitates their retention within the film
structure. This property makes pectin suitable for carrying active compounds like essential
oils, which could be applied to the production of active film packaging [17].

Pectin-based active packaging has great potential for food preservation applications.
Some studies reported practical examples of pectin-based packaging used for food preserva-
tion. Edible pectin film containing carvacrol and cinnamaldehyde successfully inactivated
Listeria monocytogenes on ham [18]. Reduced bacterial growth and increased oxidative sta-
bility were obtained for butter packaged with pectin-based film containing Carum copticum
essential oils [19]. In another study, pectin film containing clove essential oil were success-
fully preserved beam (Magalobrama ambycephala) fillet in the refrigerator for 15 days [20].

Essential oils (EOs) consist of various compounds such as terpenes, aldehydes,
fatty acids, phenols, ketones, esters and alcohols, have significant food preservation
potential [21,22]. EOs with the ability to disrupt and penetrate the bacterial cell wall
have shown interesting antimicrobial activities [23]. One important component is trans-
cinnamaldehyde (TC), which is a major constituent of cinnamon oil. It is widely used as
a flavoring agent and has agrichemical, antimicrobial, and anti-cancer properties. trans-
cinnamaldehyde is classified as safe for use in foods by the Food and Drug Administration
(FDA) [24,25]. It has antimicrobial activity against a wide range of foodborne pathogens,
including both Gram-positive and Gram-negative bacteria [26,27].

Direct incorporation of EOs into water soluble biopolymer matrices such as pectin
caused poor miscibility and phase separation. In addition, the free EOs in the film matrix
can undergo rapid migration and lose their activity for a short time. To overcome these
difficulties, the incorporation of encapsulated EOs instead of free EOs in film-forming
solutions could be applied [28]. Consequently, oil-in-water nanoemulsion (NE) has been
studied in various biopolymer-based active films [29–32].The use of the nanoemulsion
of bioactive compounds can contribute to the improvement of pectin film properties. A
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reduction in water sorption and water vapor permeability, as well as an increase in the
mechanical and biological properties of pectin film incorporated with the nanoemulsion of
Origanum majorana L. oil were reported by [28]. Pectin films containing the nanoemulsion
of copaiba oil also showed a decrease in water vapor permeability and an increase in
extensibility along with less stiffness, in addition to higher antimicrobial activity [33].

Therefore, this study aims to develop pectin-based films incorporating different con-
centrations of trans-cinnamaldehyde as an antimicrobial agent. The investigation will
evaluate the effect of trans-cinnamaldehyde concentration on the physical, thermal, me-
chanical, and biological properties of pectin films for food packaging applications. By
exploring the potential of trans-cinnamaldehyde-incorporated pectin films, this study con-
tributes to the creation of eco-friendly and sustainable packaging, aiming to prolong food
shelf life while mitigating plastic pollution.

2. Materials and Methods
2.1. Materials

Low methoxyl pectin (LMP) was obtained from Cargill in Baupte, France. LMP has an
esterification degree ranging from 22% to 28%, an acetylation degree between 20% and 23%,
and a carbohydrate content of 81.21%. Granular soybean lecithin was obtained from Acros
Organics in Geel, Belguim Glycerol and trans-Cinnamaldehyde (TC) of 99% purity was
acquired from Sigma-Aldrich in Steinheim, Germany. The bacteria used in this study were
obtained from DSMZ-Braunschweig, German Collection of Microorganisms. Tryptone Soy
Broth (TSB) and Tryptone Soy Agar plates (TSA) were purchased from Biokar Diagnostics,
headquartered in Beauvais, France.

2.2. Preparation of the Nanoemulsion of Trans-Cinnamaldehyde (NE)

To prepare oil-in-water (O/W) emulsions, a mixture of 10% (w/w) trans-cinnamaldehyde
and 2% (w/w) soybean lecithin as an emulsifier was blended via an Ultra-Turrax (IKA Werke
GmbH & Co, Staufen, Germany) with distilled water operating at 15,000 rpm for 6 min. The
emulsion was then subjected to two passes through a microfluidizer (Microfluidizer LM20,
Microfluidics Corp, Newton, MA, USA) at a pressure of 500 bar, followed by one pass at a
pressure of 1000 bar to obtain a nanoemulsion. The size distribution of the nanoemulsion
was determined to confirm its particle size distribution, while the Zeta potential was
measured to assess its stability.

2.3. Preparation of Films
2.3.1. Preparation of the Film-Forming Solution

To prepare film-forming solutions, pectin powder was dissolved in distilled water
at a concentration of 9% and 1% (w/w) of glycerol was added and mixed until complete
solubilization, which took approximately 4 h. The pectin solution was then combined with
the TC nanoemulsion at 4 different ratios of pectin to TC nanoemulsion (1:1, 2:1, 3:1, 4:1) to
produce the active film-forming solutions (P/NE:1, 2, 3 and 4) and mixed for a further 2 h.

2.3.2. Fabrication of Films

Films were prepared using the casting solvent method. Film-forming solutions were
spread onto glass plates using an electrically driven film applicator device (Unicoater
409, ERICHZEN, Hemer, Germany) equipped with a four-way film applicator with fixed
gap heights (Model 360, ERICHZEN, Hemer, Germany). The wet layer thickness was set
at 1000 µm (prior to drying). Subsequently, the films were dried in an oven (UNB 400,
Memmert, Büchenbach, Germany) at a temperature of 60 ◦C. The composition of the films
prepared at different ratios is presented in Table 1. Four samples, namely P/NE:1, P/NE:2,
P/NE/3, and P/NE:4, were obtained, containing 5.00%, 3.33%, 2.50%, and 2.00% (wt%) of
trans-cinnamaldehyde, respectively.
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Table 1. Composition of pectin films containing trans-cinnamaldehyde (TC).

Sample Names Composition of the Film TC Con. (% w/w)

Pectin (control) Pectin film 0%

P/NE:1 Pectin mixed with nanoemulsion
of trans-cinnamaldehyde at the ratio of 1:1(Pectin:NE) 5.00%

P/NE:2 Pectin mixed with nanoemulsion
of trans-cinnamaldehyde at the ratio of 2:1 (Pectin:NE) 3.33%

P/NE:3 Pectin mixed with nanoemulsion
of trans-cinnamaldehyde at the ratio of 3:1 (Pectin:NE) 2.50%

P/NE:4 Pectin imixed with nanoemulsion
of trans-cinnamaldehyde at the ratio of 4:1 (Pectin:NE) 2.00%

2.4. Characterization of the Nanoemulsion
2.4.1. Size Distribution

The average particle size and size distributions of the emulsion droplets were deter-
mined by using dynamic light scattering (DLS) with a Zetasizer Nano-ZS90 instrument
(Malvern Instruments Ltd., Worcestershire, UK) which is fixed at the angle of 90◦. To elimi-
nate multiple scattering effects and inter-droplet interactions, 1 mL of the nanoemulsion
was diluted with 10 mL of distilled water, which served as a dispersant. After allowing for
90 s of equilibrium, the measurements were conducted in triplicate or more. The droplet
size was described using the size average, while the polydispersity index (PDI) was used
to assess the size distribution.

2.4.2. Zeta Potential (ζ)

The Zetasizer Nano-ZS90 instrument from Malvern Instruments Ltd., Worcestershire,
UK, was used to determine the zeta potential. Electrophoretic mobility measurements
were executed with disposable cuvettes. For sample preparation, 1 mL of nanoemulsion
was combined with 10 mL of distilled water and thoroughly mixed. The Zeta potential
measurements were performed in triplicate, and the resulting average value was computed.

2.5. Films Characterization
2.5.1. Film Thickness

An electronic micrometer (Walmart 0–25mm, 0.001mm) was used to determine the
thickness of film samples. To calculate the average value, measurements were taken at a
minimum of five random locations with an accuracy of 0.001 mm.

2.5.2. Opacity and Light Transmission of Films

The film sample was cut into rectangular strips (9 mm × 40 mm) and was placed
in a spectrophotometer cell. Light transmission was measured at least three times at the
wavelengths of 280 and 600 nm using a spectrophotometer (UV-3100pc, VMR, Miami, FL,
USA). The empty spectrophotometer cell was used as the blank. Equation (1) was used to
calculate the opacity of the films:

O =
Abs 600

thickness
(1)

O (A × mm−1) is film opacity and Abs 600 is absorbance at 600 nm.

2.5.3. Color Measurements

The colorimetric parameters of the films were evaluated using a colorimeter (Spec-
trophotometer CM-2300d, Konica Minolta, Tokyo, Japan). A standard white plate (L* = 92.34,
a* = 1.03, b* = −1.65) was used as the background for color calibration. Chromaticity pa-
rameters including L* from black (0) to white (100), a∗ indicating red (+) to green (−) and
b* indicating yellow (+) to blue (−) present in the sample were measured. At least five
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points of each sample were selected to measure the color properties of the films. The total
color differences (∆E), whiteness (WI) and yellowness (YI) indexes were calculated for each
sample according to Equations (2), (3), and (4), respectively [34].

∆E =

√
( L∗ − L)2 + (a∗ − a)2 + ( b∗ − b)2 (2)

WI = 100 –
√
( 100 − L)2 + a2 + b2 (3)

YI = (142.86 × b)/L (4)

where L*, a* and b* are the color parameter values of the standard plate and L, a, and b are
the color parameter values of the film samples.

2.5.4. Water Activity

The water activity of the film samples was measured using a Novasina water activity
meter (Lab Swift-Aw Meter, Lachen, Switzerland) with an accuracy of ±0.010 aw. The
film samples were cut into 2 × 2 cm and were analyzed in triplicate at an average room
temperature of 23 ± 1 ◦C.

2.5.5. Mechanical Properties

Tensile strength (TS), elongation at break (%EB) and Young’s modulus (YM) were
measured according to the ASTM D882 standard method [35] using a tensile analyzer in-
strument (EZ-X Series, Shimadzu Company, Kyoto, Japan) with a 500 N load cell connected
with an autograph software version 1.5.6 (Trapezium X, Shimadzu Corporation, Japan).
Square film samples measuring 15 × 100 mm were prepared, and after conditioning at
RH = 54% (saturated solution of Mg (NO3)2) for 48 h. The film samples were then placed
between a pair of clamps with a gauge length of 50 mm each. The stretching occurred at
a crosshead speed of 10 mm/min. The mechanical parameters were obtained from the
force-deformation curves recorded using a computer using the given equations.

TS =
Force at break

cross − sec tional area of specimenion
(5)

EB (%) =
Change in length
Initial film length

× 100 (6)

YM = slope × Gauge lenght
cross − sectional area o f specimen

(7)

The cross-sectional area of the film was calculated using the width × the thickness.

2.5.6. Scanning Electron Microscopy

The study of the film structures was carried out using scanning electron microscopy
(SEM) using an FEI Quanta 250 FEG microscope at the “Centre Technologique des Mi-
crostructures” (CTµ) at the University of Lyon in Villeurbanne, France. Film samples
were applied to a flat steel holder and subjected to a vacuum coating process by cathodic
sputtering prior to microscopic analysis. The sample was coated under vacuum by ca-
thodic sputtering with 10 nm of copper before doing microscopy analysis and the analyze
performed at working distance around 10 mm and energy beam of e10 kV.

2.5.7. Differential Scanning Calorimetry Analysis (DSC)

To determine the thermal parameters DSC analysis was performed associated with
the endothermic peak areas on DSC thermograms. A Q 2000 DSC system (TA Instruments,
New Castle, DE, USA) was used for this purpose. Film pieces weighing approximately 5 mg
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were placed in a standard aluminum pan. The samples were subjected to a temperature
increase ranging from −20 to 220 ◦C. The temperature increases constantly at a rate of
10 ◦C/min. During the analysis, the chamber was purged with nitrogen gas at a flow rate
of 50 cm3/min. The glass transition temperature (Tg) was determined using TA Universal
Analysis Software [36] (https://www.tainstruments.com/).

2.5.8. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis of the films was performed using a thermogravimetric
analyzer instrument (TG 209, Netzsch Co., Selb, Germany). A total of 20 mg of each sample
was precisely weighed in alumina crucibles. The temperature program involved a range
from 20 ◦C to 600 ◦C, with a heating rate of 10 ◦C/min. All experiments were carried out in
a nitrogen atmosphere at a flow rate of 20 mL/min. Weight loss was monitored in relation
to temperature and time.

2.5.9. Attenuated Total Reflectance-Fourier-Transform Infrared (ATR-FTIR) Spectroscopy

The FTIR spectra of the pectin films were studied using an infrared (IR) spectropho-
tometer equipped with ATR (FTIR: Nicolet iS50, Thermo Scientific, Waltham, MA, USA)
to investigate the interactions between pectin and trans-cinnamaldehyde within the films.
FTIR spectra were recorded with a resolution of 4 cm−1 and 64 scans covering the spectral
range 4000–400 cm−1.

2.6. Evaluation of the Antimicrobial Activity of Films

The disk diffusion method was used to investigate the antibacterial effect of the films
against Gram-positive bacteria, Listeria innocua (DSM20649) and Gram-negative bacteria,
Escherichia coli (DSM613). The strains were stored at −20 ◦C in Tryptone Soy Broth (TSB)
containing 15% (v/v) of glycerol. Bacteria were pre-cultured and diluted in TSB to obtain
approximately 106 CFU/mL of each bacterium. One mL of pre-culture was used to inoculate
the Petri dishes containing Tryptone Soy Agar plates (TSA) The film samples were cut into
16 mm diameter discs using a hole puncher in an aseptic manner. The disc of film was
placed on the surface of TSA plates and then incubated at the temperature of 37 ± 1 ◦C
for one day. The inhibition zone diameter around the discs was measured. For each film,
experiments were performed in triplicate.

2.7. Statistical Analysis

The experiments were conducted at least three times, and the results are presented
as the mean ± standard deviation for various samples. Statistical assessment involved
one-way analysis of variance (ANOVA) followed by Fisher’s test (F) to compare the means,
and significance was determined at p < 0.05.

3. Results and Discussion
3.1. Particle Size and Zeta Potential of Nanoemulsion

After two stages of homogenization at high speed and high pressure, the mean particle
size of the emulsions was 106 ± 2 nm. The polydispersity index (PDI) was also measured
to provide information about the size distribution. The PDI was 0.24 ± 0.04, indicating the
polydisperse distribution of oil droplets [37] in the emulsion according to ISO standards
ISO 22412:2017 [38,39]. This small average size is due to the good emulsifying properties
of lecithin, as it has a high affinity with the essential oil components [40]. Lecithin acts as
a ripening inhibitor to prevent droplet growth. Ostwald ripening is a phenomenon that
occurs in emulsions and nanoemulsions and results in larger droplets [37].

The average zeta potential was −57 ± 2 mV, indicating good emulsion stability due to
the high zeta potential value. It is reported that a zeta potential value (negative or positive)
of more than 30 mV represents a high degree of electrostatic repulsion and high resistance
to aggregation, which causes stability in emulsions [41]. Lecithin is a negatively charged
phospholipid that can be used to encapsulate insoluble or poorly soluble substances in

https://www.tainstruments.com/
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water with a good encapsulation rate [42]. This result is consistent with the measured
zeta potential values, which ranged from −33.7 to −58.6 mV, obtained by changing the
composition of emulsions prepared with 10% essential oils that were emulsified with 2%
soybean lecithin and, as documented by [42].

3.2. Thickness, Opacity and Light Transmittance of Films

The addition of the nanoemulsion of TC influenced film thickness. The results are
shown in Table 2. Higher concentrations of TC resulted in thinner films due to the reduction
of the solid content. The film thickness varied between 63 and 91 µm from P/NE:1 to
P/NE:4 ratios, while the thickness of pure pectin film was 102 µm.

Table 2. Physical properties of the film.

Sample
Names

Thickness
(µm)

Opacity
(A × mm−1) T 280 nm T 600 nm Water

Activity

Pectin(control) 102 ± 2 a 0.73 ± 0.01 e 6.49 ± 0.89 a 83.83 ± 0.38 a 0.43 ± 0.01 e

P/NE:1 63 ± 1e 1.42 ± 0.04 c 0 b 11.51 ± 0.82 b 0.58 ± 0.03 a

P/NE:2 72 ± 2 d 2.37 ± 0.07 a 0 b 2.15 ± 0.25 e 0.52 ± 0.02 b

P/NE:3 80 ± 2 c 1.67 ± 0.05 b 0 b 4.58 ± 0.50 d 0.52 ± 0.01 c

P/NE:4 91 ± 3 b 1.21 ± 0.03 d 0 b 7.93 ± 0.46 c 0.50 ± 0.04 d

The data are presented as the average ± one standard deviation (n = 3). Means that share identical letters show no
significant differences (p < 0.05).

Transparency in food packaging is important because it influences the choices con-
sumers make [43]. The higher the opacity value, the lower the transparency. Table 2 shows
the opacity values of the films. The results showed that the opacity of the pectin films in-
creased from 1.21 to 2.37 A × mm−1, giving more opaque films compared to the neat pectin
films with an opacity of 0.73 A × mm−1. This is due to the dispersion of the nanoemulsion
of TC into the film matrix. In fact, the scattering of lipid particles plays a role in coalescence,
light-scattering, and creaming phenomena throughout the drying process. It caused the
surface coarseness of the film and more opaque films [44]. A higher concentration of oil
caused a higher value of opacity, except for P/NE:1 which can be explained by its thinner
thickness and the very high concentration of TC (5%). The films with clove essential oil
emulsions also showed a reduction in film opacity by adding essential oil emulsions [45].

The percentage of light transmittance at the wavelengths of 280 and 600 nm is shown
in Table 2. The transmittance at a wavelength of 280 nm (UV range) was investigated
to evaluate the UV barrier properties of the films. UV radiation can cause the oxidation
of food products. Therefore, this parameter is an important factor when these films are
used for food packaging in order to improve food preservation [46]. The addition of a TC
nanoemulsion resulted in a complete UV barrier for pectin films. Pure pectin films had a
transmittance of 6.49%, while all pectin films that incorporated a nanoemulsion of TC had
a transmittance of zero percent at 280 nm.

Transmittance at a wavelength of 600 nm (visible range) was evaluated as a trans-
parency factor and light transmission. A significant reduction was observed in trans-
mittance at a wavelength of 600 nm with the addition of a TC nanoemulsion. The pure
pectin films showed a high transmission of 83.83%, while the pectin film containing a
nanoemulsion of TC had lower transmittances ranging between 11.51 and 2.15%.

The reduction in transmittance at both the 280 and 600 nm wavelengths could be
attributed to the change in light absorption when combined with the nanoemulsion in the
pectin film formulation and the effect of oil/lipid addition in the film matrix as well as the
creation of irregularities that reduce specular light reflection [47]. The transmittance value
of the samples at 600 nm was statistically different (p < 0.05) and followed the decreasing
order P/NE:1 > P/NE:4 > P/NE:3 > P/NE:2. This tendency confirmed the reduction in
light transmittance due to the presence of TC, except for P/NE:1. Surprisingly, P/NE:1
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showed a higher transmittance compared to the other samples, which may be due to the
thinner thickness and the high concentration of TC. The high concentration of TC may
saturate the incorporation capacity of the pectin matrix, resulting in the presence of TC on
the surface of the P/NE:1 film during the drying process. The reduction in transmittance
by the addition of the nanoemulsion in the UV range (at 280 nm) is higher than in the
visible range (at 600 nm). This suggests that the effect on the UV barrier properties of the
film was more pronounced than the effect on the transparency of the film. This is worth
noting because UV rays can cause oxidation and food spoilage. Thus, films with UV barrier
properties can be considered suitable packaging that can extend the shelf life of foods [46].
The incorporation of rosemary oil into blended films based on carboxymethyl cellulose and
polyvinyl alcohol also caused the reduction of transmittance at 280 and 600 nm wavelengths
due to the inhibition of light transmission by nanoparticles as reported by [46].

3.3. Water Activity

Water activity is considered as a preservative factor in the food system [48]. The water
activity (aw) of the films was assessed in relation to the possibility of bacterial growth in
the film. In fact, the aw can indicate the microbiological stability of the films during the
storage period when it is stored under humid conditions [49]. The aw results are shown in
Table 2. Most bacterial growth occurred with aw ranging from 0.990 to 0.995, while some
foodborne microorganisms, such as Staphylococcus aureus, can grow at an aw of 0.860 [48].

The results of the aw values ranged from 0.43 to 0.58 for pure pectin films and PNE
1 films and reflect the microbiological stability of all samples. The increase in aw by the
addition of a TC nanoemulsion was observed. This could be due to the hydrophobicity of
TC. The same result was obtained for papaya edible films incorporating Moringa oleifera
and ascorbic acid [49]. The aw increased by incorporating antioxidant compounds with
hydrophobic groups as reported by [50], who prepared edible films from native and
phosphated cush-cush yam and cassava starch and reported water activity values from
0.47 to 0.52.

3.4. Color Measurements

The color parameters of pure pectin films and pectin films containing the nanoemulsi-
fied TC nanoemulsion are shown in Table 3. Except for the value of “L” and “a” for the film
samples P/NE:2 and P/NE:3, the color parameters changed significantly by adding differ-
ent concentrations of TC nanoemulsion. The incorporation of TC resulted in a yellowish
color as can be seen in the image of the film samples in Figure 1.

Table 3. Color parameters of the films.

Sample Names L a b ∆E WI YI

Pectin (control) 90.22 ± 0.17 a 0.79 ± 0.19 a 4.48 ± 0.13 e 0.29 ± 0,02 e 89.12 ± 0.22 a 7.10 ± 0.31 e

P/NE:1 81.52 ± 0.61 d −2.75 ± 0.28 b 55.11 ± 1.58 a 51.47 ± 1.54 a 41.79 ± 1.46 e 96.59 ± 2.65 a

P/NE:2 83.53 ± 0.84 c −3.19 ± 0.30 bc 50.43 ± 1.38 b 46.44 ± 1.23 b 47.15 ± 1.06 d 85.17 ± 1.57 b

P/NE:3 84.58 ± 0.31 c −3.78 ± 0.97 c 45.34 ± 4.21 c 41.64 ± 4.11 c 51.58 ± 3.88 c 77.54 ± 6.97 c

P/NE:4 87.29 ± 0.56 b −4.88 ± 0.09 d 36.79 ± 1.89 d 32.91 ± 1.86 d 60.76 ± 1.81 b 60.21 ± 3.19 d

The data are presented as the average ± one standard deviation (n = 3). Means that share identical letters show no
significant differences (p < 0.05).

The values of “L” and “a” indicate the lightness and redness of the film and both were
reduced by the incorporation of the TC nanoemulsion. The values of “b” represent the yel-
lowness, which increased significantly from the control to P/NE:1. A higher concentration
of TC caused a higher value of “b” due to the native yellow color of TC, which is reflected
by a high value of the YI (yellow index) for film samples containing TC compared to pure
pectin films.
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Figure 1. Visual aspect of film samples with different concentrations of trans-cinnamaldehyde: control
(0%), P/NE:1 (5.00%), P/NE:2 (3.33%), P/NE:3 (2.50%) and, P/NE:4 (2.00%) (first line); microscopic
images of the surface 1000× (SEM, middle line) and cross-sectional 800× (SEM, third line) of the
pectin films with different contents of trans-cinnamaldehyde.

The color functions ∆E (degree of total color difference from the standard color plate),
WI (whiteness index) and YI (yellow index) also changed significantly because of the
integration of the nanoemulsion of TC into the film based on pectin. The value of ∆E
extremely increased by the presence of TC. The value of ∆E was 51.47 for P/NE:1, while it
was 0.29 for pure pectin. Higher concentrations of TC caused higher total color differences.
The value of ∆E decreased by 36% from P/NE:1 to P/NE:4 by decreasing the concentration
of oil from 5.00 to 2.00%. The same trend was observed for the YI value. This is due to
the yellow color of TC; however, the control film was quite colorless, which is inconsistent
with the film appearance as shown in Figure 1. The yellow color of TC changed the degree
of whiteness (WI). A high reduction of WI was obtained in the range between 89.12 and
41.79 from pectin to P/NE:1. These changes in the color parameters could be attributed to
light absorption as a consequence of the presence of TC and lipid [47].The same result was
reported by [51], who incorporated various concentrations of TC in ethylene vinyl alcohol
copolymer and observed an increase in YI value and ∆E value.

3.5. Mechanical Properties

The films proposed for food packaging applications must meet certain mechanical
properties. Tensile strength (TS) is considered to be the highest stress the film can endure
prior to breaking and percentage elongation to break (EB) provides information about
the deformation of films before breakage while Young’s modulus (YM) provides some
information on the deformation before fracturing [52,53]. The mechanical characteristics
of the films are shown in Table 4. The incorporation of TC into the film formulation
significantly altered the mechanical parameters with statistical significance (p < 0.05). The
pectin film without oil was mechanically more resistant to fracture with a TS value of
10.37 MPa, which was significantly decreased by adding TC nanoemulsion in the range of
67 to 12% from pectin film as a control to P/NE:1 and P/NE:4 ones, respectively.
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Table 4. Mechanical properties of the films.

Samples Tensile Strength
(MPa)

Elongation at Break
(%)

Young’s Modulus
(MPa)

Pectin (control) 10.37 ± 1.04 a 7.06 ± 0.42 d 317.59 ± 5.76 a

P/NE:1 3.32 ± 0.48 d 4.49 ± 0.53 e 100.65 ± 9.93 d

P/NE:2 5.10 ± 0.11 c 7.47 ± 0.22 c 126.90 ± 11.08 cd

P/NE:3 7.52 ± 0.21 b 8.62 ± 0,05 b 192.21 ± 18.37 bc

P/NE:4 9.03 ± 0.80 ab 8.77 ± 1.46 a 254.70 ± 19.80 ab

The data are presented as the average ± one standard deviation (n = 3). Means that share identical letters show no
significant differences (p < 0.05).

The percentage of EB decreased for the highest TC concentration (5%) and increased
for lower concentrations (2.0%, 2.5%, and 3.3%) compared to pectin films without TC.
Another study also reported an increase in EB% by adding Cinnamomum verum into pectin
films [54]. The presence of TC in the pectin film matrix resulted in a decrease not only in TS
values, but also the elastic modulus. The incorporation of TC into the pectin film resulted in
a decrease in Young’s modulus values ranging from about 68 to 19% for TC concentrations
ranging from 5.00 to 2.00%. The load parameters (TS and EB) were usually dependent on
the microstructure film network and the intermolecular interactions [47,55]. The integration
of TC into the film matrix results in softer films that are more prone to breaking and exhibit
lower stretchability. This behavior could be due to the presence of structural discontinuities
in the film network triggered by the lipid dispersed phase, leading to weak mechanical
responses. Our results are in agreement with some previous studies showing a reduction
in the tensile strength of polysaccharide films when a lipid is incorporated into the matrix
of a biopolymer as reported By [56]. These authors incorporated different concentrations
of bergamot, lemon, and tea tree essential oils into hydroxypropyl methylcellulose and
chitosan, leading to significant reduction in the TS, EB% and elastic modulus of the films. In
another study, chitosan-based films containing 0.5%, 1%, 2%, and 3% (w/w) bergamot essen-
tial oil showed lower resistance to break, lower deformable and lower tensile strength [55].
However, some studies reported an improvement in mechanical parameters in the presence
of essential oils. The addition of clove oil into pectin films significantly increased the TS,
YM, and EB% of the pectin films. This improvement was explained by the effect of chemical
similarity between the clove oil particles and the pectin matrix, which favors a stronger
interaction between the biopolymer matrix and dispersed particles [57]. Depending on
the particular interactions between different types of polysaccharides and essential oils,
the mechanical behavior varied according to different studies. It could be attributed to
the effect of different materials and formulations and the use of various plasticizers and
surfactants, temperature and relative humidity, etc. [55].

3.6. Scanning Electron Microscopy

Microscopy morphological analysis provides relevant information about the mi-
crostructure of pectin films and the effect of different TC concentrations in the film matrix.
It provides a better understanding of the spatial arrangement of the film components,
which can be used to study the mechanical properties and permeability of the films [58].
The visual aspect of the films as well as the scanning electron micrographs of the surface
and cross sections of the pectin films are shown in Figure 1.

According to the cross-sectional micrographs, pure pectin presented a denser struc-
ture compared to films incorporated with TC nanoemulsion. In fact, the addition of oil
droplets to the biopolymer matrix resulted in a sponge-like structure and increasing the
TC concentration resulted in higher microcavities in the pectin film structure. However,
continuous networks exhibited uniform dispersion of nanoemulsion, and oil droplets were
homogenously entrapped in the biopolymer matrix. The pure pectin films had a smooth
surface. The addition of 5.00% TC caused some roughness and irregularities on the surface
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of the P/NE:1 sample. It could be due to the migration of the aggregates of droplets on
the surface during the drying process for films containing high concentrations of TC. It is
reported that flocculation and creaming of oil droplets could occur through the film drying
process [56]. The other samples with lower concentration of TC, including P/NE:2, P/NE:3,
and P/NE:4, represented the smoother surface. The surface images showed the presence
of some pores on the surface of film samples. The samples containing TC had more pores
compared to pure pectin films. The higher concentration of oil caused larger pore sizes,
which can explain the coalescence phenomena for the oil droplet during drying as reported
by [57]. A similar result was reported by [59,60] who developed a pectin-based film con-
taining various concentrations of bioactive compounds. They observed the presence of
pores or cavities by increasing the concentration of bioactive compounds.

3.7. ATR-FTIR Analysis

ATR-FTIR spectra were used to assess the intermolecular interactions and structural
changes of the pectin film after the introduction of TC nanoemulsion. Figure 2 shows
the ATR-FTIR spectra. The films exhibited broad absorption regions at approximately
3400 cm−1, which are attributed to the stretching vibration of -OH bonds within the pectin
monomers [61,62]. The peak appearing around 2927 cm−1 refers to -CH stretching vibration
of methylene groups in pectin chains and methyl groups of methyl ester [61,63]. The peak
at 1740 cm−1 corresponds to the C=O and C-O of ester bonds. It refers to the presence
of the ester group formed by the esterification of pectin with a degree of esterification
ranging from 22% to 28%. The vibrational peaks around 1670–1600 cm−1 and around
1400 cm−1 correspond to the asymmetric and symmetric vibrations of carboxyl groups,
respectively [62,64]. The peak around 1010 cm−1 refers to C-O-C stretching vibrations of
the polymer chain structure [65].
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Figure 2. ATR-FTIR spectra of film samples with different concentrations of trans-cinnamaldehyde:
Control (0%), P/NE:1 (5.00%), P/NE:2 (3.33%), P/NE:3 (2.50%) and, P/NE:4 (2.00%).

No new absorption peak was found in the pectin film spectra by adding the nanoemul-
sion of TC, indicating minor or no interactions between pectin and the nanoemulsion.
Nevertheless, the O-H stretching vibration peak at approximately 3400 cm−1 underwent a
slight shift from 3281 cm−1 to 3283 cm−1 upon the addition of TC. This could be caused
by binding interactions between TC and pectin, which reduced the stretching of the free
O-H bonds. The presence of TC also leads to changes in the band region around 2900 cm−1,
showing the shift of the band at 2929 cm−1 to 2926 cm−1, which is related to the stretch-
ing vibration of the aliphatic C-H group (CH2) [66]. The amplitude of the peak around
1740 cm−1 decreased slightly from the control sample to the film incorporated with na-
noemulsion of TC. This peak corresponds to the C=O and C-O of ester bonds, which
can be described by the presence of the carbonyl radical in the ester functional group of
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triglycerides due to the presence of TC [66]. Similar results were reported by [57] who
investigated the effect of incorporating different concentrations of clove bud essential oils
into pectin films.

3.8. Thermogravimetric Analysis (TGA)

The thermal degradation and weight loss with temperature change in order to un-
derstand thermal tolerance of films were determined using TGA [60]. TGA curves can
demonstrate the thermal stability of a material and its fraction of volatile components by
monitoring the change in weight [67]. The thermogravimetry (TG) curves are shown in
Figure 3, and the thermal data of film weight loss in the four intervals are also summarized
in Table 5. All the films incorporated with the nanoemulsion of TC showed the same
thermal behavior, similar to the neat pectin film. The mass change occurred in three steps.
The first Is the region between 20 and 180 ◦C, which corresponds to the water evaporation
associated with the hydrophilic groups in the polymeric structure [57] and the volatile part
of TC. The loss mass of pure pectin was 9.05%. However, the P/NE:1 film containing 5.00%
of TC lost 12.50% of its mass in the first step. This is probably due to the vaporization of
the volatile component of TC.
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Figure 3. TGA thermogram of the control (pure pectin) and film samples based on pectin incorporated
with different concentrations of 5.00%, 3.33%, 2.50%, and 2.00% trans-cinnamaldehyde incorporated
in pectin film named P/NE:1, P/NE:2, P/NE:3, P/NE:4.

Table 5. Thermal parameters of the films.

DSC ATG (∆m) DTG

Film Samples Tg
◦C 20–180 ◦C 180–260 ◦C 260–600 ◦C 20–600 ◦C Tmax

◦C
Degradation

Pectin (control) 152.94 9.05 ± 0.39 b 41.63 ± 1.23 a 19.67 ± 1.06 c 70.36 ± 0.22 b 234.83 ± 0.28 b

P/NE:1 13.72 12.50 ± 1.01 a 39.18 ± 0.62 a 41.65± 2.73 a 92.33 ± 1.10 a 239.16 ± 0.76 a

P/NE:2 40.90 10.71 ± 0.61 ab 39.25 ± 0.95 a 40.99 ± 4.17 a 91.95 ± 2.31 a 239 ± 1a

P/NE:3 54 9.56 ± 0.59 b 39.07 ± 1.04 a 27.01 ± 3.66 b 75.64 ± 4.15 b 237 ± 0.30 ab

P/NE:4 57 9.45 ± 0.69 b 40.07 ± 1.37 a 21.52 ± 0.43 bc 71.14 ± 0.24 b 236 ± 0.43 ab

The data are presented as the mean ± one standard deviation (n = 3). Means that share identical letters show no
significant differences (p < 0.05).

The main degradation of pure pectin sample occurred at the temperature of 180 to
260 ◦C, which is associated with decarboxylation of carbon ring and degradation of the
polymer backbone [59,60]. There were no significant differences (p < 0.05) in the mass loss
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of samples incorporated with TC and the pure pectin sample. The weight loss obtained
ranged between 39.18 and 40.99% for samples ranging from pectin to P/NE:1.

The last part of the weight loss occurred at the higher temperature, which is explained
by the formation of partially destroyed solid char stacks with a polyaromatic structure [68].
The final weight loss of the film incorporated with TC is higher than pure pectin film, due to
the exitance of an aromatic structure in the trans-cinnamaldehyde. The higher concentration
of TC in pectin films resulted in higher weight loss at high temperatures. Pure pectin lost
19.67% of its mass in this step, while the addition of 5.00% and 3.33% of TC caused a mass
loss of 41.65 and 40.99% for P/NE:1 and P/NE:2, respectively. According to the results of
mass loss with increasing temperature, the thermal stability of pectin films decreased by
adding higher concentrations of TC (5.00% and 3.33%). However, the inclusion of 2.50%
and 2.00% TC did not result in significant variations (p < 0.05) in initial mass loss compared
to the pectin film control (containing 0% TC oil) within the temperature from 20 to 600 ◦C.
The temperature at which the highest rate of weight loss occurred was obtained from the
DTG thermogram named Tmax

◦C degradation, which is shown in Table 5 for each sample.
The same trend was observed by adding various concentrations of TC to pure pectin for
the temperature of maximum weight loss rate. The presence of TC at concentrations of
5.00 and 3.33% caused an increase in this temperature compared to pure pectin. However,
no significant differences were observed for the film containing 2.50 and 2.00% of TC
compared to the pure pectin sample.

3.9. Differential Scanning Calorimetry (DSC)

The thermal properties of materials are investigated using DSC, a thermal analysis
technique. It measures the heat flow into or out of a sample as a function of temperature or
time. The DSC thermogram provides information about the phase transition of the sample.
The structural changes caused by temperature variations were determined by using DSC
for the film samples at temperature values between 20 and 220 ◦C. The glass transition
temperature (Tg) is a phenomenon of amorphous polymers in which the transition from
a glassy state to a rubber state occurs [69]. Tg was determined as an important factor for
packaging material and the result is shown in Table 5. The packaging film can become soft
at a temperature above Tg which could affect the packaging applications. The value of
Tg significantly decreased by incorporating TC nanoemulsion. Tg was obtained at about
152.94 ◦C for pure pectin, while Tg was about 13.72 ◦C for P/NE:1, which is dramatically
decreased as trans-cinnamaldehyde is hydrophobic. The decrease in Tg was reported
by [70] who prepared an active film from ethylene vinyl alcohol copolymer incorporated
with trans-cinnamaldehyde. The neat film exhibited a Tg of 55 ◦C, while the Tg value was
14 ◦C after the addition of TC.

3.10. Antimicrobial Activity

The diameter of the inhibition zones of the pectin film containing different concentra-
tions of TC against E. coli and L. innocua is shown in Figure 4. The pure pectin film was
considered as a control to investigate the potential antimicrobial activity of pure pectin. No
inhibition zone appeared for pectin film without TC indicating no antimicrobial activity
of the control. The diameters of the inhibition zones increased significantly by increasing
the concentration of TC in the films for both bacteria tested. This is because more TC is
available for release. Larger inhibition zone diameters were observed against L. innocua,
a Gram-positive bacterium, compared to E. coli, a Gram-negative bacterium. The diam-
eters of the inhibition zones varied from 37.41 to 30.46 mm for P/NE:1 to P/NE:4 for L.
innocua. The same trend was obtained from 33.68 to 27.53 mm for P/NE:1 to P/NE:4
tested against E. coli. The presence of an extra hydrophilic membrane in Gram-negative
bacteria hinders hydrophobic compound penetration like TC, leading to reduced inhibition
zone diameters [71]. This result is consistent with the findings reported by [29], who
incorporated a nanoemulsion of cinnamaldehyde into a pectin film. The larger diameters
of the inhibition zones against L.innocua compared to E.coli were reported. It is reported
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that enhancing the concentration of clove bud essential oil in pectin film led to greater
antimicrobial activity [57]. Another study also reported the antimicrobial activity of pectin
based films containing Cinnamomum verum against Staphylococcus aureus (S. aureus), Listeria
monocytogenes (L. monocytogenes), E. coli, and Salmonella typhimurium (S. typhimurium) [71].
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4. Conclusions

In this study, we examined the impacts of incorporating trans-cinnamaldehyde (TC)
nanoemulsions into pectin for the development of antimicrobial food packaging films. Our
results revealed significant impacts on the physical properties of the films. Emulsified
pectin films exhibited increased opacity and improved light barrier properties. However,
the presence of TC resulted in reduced tensile strength, elasticity, and elongation at break,
especially at higher oil concentrations. Moreover, the addition of TC resulted in a reduction
in thermal stability as confirmed by thermogravimetric analysis.

In order to evaluate the antimicrobial efficacy of the active films against foodborne bac-
teria, an agar disc-diffusion assay was carried out, which showed the presence of inhibition
zones, and the antimicrobial activity was found to increase with increasing concentrations
of TC. These findings indicate that pectin films containing TC nanoemulsions have potential
for use in food preservation. However, further investigations are needed to evaluate the
suitability of this packaging approach for different types of foodstuffs. Future studies
should explore the specific application of these films in various food packaging scenarios
to assess their effectiveness in real-world conditions. By expanding our understanding of
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the potential applications of pectin-based films integrated with TC nanoemulsions, we can
contribute to the development of advanced and efficient antimicrobial packaging materials
for the food industry.
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