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Abstract: This manuscript presents an examination of the impact of geometrical and physical pa-
rameters on highway design speeds, critical for traffic safety and efficiency. Originating from a
classical dynamics discussion in an undergraduate automotive technology engineering class, an
exploration of the consequences of different geometrophysical considerations on a vehicle’s dynamics
over pavement surfaces is developed. Considering various analytical models, an assessment of their
principles and the significance of geometric and physical concepts involved in the problem is made,
such as plane of motion and trajectory curvature radius, on safe (non slippage) operational speeds.
The subsequent comparative study shows that one of the most accepted models in highway design
regulations in México, when used as reference, yields percentage error differences respect to others of
0 ≲ %EMax ≲ 5, as well as a consistent trend for relatively underestimating safe highway operational
speeds. A discussion of the immediate implications of these findings, emphasizing the necessity of ex-
perimental studies to validate theoretical predictions, is presented. This work contributes to the field
by providing a detailed comparison of analytical models under a general applied science perspective,
suggesting modifications to current highway design practices in México based on geometrophysical
insights. In summary, this work’s main aim is to shed light on the intricacies of determining safe
design speeds from an applied sciences point of view, while also calling for a reevaluation of the
existing guidelines to enhance highway design and safety.

Keywords: classical dynamics; geometrophysical modeling; safe highway design speeds

1. Introduction and Antecedents

Highway design significantly impacts traffic safety and efficiency, with a focus on
establishing safe, practical operational speeds. The research on the interplay between
design speed and highway safety seeks to formulate supportive guidelines and models
for informed highway design. This section first synthesizes the academic findings on safe
design traffic speeds, encompassing six critical areas.

Predictive structural modeling and analysis. The recent studies have highlighted
the importance of integrating advanced structural dynamics and stress-response analyses
into highway design. Among them are studies on the structural resistance of reinforced
concrete columns and circular hollow section (CHS) joints under bending moments, in
which neural network modeling and BP-Garson algorithmization are used to predict and
analyze critical structural behaviors, which clearly is directly applicable to highway design
and its operational safety and integrity [1]. On the other hand, studies in subjects such as
the analysis of the effects of the brace-to-chord angle on the capacity of multi-planar CHS
X-joints under out-of-plane bending moments illustrate how spatial and angular factors,
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modeled through finite element analysis, influence structural capacity, which is critical in
highway design [2].

Operating Speed Prediction Models. The quest for design consistency has propelled
the development of models to predict operating speeds, based on driver behavior analysis.
The recent advances utilize dynamic-driving simulators to capture continuous speed pro-
files, offering deeper insights into driver behaviors on various roadway configurations [3].

Effects of Changing Highway Design Speed. Evaluating the implications of design
speed adjustments through surveys and case studies has shed light on design engineers’
perspectives and the consequential shifts in traffic dynamics, notably in traffic flow, speed
patterns, and accident rates [4].

Driver Errors on Highway Segments. Acknowledging driver errors as a fundamental
concern in highway safety means this area integrates human factors into roadway guide-
lines, emphasizing the necessity of understanding the underlying causes of errors for the
design of safer roadways and the implementation of effective traffic management [5].

Acceleration Lengths for Entrance Terminals. The critical analysis of entrance ramp
acceleration lengths suggests a potential revision of the existing standards to improve
traffic integration and reduce collision risks, highlighting the importance of infrastructure
adaptability to driving behaviors [6].

Design Speeds and Speed Limits. Design speeds play a crucial role in ensuring
safe highway operations. Highways should be designed in a conservative manner to
accommodate the speed that drivers are likely to develop. However, actual freeflow speeds
may exceed the design speed, and this situation does not necessarily lead to excessive
hazards if drivers adequately perceive the risks involved. Ensuring consistency between
design speeds and speed limits is, therefore, essential for promoting safe and efficient traffic
flow [7].

Therefore, the academic research on safe design traffic speed on highways has made
contributions to understanding the relationship between design speed and highway safety.
Apart from the perspectives mentioned in the previous paragraphs, studies have also in-
vestigated operating speed prediction models, the effects of changing design speed, driver
errors, acceleration lengths, and the relationship between design speeds and speed limits.
These findings provide valuable insights for highway designers, engineers, and policy-
makers in developing guidelines and strategies to enhance highway safety and efficiency.
Complementarily, this paper focuses on the role of geometrophysical parameters such as
super-elevation rate and curvature radius over maximum safe speeds in highways, further
exploring their influence on vehicle dynamics and their implications for highway policy
and safety measures [8–11]. That relates to the last bullet point in the previous paragraphs.

However, we find that many of these studies rely on one perhaps unnoticed applied
conceptual framework of classical dynamics, which could hinder practical considerations
related to highway design, construction, and operation. It is, in our perception, a subject
of considering the critical aspects of the same problem from different perspectives. This
conceptual framework is referred to here as the instantaneous radius of curvature model
(IRCM) for highway vehicle dynamics. One of its main characteristics is its wide use
when defining the trajectory of a vehicle on the pavement [12–15]. More details are found
in Section 3.1. We posit that the problem can also be analyzed in terms of alternative
geometric–physical parameters, opening unconsidered perspectives for assessing highway
planning, building, and safe operation. Nevertheless, the detailed development of those
remains the matter of future studies. In particular, several simple geometrical models in
which the problem of a moving vehicle’s basic dynamics on a super-elevated pavement
can be analyzed with the IRCM model were considered, as well as others applicable
to the basic geometrophysical formulation of the problem. Those results are compared,
and subsequently, the points of interest in related subjects are briefly discussed.

This paper is organized as follows: a first section presents introductory remarks and
general context. It is followed by a second section attempting to provide context into
what is meant in this work by geometrophysical modeling. In the third, several different
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geometrophysical models are set up and discussed to obtain safe highway operating
speeds according to each one. In the fourth, the results from the models are presented and
compared using parameters found in the literature applicable to the Mexican case. In the
fifth section, those results are discussed. Finally, a sixth one is submitted with conclusive
comments. This way, an applied science exploration of geometrophysical models for
safe operating highway speeds leads to a conclusive comparative analysis using Mexican
parameters and regulative framework.

2. A Brief Comment on Geometrophysical Modeling

Geometrophysical modeling is, in the context of the present work, a sophisticated
applied sciences analytical approach that integrates principles of geometry and physics
to solve complex problems in various engineering fields, including highway engineering.
This section seeks to briefly present some of the core concepts and general methodological
principles employed in geometrophysical modeling, enhancing the reader’s understanding
of its application related to this work, i.e., the assessment and development of highway
regulations in Mexico.

2.1. Fundamental Principles

At its core, geometrophysical modeling involves the use of geometric principles/data,
such as shapes, sizes, and relative positions of objects, combined with the physical laws
governing the dynamics of those objects under study. For highway engineering, these
principles are applied to understand and predict the behavior of vehicles under different
road conditions and configurations. The models considered are developed in Section 3.

2.2. Modeling Dynamics

The models discussed in this manuscript are derived from classical dynamics princi-
ples. These dictate how vehicles move and interact based on physical parameters such as
momentum, friction, highway plane inclination with respect to the ground, and gravity.
Of particular interest to this present work are the maximum non-slippage speeds predicted
by the models, since they would represent maximum design safe speed estimations in
highway engineering. The models considered are discussed in Section 4.

2.3. Application to Highway Regulations

Regarding highway regulations, geometrophysical models can be used to optimize
road design, improve safety standards, and enhance traffic flow efficiency. By applying
these models, engineers can determine the optimal curvature of roads that balances safety
and speed or establish speed limits that are based on the physical capabilities of the road
and typical vehicle performances. One application example related to modeling accidents
and highway geometric design relationships is found in [16]. In that study, the capabilities
and limitations of regression models are explored to help understand the relationships
between vehicle accidents and highway geometric design, emphasizing the need to develop
proper statistical models to handle the variability and distribution of accident data. In [17],
there is another application example. This study discusses the impact that geometric design
characteristics have on traffic safety. Statistical negative binomial regression modeling
is used to better understand factors related to highway geometric influencing accident
frequency, identifying operating speeds (the central parameter in this present study) as
one of the main factors contributing to the total number of accidents. These examples,
among others, illustrate how geometrophysical considerations can contribute to a better
understanding of how modeling and design factors are linked to regulatory outcomes and
safety on highways.

2.4. Comparative Analysis

This manuscript compares various geometrophysical models to identify which con-
figurations best meet the regulatory standards and practical needs of Mexican highways,
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having the reference model expressed by Equation (14) (please Cf. [18]). Generally speaking,
the models could be evaluated based on several metrics, such as safety, cost-effectiveness,
and environmental impact. In the case of this present work, the metric used was the
maximum design non-slippage velocity, i.e., the safe velocity on the highway under consid-
eration. This analysis (Cf. Sections 4 and 5) is crucial for policymakers and engineers to
make informed decisions about which models to implement in practice.

2.5. Relevance of Geometrophysical Modeling/Examples

Understanding geometrophysical modeling is essential for anyone involved in the
planning, design, or regulation of highways. It provides a scientific basis for making
decisions affecting the safety and functionality of road systems, ensuring that these in-
frastructures can accommodate the current and future transportation needs effectively.
Here there are some examples. Albattah (2016) uses spatial satellite remote sensing data
integrated with geographic information system (GIS) models to optimize highway design
in [19]. It includes factors like land use, geology, and environmental impacts to select the
best route corridor for minimizing costs and conforming to environmental requirements.
Boas et al. (2009) modeled highway systems using a modified geometrical network model,
integrating paths instead of edges for optimal parameter configurations, and comparing
models from different countries in [20]. In another example, Biancardo et al. (2020) explore
the integration of building information modeling (BIM) with procedural modeling tools
for road infrastructure, focusing on geometric and physical aspects. The use of BIM for
complex road design is highlighted, enhancing data interoperability and management
of geometric properties critical for transportation infrastructure in smart urban environ-
ments [21]. Wang et al. (2023) introduce a framework intended to enhance geometric
information extraction and digital modeling from LiDAR data, targeting road scenarios.
This approach addresses the challenge of handling unorganized point clouds and complex
environments, demonstrating high accuracy in semantic segmentation and geometric pre-
cision, which is crucial for practical applications in road engineering [22]. Qi et al. (2023)
present a method for three-dimensional fine modeling of in-service roads using vehicle
laser scanning technology. It focuses on multi-level reverse modeling based on point cloud
data, offering a structured approach to reduce data redundancy and enhance model ac-
curacy. The method supports various levels of detail (LOD), allowing for tailored model
fineness and application-specific accuracy, which proves effective in managing complex
road infrastructures [23]. Wei et al. (2023) present an innovative approach for simultaneous
multi-curve highway reconstruction from mobile laser scanning data, leveraging deep
reinforcement learning with the proximal policy optimization algorithm. This method
allows for the effective geometric modeling of complex highway curves, demonstrating
superior performance in capturing accurate road configurations compared to the previous
techniques [24]. These papers provide a range of instances related to geometrophysical
modeling applied to the context of roads and highway engineering, highlighting advance-
ments such as GIS integration, 3D geometric modeling, and network optimization in
transportation planning.

3. Analytical Model Conceptual Development and Discussion

In this section, details on developing the analytical models to assess the simplified
dynamics of a four-rubber-wheeled vehicle on the pavement are provided. Most of the
geometrophysical models to be discussed are common knowledge in the literature. How-
ever, our interest centers on their conceptual setting up, discussion, and interpretation
from a geometrophysical perspective, which has been not carried out to the extent of our
knowledge. This way, we can search for insights regarding their application in highway
design, construction, and operation. As mentioned, the problem consists of analyzing
forces acting on a vehicle supported by rubber wheels while in motion over the pavement.
For simplicity, highways are considered single slope cambered with a super-elevation
angle (Cf. Figure 1, and then Figure 2). The majority of curves anticipated in the design
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of the layout of a highway are of this type. Furthermore, this is the strategy adopted by
AASHTO when proposing the foundations of the analysis of safe speeds in curves in [25].
Furthermore, the problem is considered to be a single particle dynamics one, i.e., the vehicle
is represented entirely by its center of gravity. However, that does not imply critical loss of
generality, since particular interest centers on the role of super-elevation rate, curvature
radius, and other parameters similar to the latter intervening in vehicle behavior and
highway operation.

3.1. Instantaneous Radius of Curvature Model (IRCM) for Highway Vehicle Dynamics: Normal
and Tangential Coordinates

Motion is considered on a plane with two coordinates, one normal or perpendicular
to the trajectory and another tangential or parallel. Mathematically, this model could be
assimilated to the 2D motion studied via polar coordinates (not cylindrical-polar 3D ones).
The radial coordinate would be the one normal to the trajectory, and the angular coordinate
the one tangential to it, as depicted in Figure 1. It should be noticed that conceptually
speaking, this model, or slight variations on it, is the one most governmental-associated
regulators use to provide highway design criteria and is based, as mentioned, on a point-
mass dynamics consideration of the problem combined with the criterion of favoring driver
comfort [8,9]. Particularly, authorities such as FRA, AREMA, Amtrak, and OSHA set
0.1 g[m/s2] and 0.03 g[s−1] − [m/s3] as maximum acceptable values for radial/normal
acceleration and jerk, respectively [13,25,26]. The model gives the following result, called
the basic curve equation Cf. [25]:

v =

√
127R( fd + 0.01e)

1.0 − 0.01e fd
(1)

In it, v is the design speed in [km/h], fd is the estimated side friction demand factor,
R is the horizontal curve radius in [m], and e is the super-elevation in % ratio. In order
to compare this model to others, friction must be taken into account as a free parameter
(subjected to applicable physical restrictions) instead of as a parameter according to the
driver’s comfortable acceleration friction demand term ( fd). On the other hand, in highway
design, it is customary to consider the product e fd invariably as very small, so the term
1.0 − 0.01e fd ≃ 1.0 (Cf. [25]). This way, the basic curve equation turns into

v =
√

127R( fd + 0.01e) (2)

In the case of this manuscript, the model is discussed from principles in the follow-
ing lines.

The kinematics/dynamics analysis begins by considering the following expressions:

−→v = vθ̂

−→a = −̇→v = v̇θ̂ + v ˙̂θ
(3)

Resulting in
−→a = ar r̂ + aθ θ̂ = −v2

r
r̂ + v̇θ̂ (4)

Therefore, the velocity direction is tangent to the motion’s trajectory and has only that
component. In contrast, acceleration has both normal (in the direction of r̂) and tangential
(in the direction of θ̂) components. Now, normal acceleration magnitude is the vehicle’s
speed squared divided by the trajectory’s curvature radius, which, at the same time, is the
vehicle’s radial coordinate magnitude (v2/r). In turn, tangential acceleration magnitude is
the time derivative of the coordinate along the line of motion (v̇).
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Figure 1. Diagram of the normal and tangential coordinates geometric setup used to define and
develop the instantaneous radius of curvature 2D model IRCM for highway vehicle dynamics.
In this figure, r is the trajectory’s curvature radius and, simultaneously, the radial coordinate (in
the cylindrical-polar coordinate system), θ is the vehicle’s instantaneous angular position/polar
coordinate (in the cylindrical-polar coordinate system), and x̂, ŷ are the 2D Cartesian coordinate
system unit vectors.

Applying the preceding model features to the layout presented by Figure 2, it is notice-
able that even though the problem is 3D, the model emphasizes consideration of 2D motion
on the plane defined by those normal and tangential coordinates; therefore, adjustments
must be conducted, as is shown. It is also noticeable that the “normal” coordinate coincides
with the regular Cartesian x̂ coordinate, and “tangential” coordinate, corresponds to regular
Cartesian ẑ coordinate. That is, the last coordinate coming out of the plane of the page
towards the reader is consistent with a right-handed Cartesian coordinate system.

Figure 2. General layout of the problem’s dynamic and the geometrophysical scheme applied to
account for it. The model uses “normal”, y, and “tangential” coordinates; that is, (x; y; z). In this figure,
N⃗, F⃗, W⃗ are the forces acting on the vehicle: normal, friction, and weight; respectively. The angle θ is
the highway’s considered super-elevation. x̂, ŷ, ẑ are the 3D Cartesian coordinate system unit vectors.
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Considering an instantaneous validity of the dynamic situation as shown in Figure 2,
the application of the second law of Newton on the vehicle results in:

−→
N +

−→
W +

−→
F = m−→a (5)

−→
N is the normal force exerted by the surface of the highway on the vehicle,

−→
W is the

weight of the vehicle,
−→
F is the friction force applied by the surface of the highway on the

vehicle, m is the vehicle’s mass, and −→a is its acceleration. In Cartesian—î, ĵ, k̂—component
vector representation, Equation (5) yields

(−Nsinθ; Ncosθ; 0) + (0;−mg; 0) + (−µNcosθ;−µNsinθ; 0)

= m
(
−v2/R; 0; 0

) (6)

θ is the highway super-elevation angle, g is the gravitational acceleration magnitude,
µ is the friction coefficient between the vehicle’s tires and pavement, v is the vehicle’s
speed at which the system is in dynamic equilibrium, and R is its instantaneous trajectory
curvature radius. The minus sign on the first term after the equal sign in Equation (6)
means that for the dynamical equilibrium situation considered, the normal component of
the vehicle’s acceleration is centripetal, because it represents the force equilibrating the
non-kinetic friction force between the vehicle tires and pavement (i.e.,

−→
F in Equation (5)).

At any given time, the vehicle’s trajectory places it at a point on the circle described in the
x − z plane of Figure 2. Then, it is vital to notice that the trajectory plane is not parallel to
the inclined plane of the pavement in Figure 2. A visual scheme of precisely that “trajectory”
is provided in Figure 3. On the other hand, the validity of the instantaneous dynamic
situation portrayed in Figure 2 means that v in Equation (6) corresponds to the case in
which there is no drift between the vehicle’s tires and pavement. This means that when
solving for v, the system of scalar equations provided by vector Equation (6) provides us
with the maximum speed value permitted by a given highway at which the vehicle is in
dynamic equilibrium along it with no drift. That is the maximum velocity for safe highway
operation. The solution for v is as follows:

v =

√
gR(sinθ + µcosθ)

cosθ − µsinθ
=

√
gR(µ + tanθ)

1 − µtanθ
(7)

Figure 3. General layout of the problem and the geometrophysical scheme applied to account for
it. In this figure, R is the parameter of the curvature considered (in this case, a radius of curvature),
and v⃗ is the vehicle’s velocity.
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In order for this model application to be meaningful regarding highway design (partic-
ularly on the physical and engineering meaningfulness of the curvature radius parameter
R), one has to take into account the following:

(i) A 2D model is used to ascertain a 3D situation. The motion of a vehicle on the highway
can not be reduced to normal and tangential components. For the model to make
sense, another coordinate along ŷ is used.

(ii) A radius of the curvature (R) notion only makes sense when considering sequences of
precise segments of circular/curvilinear sections; that is, definite arc segments of the
vehicle’s trajectory, as shown in Figure 3.

(iii) Equations (1) and (7) (right) are functionally equivalent since they both are the results
of point mass modeling considerations. It can be noticed that Equation (1) is a
reparametrization of Equation (7) (right), performed by AASHTO in [25].

3.2. Highway Vehicle Dynamics Studied by Cylindrical-Polar Coordinates: Plane of Vehicle Motion
Rotated with Respect to Horizontal Plane

The situation is reviewed with cylindrical-polar coordinates, as shown in Figure 4.
This way, one would have two coordinates normal to the motion’s trajectory, r and z,
and one tangential (ϕ). As is noticeable in the figure, the ϕ coordinate’s unit vector goes into
(i.e., enters) the page’s plane. This way, r, ϕ, and z set up an orthonormal coordinate system.

Figure 4. Dynamic situation description in terms of cylindrical-polar coordinates: “normal”, “tangen-
tial”, and z coordinates; that is, (r; ϕ; z). Plane of motion considered rotated with respect to horizontal
plane. In this figure, N⃗, F⃗, and W⃗ are the forces acting on the vehicle: normal, friction, and weight,
respectively. The angle θ is the highway’s considered super-elevation; R is the radius of curvature
(curvature parameter considered). r̂, ϕ̂, ẑ are the 3D cylindrical-polar coordinate system unit vectors.

On the other hand, the main difference between the models in Figures 2 and 4 is that
the plane of the circular trajectory in the former is unrotated with respect to the x axis,
while in the latter, it is rotated by an amount of θ, the highway super-elevation parameter.
In other words, the vehicle’s trajectory is the same as shown in Figure 3 but with its plane
parallel to the pavement’s plane, as portrayed in Figure 4. Both possibilities are reasonable
since, as said, the dynamic situation is considered to be instantaneous without a critical loss
of generality. In practice, the vehicle is neither expected to fulfill the trajectories envisioned
by Figures 2 or 4. In this system, the position vector is as follows in terms of Cartesian
unit vectors:

−→r = rcosϕî + rsinϕ ĵ + zk̂ (8)
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The calculation of the second derivative of −→r , i.e., acceleration (−→a ), yields

−→a =
(

cos ϕ(r̈ − rϕ̇2)− sinϕ(rϕ̈ + 2ṙϕ̇)
)

î

+
(

sin ϕ(r̈ − rϕ̇2) + r cos ϕϕ̈ + 2cosϕṙϕ̇
)

ĵ + z̈k̂ (9)

The particular conditions of the model to implement are ṙ = 0, r̈ = 0, ϕ̈ = 0, ż = 0,
and z̈ = 0, since within the dynamic situation considered, there is no velocity or acceler-
ation along radial and z coordinates. Meanwhile, for the angular coordinate, there is no
acceleration. These considerations in Equation (9) lead us to

−→a = −r cos ϕϕ̇2 î − r sin ϕϕ̇2 ĵ + 0k̂ (10)

Or, in cylindrical-polar component vector representation, r̂, ϕ̂, ẑ,

−→a = −rϕ̇2r̂ + 0ϕ̂ + 0ẑ (11)

Now, Equation (5) applied to the situation in Figure 4, and taking into account
Equation (11), yields, in cylindrical-polar component vector representation, r̂, ϕ̂, ẑ,

(0; 0; N) + (−mgsinθ; 0;−mgcosθ) + (−µN; 0; 0)

= m
(
−v2/r; 0; 0

)
(12)

where v = rϕ̇. In this case, r is both an instantaneous radius of curvature of the vehicle’s
trajectory, as well as the radial coordinate of the system used to analyze the problem.
Solving for v in Equation (11) produces, as before in Equation (7), the maximum velocity
for safe highway operation according to the model:

v =
√

grcosθ(tanθ + µ) =
√

gr(sinθ + µcosθ) (13)

In terms of the radius of curvature (R = rcosθ) Cf. Figure 4. Equation (13) right
transforms into

v =
√

gR(µ + tanθ) (14)

Now the models in Equations (2) and (14) can be compared. In the former,
fd(v, R, e) = v2

k1R − k2e is defined as the amount of friction a vehicle needs in order to
maintain trajectory in an existing horizontal curve [26]. On the other hand, k1 and k2
are parameters considering the suspension’s mechanical effect on light and heavy vehi-
cles, respectively. It is noticeable that Equations (2) and (14) share the same analytical
elements, both having the mathematical form v =

√
c1(c2 + c3). In this equation form,

c1 ⇒ 15R ⇒ gR relates to the motion’s curvature radius, c2 ⇒ fd ⇒ µ relates to friction,
and c3 ⇒ 0.01e ⇒ tanθ relates to the highway’s super-elevation, respectively. Another
point of comparison between models is that Equations (2) and (14) both take into account
the instantaneous friction being provided by horizontal curves in the trajectory. Cf. [26]
or friction demand ( fd) definition; see Figure 4 here for friction force (

−→
F ) consideration.

For these reasons, Equation (14) is selected as the reference for comparison between models.
Summarizing this last part, the model according to Equation (14) is selected as refer-

ence for comparison to the others because it was shown that it amounts to a reparametriza-
tion of the one in Equation (2), which happens to be the one used as the base in Mexico’s reg-
ulations (Manual de proyecto geométrico de carreteras 2018—Handbook of geometric projects
in highways 2018) [18]. On the other hand, the percentages of relative error differences
among safe (i.e., non slippage) highway design speeds generated by models considered
with respect to the one generated by Equation (14) are proposed as suitable comparison
metrics between them. Those differences are analytically interesting since they can be
directly interpreted as potential errors in highway design speeds depending on what could
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be established by the complementary related experimental studies, completely outside the
scope of this paper. The model used as a regulatory basis in México ([18]) could be underes-
timating or overestimating safe highway operational speeds, each possibility bringing very
different but relevant consequences whose detailed exploration is also outside the scope of
this work.

3.3. Highway Vehicle Dynamics Studied by Cylindrical-Polar Coordinates: Plane of Motion
Unrotated with Respect to the Horizontal Plane (i.e., Parallel to It)

In this case, the geometrical setup of the problem is shown in Figure 5. The difference
with the previous case in Figure 4 is that the model’s plane of motion is parallel to the
horizontal plane. Equation (5) is applied to the situation in Figure 5, and taking into account
Equation (10) leads us in cylindrical-polar component vector representation, r̂, ϕ̂, ẑ, to

(−Nsinθ; 0; Ncosθ) + (−µNcosθ; 0;−µNsinθ) + (0; 0;−mg)

= m
(
−v2/r; 0; 0

)
(15)

Figure 5. Dynamic situation description in terms of cylindrical-polar coordinates: “normal”, “tan-
gential”, and z coordinates; that is, (r; ϕ; z). Plane of motion considered unrotated (i.e., parallel) with
respect to the horizontal plane. In this figure, N⃗, F⃗, and W⃗ are the forces acting on the vehicle: normal,
friction, and weight, respectively. The angle θ is the highway’s considered super-elevation. r̂, ϕ̂, and
ẑ are the 3D cylindrical-polar coordinate system unit vectors.

Solving again for v, Equation (15) results in

v =

√
gr(sinθ + µcosθ)

cosθ − µsinθ
(16)

In terms of R (curvature radius) rather than r (model’s radial coordinate), it is notice-
able that within this model, they coincide; that is, r = R. Therefore, v in Equations (7)
and (16) are analytically exactly the same. However, it is worth noticing that the normal
and tangential coordinate model (IRCM) is, in principle, a 2D one. For that reason, it has to
be supplemented with another coordinate to better adapt it for the present 3D situation
of interest. Meanwhile, the unrotated cylindrical-polar model is directly applicable to
the situation.

3.4. Highway Vehicle Dynamics Studied by Spherical Coordinates

The situation in spherical coordinates is presented in Figure 6. Then, one would have
two coordinates normal to the motion’s trajectory, r, ψ, and one tangential to it: ϕ. As can
be noticed in the figure, the ϕ coordinate’s unit vector goes into (i.e., enters) the page’s
plane. In this case, r, ψ, and ϕ set up an orthonormal coordinate system.
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Figure 6. Dynamic situation description in terms of spherical coordinates: “radial”, “azimuthal”,
and “zenithal” coordinates; that is, (r; ϕ; ψ). Plane of motion considered unrotated with respect to
the horizontal plane. In this figure, N⃗, F⃗, and W⃗ are the forces acting on the vehicle: normal, friction,
and weight, respectively. The angle θ is the highway’s considered super-elevation; R is the radius
of curvature (curvature parameter considered). r̂, ϕ̂, and ψ̂ are the 3D spherical coordinate system
unit vectors.

In this system, the position can be established as follows in terms of Cartesian
unit vectors:

−→r = r sin ψ cos ϕî + r sin ψ sin ϕ ĵ + r cos ψk̂ (17)

The calculation of the second derivative of −→r , i.e., acceleration, produces

−→a =

(
cosψ

(
rcosϕψ̈ − 2rsinϕψ̇ϕ̇ + 2cosϕṙψ̇

)
−sinψ

(
sinϕ

(
rϕ̈ + 2ṙϕ̇

)
−cosϕr̈ + rcosϕ

(
ψ̇2 + ϕ̇2)))î +

(
sinψ

(
sinϕ

(
r̈ − rψ̇2

)
+rcosϕϕ̈ + 2cosϕṙϕ̇

)
+rsinϕ

(
cosψψ̈ − sinψψ̇2

)
+2cosψψ̇

(
sinϕṙ + rcosϕϕ̇

))
ĵ +

(
cosψ

(
r̈ − rψ̇2

)
−sinψ

(
rψ̈ + 2ṙψ̇

))
k̂ (18)

In this particular case, the acceleration calculation in Equation (18) has to take into
account that ṙ = 0, r̈ = 0, ψ̇ = 0, ψ̈ = 0, and ϕ̈ = 0. In terms of the system’s unit vectors,
it yields

−→a = −r sin ψ cos ϕϕ̇2r̂ − r sin ψ sin ϕϕ̇2ψ̂ + 0ϕ̂ (19)

The conditions above of the model implemented are due to the dynamic situation
since there is no velocity or acceleration along radial (r) and zenithal (ψ) coordinates.
Meanwhile, there is no acceleration for the azimuthal coordinate (ϕ). Equation (5), applied
to the situation in Figure 6, and taking into account Equation (19) (with v = rϕ̇), yields,
in spherical component vector representation; that is, r̂, ψ̂, ϕ̂,

(0;−N; 0) + (−mgcosψ; mgsinψ; 0) + (−µN; 0; 0)

= m
(
−sin2ψ

v2

r
;−sinψcosψ

v2

r
; 0
)

(20)

In this case, the r coordinate can be considered (a subject on how the actual plane of
motion is taken into account) both an instantaneous radius of curvature of the vehicle’s
trajectory and the radial coordinate of the system used to analyze the problem. For example,
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solving for v in Equation (20) produces, as a result, the maximum velocity for safe highway
operation according to the model

v =

√
gr(cosψ + µsinψ)

sin2ψ − µsinψcosψ
(21)

The last expression in Equation (21) considers that θ = 90◦ − ψ; θ being the highway’s
super-elevation and ψ the model’s zenithal coordinate. Now, expressing the previous result
in terms of curvature radius (R) instead of radial (r) coordinate, we have R = rsecθ, (please
see Figure 6), and we obtain

v =

√
gR(1 + µcotθ)

cotθ − µ
(22)

4. Results Comparative Presentation and Discussion

In this section, results from the models developed in the preceding one are presented
and compared. The objective was to solve for the maximum highway speed without
slippage between vehicle and pavement, which constitutes a reasonable estimate of a motor
road’s maximum safe operational speed. They reflect the broad versatility of classical
dynamics applied to the problem.

The analytical results obtained can be condensed in the following table (Table 1).

Table 1. Summary of results for safe highway operating speeds v for different models. Geometrophys-
ical parameters used are motion curvature radius (R) or intrinsic radial (r) coordinate to the specific
model, the friction coefficient between vehicle and pavement (µ), and highway super-elevation (θ).
g is the gravitational acceleration’s magnitude considered constant for the analysis.

Geometric Model Curvature Parameter Maximum Speed

“n & t”/unrotated cylindrical-polar system (Equation (7)/Equation (16)) R v =
√

gR(sinθ+µcosθ)
cosθ−µsinθ

Rotated cylindrical-polar system (Equation (13)) r v =
√

gr(sinθ + µcosθ)

Rotated cylindrical-polar system (Equation (14)) R v =
√

gR(µ + tanθ)

Spherical system (Equation (21)) R v =

√
grsecθ(µ+tanθ)

1−µtanθ

Spherical system (Equation (22)) r v =
√

gR(µ+tanθ)
1−µtanθ

The visible points of interest are the following:
(1) Mathematically (i.e., symbolically) comparing equations Equations (2), (13), and (14),

it is noticeable that a worldwide used model in regulations is analytically similar/equivalent
to the models represented by Equations (13) and (14), particularly the latter. That is, the
model expressed in Equation (2) is a slight re-parametrization of Equation (13), mainly in
order to consider friction as a demand parameter. Therefore, one of the most used models
regarding regulations on highway speeds is a 2D native one applied to a 3D organic situation,
as explained in the previous section.

(2) As expected, the normal–tangential coordinate motion description (Figure 1,
Equation (7)) and the unrotated cylindrical-polar system coordinate motion description
(Figure 5, Equation (16)) models are completely analytically equivalent. A non-analytical
difference, but conceptually substantial, is related to the nature of the motion curvature pa-
rameter used. In the former, the circular trajectory curvature radius (R) is in a plane parallel
to that used for super-elevation measurement. Notice that this definition is only possible
by adding a new coordinate normal to the “n & t” original set, ad-hoc to the problem; that is,
an ad-hoc renderization of a 2D situation into a 3D one is required. Now, in the latter, the co-
ordinate “added” is one of the natural coordinates of the model, the radial one (r). The plane
of motion considered is also parallel to that used for super-elevation measurement.
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(3) In Equation (12), the acceleration does not have components in addition to the
radial one because the cylindrical-polar coordinate system as a whole rotated with respect
to the horizontal plane is considered, an angle amounting to the highway super-elevation θ.
In such a system, the motion studied does not take place on the horizontal Cartesian plane
x̂ − ŷ − ẑ but in the rotated plane r̂ − ϕ̂ − ẑ described by the cylindrical-polar coordinate
system, as shown in Figure 4. The radial direction r̂ is then perpendicular to the studied
motion’s tangential direction. In other words, in the instant represented in Figure 4, ϕ̂
enters the scene. Since ϕ̂ becomes the motion’s tangential direction in this particular
model, the calculation for an assumed constant maximum velocity without any slippage
requires three things. First, radial velocity (vr r̂) and acceleration (ar r̂) components must
be null, implying that ṙ = r̈ = 0 in Equation (9). Second, polar velocity (vϕϕ̂) must
remain constant (that is, ϕ̇ = constant, ϕ̈ = 0 in Equation (9)). Third, there must be no
velocity and acceleration in the ẑ direction (ż = z̈ = 0). Consequently, instantaneously
solving Equation (12) leads us to Equations (13) with r and (14) with R, which differ from
Equations (7), (16), (21), and (22).

5. Parametric Sweep: Visualization and Analysis

In order to compare models among them, an assessment of the parameters involved
must be conducted first. There are four of them: r, R, θ, and µ. Regarding the last one,
the friction coefficient between pavement and vehicle (µ) is an experimentally obtained
parameter. Naturally, it has a physical nature, though not much of a geometrophysical
one in the sense implied here. The remaining parameters are fully geometrophysical since
they arise from analyzing and applying different conceptual/geometrophysical models
over the problem of interest discussed previously. Therefore, the parametric set up is
shown in Table 2, according to Mexico’s governmental agency in charge of highway design
regulations [18] and experimental procedures in Table 3, fully described in [27].

Table 2. Mexico’s governmental sanctioned highway design parameters. Extracted from [18].

Parameter Parametric Range Parameter Mean

Curvature radius 19.1 ≤ R ≤ 416.7 [m] ∼218 [m]
Super-elevation 0◦ ≤ θ ≤ 5.71◦ ∼3◦

Maximum speed 30 ≤ v ≤ 110 [km/h] ∼70 [km/h]

Table 3. Experimentally obtained friction coefficients under different conditions between tire rubber
and pavement. Contact/interface area at temperatures including −10 [◦C] ≤ T ≤ 0 [◦C]. Extracted
from [27].

Pavement Particular Conditions Parametric Range Parameter Mean Mean Particle Diameter

Iced, no sand 0.10 ≤ µs ≤ 0.23 ∼0.1650 Not applicable.
Dry, sandy 0.56 ≤ µs ≤ 0.66 ∼0.61 ∼176 [µm]
Dry, sandy 0.71 ≤ µs ≤ 0.79 ∼0.75 ∼103 [µm]

Figures 7–12 show the graphical results of the parametric analysis proposed. Be-
fore briefly discussing them, analytical calculations were developed on default MATLAB
R2022b computational machine precision, retaining three significant digits due to friction
coefficient experimental values (significant figures) in [27].

On the other hand, as expressed in the figure captions, the calculations for per-
centage relative errors took as reference the rotated cylindrical/radial coordinate model
in Equations (13) and (14) due to its analytical/conceptual proximity to the model in
Equation (2), as explained in previous sections: the model in Equation (2) is a reason-
able numerical approximation of the model in Equation (1). Concurrently, the models in
Equations (13) and (14) are equivalent among them (when switching the curvature parame-
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ter considered, i.e., r → R) and also a straight forward reparametrization of the model in
Equation (2).
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 = 0.61

Figure 7. Maximum velocity vs. super-elevation angle. 18 ≲ ρ ≲ 418 [m], µ = 0.61. ρ is the curvature
parameter used, whether r or R. Pavement conditions: dry, sandy. Sand particle mean diameter
∼176 [µm]. In this figure, the percentage relative errors between models, having as a reference the
rotated cylindrical/curvature radius (that is presented in Equation (14)), vary between 0 ≤ %E ≤ 3.65
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Figure 8. Maximum velocity vs. super-elevation angle. 0.56 ≲ µ ≲ 0.66, ρ = 218 [m]. ρ is the
curvature parameter used, whether r or R. Pavement conditions: dry, sandy. Sand particle mean
diameter ∼176 [µm]. In this figure, the percentage relative errors between models, having as a
reference the rotated cylindrical/curvature radius (that is presented in Equation (14)), vary between
0 ≤ %E ≤ 3.94.
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Figure 9. Maximum velocity vs. super-elevation angle. 18 ≲ ρ ≲ 418 [m], µ = 0.75. ρ is the
curvature parameter used, whether r or R. Pavement conditions: dry, sandy. Sand particles mean
diameter ∼103 [µm]. In this figure, the percentage relative errors between models, having as a
reference the rotated cylindrical/curvature radius one (that presented in Equation (14)), vary between
0 ≤ %E ≤ 4.47
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Figure 10. Maximum velocity vs. super-elevation angle. 0.71 ≲ µ ≲ 0.79, ρ = 218 [m]. ρ is the
curvature parameter used, whether r or R. Pavement conditions: dry, sandy. Sand particle mean
diameter ∼103 [µm]. In this figure, the percentage relative errors between models, having as a
reference the rotated cylindrical/curvature radius (that is presented in Equation (14)), vary between
0 ≤ %E ≤ 4.71.
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Figure 11. Maximum velocity vs. super-elevation angle. 18 ≲ ρ ≲ 418 [m], µ = 0.165. ρ is
the curvature parameter used, whether r or R. Pavement conditions: icy, no sand. In this figure,
the percentage relative errors between models, having as a reference the rotated cylindrical/curvature
radius (that is presented in Equation (14)), vary between 0 ≤ %E ≤ 1.15.
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Figure 12. Maximum velocity vs. super-elevation angle. 0.1 ≲ µ =≲ 0.23, ρ = 218 [m]. ρ is
the curvature parameter used, whether r or R. Pavement conditions: icy, no sand. In this figure,
the percentage relative errors between models, having as a reference the rotated cylindrical/curvature
radius (that is presented in Equation (14)), vary between 0 ≤ %E ≤ 1.50.
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The first thing to notice is that there are indeed differences between models over
maximum speeds before tires/pavement slippage. That is interesting since this involves
a model (Equation (2)) that has been used for many years and constitutes the basis for
numerous national regulatory systems, scantly discussed in terms of fundamentals such as
the ones brought up here. It is not claimed here that the model has been a liability per-se.
However, this finding could represent an opportunity to work on the lack of discussion of
principles about the geometrophysical parameters involved in the general problem, such
as the concepts of curvature radius and (highway) super-elevation and, furthermore, about
concepts such as vehicle trajectory in these kinds of applications.

Another interesting feature of the results is that the smaller differences between
models are found in the most slippery conditions, Cf. Figures 9–12. That is perhaps
counter-intuitive since an icy pavement surface conveys edgy model conditioning. On the
other hand, if icy pavement implies the smaller-in-value non-geometrophysical parameter
under consideration (Cf. Table 3), the results appear reasonable. Indeed, a comparison of
Figures 8–10 shows that the sequence of model differences continues to augment with in-
creasing friction coefficient values (µs = 0.61, %EMax = 3.94, and µs = 0.75, %EMax = 4.71,
respectively). Please Cf. Table 3 again.

As explained in Section 3.2, it has been established that models leading to Equations (13)
and (14) are mathematically equivalent to the model expressed in Equation (2), Cf. [25].
This equivalence allows for the utilization of the former (Equation (14)) as a reference for
comparison. This finding is particularly interesting since, to the best of our knowledge, this
specific topic has not been addressed in the existing literature. Of course, the broader subject
of developing and applying point mass models regarding the main problem reviewed by this
paper is known, as well as the recognition that the model represented by Equation (2) is derived
from practical approximation considerations applied to the model proposed by Equation (1),
as explained in earlier sections. However, a quantitative analysis of this relationship and its
derived consequences, as proposed in this study, has not been previously conducted.

Other analytical features of interest displayed in the figures are quite reasonable.
Among them, the fact that the two 2D models by conception (Equations (13) and (14)) are
lumped together against the others in all figures. Furthermore, the differences between
models in Equations (13) and (14) are of %EMax ∼ 0.27, manifesting that solely considering
another curvature parameter in nature generates differences (r or R). That lumping could
be explained precisely for the former reason. Those two models are 2D approximations
of a 3D situation; therefore, in principle, they are conceptually more inaccurate than their
counterparts in Equations (16), (21), (22). Another one, in addition to reasonable, and also
to be expected, is the analytical equivalence of models in Equations (7), (16), (21); which
accounts for the fact that a given geometrophysical situation can be conceptualized in
several equivalent ways. For example, if one multiplies the left-hand side of Equations (7)
or (16) with 1/cosθ

1/cosθ , Equation (22) is obtained. Notice that this is made possible because of
the loose and formally/conceptually problematic notion of a radius of curvature parameter
(R), as discussed in previous sections (Cf. Table 1). In summary, modeling a real physical
situation using different geometrophysical sets produces equivalent results, provided the
models are mutually reducible among them. If that is not the case, differences arise, such
as in the case of models in Equations (22) and (14).

Finally, for México’s particular case, the main finding of this work is that the model
used as the regulatory basis for calculating the safe speeds of highways has a percentage
of relative error differences with respect to the others under consideration. Moreover,
the differences found in principle favor safe highway operation, since the IRCM-inspired
model (Equations (2) and (14)) consistently predicts lower speeds than the others (Cf.
Figures 7–12). If that is experimentally verified, which is outside the proposed scope
of this work, the relevant potential consequences of the present discussion would be
primarily related to, for example, the economic logistics of highway design, construction,
and operation, important subjects within this paper’s overall context but also outside its
proposed scope.
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6. Observations/Conclusions

This study consolidates the results regarding the impact of geometric and physical
modeling considerations on road and highway design related to México’s case. It was
observed that different parametrizations of the same scenario can lead to diverse out-
comes not previously foreseen/documented in Mexico’s regulations or reported elsewhere.
Particularly, there are significant differences in the maximum safe operating velocities
when considering variation in concepts such as plane of motion and curvature parameter,
i.e., R (radius of curvature) and r (model’s natural radial coordinate), which necessitate
further investigation.

Therefore, this study’s findings call for experimental research in order to fully establish
and explore the potential implications of these differences on highway design, emphasizing
that relative variations between models peak at approximately %EMax ∼ 5, a critical
parametric value in specific foreseeable situations. For example, in scenarios involving
extreme conditions such as vehicle motion on race tracks, competitions, or park attractions,
these effects are likely to be more pronounced, pointing to a need for additional focused
research. Particularly, both end possibilities, that is, whether the reference model for
México’s highway regulations is underestimating (which seems to be the actual case
according to the discussed findings) or overestimating maximum safe operational speeds,
are conducive to interesting lines of further exploration.

Finally, while the study presented here primarily adopted a conceptual and analytical
approach, it also highlighted the necessity for a comprehensive experimental framework to
align the involved conceptual and geometrophysical aspects with practical applications.
This dual approach underscores the complexity and prospective relevance of these pre-
liminary findings to both the theoretical and practical aspects of highway engineering.
Succinctly put, beyond the overall approach described in this work, which is conceptual
in inception and analytical in discussion of results, a comprehensive experimental ap-
proach to the problem complementary to the one presented is required to compare its
conceptual/geometrophysical aspects to practical ones.
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