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Abstract: Purpose: Tongue image analysis for disease diagnosis is an ancient, traditional, non-inva-

sive diagnostic technique widely used by traditional medicine practitioners. Deep learning-based 

multi-label disease detection models have tremendous potential for clinical decision support sys-

tems because they facilitate preliminary diagnosis. Methods: In this work, we propose a multi-label 

disease detection pipeline where observation and analysis of tongue images captured and received 

via smartphones assist in predicting the health status of an individual. Subjects, who consult collab-

orating physicians, voluntarily provide all images. Images thus acquired are first and foremost clas-

sified either into a diseased or a normal category by a 5-fold cross-validation algorithm using a con-

volutional neural network (MobileNetV2) model for binary classification. Once it predicts the dis-

eased label, the disease prediction algorithm based on DenseNet-121 uses the image to diagnose 

single or multiple disease labels. Results: The MobileNetV2 architecture-based disease detection 

model achieved an average accuracy of 93% in distinguishing between diseased and normal, healthy 

tongues, whereas the multilabel disease classification model produced more than 90% accurate re-

sults for the disease class labels considered, strongly indicating a successful outcome with the 

smartphone-captured image dataset. Conclusion: AI-based image analysis shows promising results, 

and an extensive dataset could provide further improvements to this approach. Experimenting with 

smartphone images opens a great opportunity to provide preliminary health status to individuals 

at remote locations as well, prior to further treatment and diagnosis, using the concept of telemedi-

cine.  

Keywords: tongue feature extraction; disease diagnosis; segmentation; MobileNetV2  

architecture; DenseNet-121 architecture; convolutional neural network 

 

1. Introduction 

A technological breakthrough has made clinical investigations and tests for disease 

diagnosis feasible to a great extent; high-end diagnostic tools are readily available. Ayur-

veda uses certain human indices like pulse (Nadi), eyes, nails, and tongue to diagnose 

common ailments. Ancient traditional medicine used these parameters as a means of di-

agnosis, with no advanced technological tools available, to predict many abnormalities 

related to the health status of internal body organs. These traditional, non-invasive diag-

nostic practices can be adapted to give a preliminary prognosis by quantifying and auto-

mating the entire analysis process to remove the associated subjectivity.  

The paper presents a novel method for multilabel disease classification from tongue 

analysis. Observation of the tongue is an important part of traditional Chinese medicine 

as well as Ayurveda. It was established that different parts of the tongue correspond to 

different internal organs. The tip of the tongue reflects the heart and lungs; the middle 

part reflects the spleen, pancreas, and stomach; its root represents the kidneys and intes-

tines, and the right and left sides represent the liver and gall bladder. 
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Over the past few decades, the use of decision-support systems in clinical practice 

has increased. Deep learning models allow reliable classification and object detection of 

medical images, showing remarkable accuracy comparable to that of physicians. An au-

tomated tongue diagnosis system is a way to bridge the gap between traditional diagnos-

tic methods and modern western medicine. Quantitative analysis can overcome the sub-

jective aspect, which stems from a skilled traditional practitioner’s knowledge base and 

meticulous practice and establish its accountability and acceptability. In this paper, we 

have developed a multi-disease classification algorithm that is able to predict multiple 

disease classes with appreciable accuracy. According to the collected data samples, eight 

diseased states are considered. This paper contributes to the following fields: 

• The paper presents a MobileNetV2 deep learning model to detect the diseased 

tongue from a normal, healthy tongue. The model employs a five-fold cross-valida-

tion and transfer learning technique to achieve this binary classification. The main 

achievement is the sanguine results obtained with images taken by smartphone cam-

eras rather than standard equipment. 

• A multilabel classification model for eight common categories of ailments is devel-

oped. The DenseNet-121 architecture for disease classification achieves satisfactory 

results with the small dataset. There are eight disease labels: diabetes, hypertension, 

acidic peptic disease, pyrexia, hepatitis, cold cough, gastritis, and others. 

The organisation of this paper is as follows: Section 2 summarises the techniques used 

for tongue feature extraction. Section 3 provides an explanation of the related work, da-

taset, and training details, along with the experimentation and evaluation metrics used. 

Finally, Section 4 reports the performance analysis. Section 5 concludes the research. 

2. Related Work 

Quantifying the tongue’s diagnostic attributes is one of the main challenges in auto-

mating tongue analysis for disease diagnosis. Ref. [1] presents a study of tongue condi-

tions based on Ayurveda, which pertain to an individual’s health status. Ref. [2] presented 

a summary of various tongue attributes such as colour coating, texture, and geometric 

shape to predict specific diseased conditions, followed in oriental medicine. According to 

TCM (traditional Chinese practice), the best illumination for tongue inspection is sunshine 

in an open area at 9 am. Artificially, this can be generated with a source with a colour 

rendering index greater than ninety and a colour temperature around 5000 K. The auto-

mation of tongue analysis systems essentially requires an image-capturing device with 

high-resolution images for accurate extraction of tongue features for disease predictions, 

in agreement with traditional medicine practitioners. Researchers explore various imag-

ing setups using high-end CCD cameras [3–9], hyperspectral cameras [10–16], and 

smartphone cameras [17–24]. Before feature extraction and classification, it is necessary to 

segment the tongue region from the captured images, which include teeth, lips, and skin 

areas. Over time, researchers have explored conventional approaches, artificial neural net-

works, and deep learning algorithms for tongue area segmentation and feature extraction. 

Probably due to the lack of a digital dataset covering all possible features for various dis-

eases, most of the work in this area focused on a specific disease and its associated tongue 

features. Some common diseases, such as diabetes, appendicitis, and gastritis, were tar-

geted, and relevant features and classification were done using statistical techniques [25–

28]. A hybrid model with statistical methods for feature extraction and machine learning 

algorithms for classification was also developed by [29–33]. Table 1 summarises some fea-

ture and disease classification methods published. 
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Table 1. Summary of a literature review of ML-based models for specific tongue features. 

Tongue Features/Disease 

Targeted 
Dataset Method Employed Reference 

5 tongue body colours, 6 

tongue coating colours 

1080 images acquired using 

the DSO1 state-of-the art 

acquisition system 

k-means clustering algorithm [34] 

Diabetes - 

Texture and Coating features 

The TFDA-1 captured 732 

subject images. 

The auto-encoder algorithm extracts tongue features, and 

then the k-means algorithm fuses the two sets of features for 

classification. 

[35] 

The study focuses on tongue 

area detection, calibration, 

and constitution 

classification. 

50 subjects 

Tongue detection using faster RCNN, feature extraction 

models ResNet-50, VGG-16, and Inception-V3, alongside 

LBP for texture features and Colour-Moment for colour 

features The model was evaluated using the classifiers SVM 

and Decision Tree. 

[36] 

Colour andTexture features 702 images, 

The Grey Level Co-occurrence Matrix (GLCM), in 

conjunction with the LEAD (Multilabel Learning Algorithm) 

and a threshold-determining algorithm, yields superior 

results compared to other existing techniques. 

[37] 

Multifeature extraction 268 images, 
GLA (Generalised Lloyd Algorithm) to extract colour and 

texture features from the tongue surface. 
[38] 

Seven categories: fissured 

tongue, tooth-marked, statis, 

spotted, greasy, peeled, and 

rotten coating 

8676 images 
The faster R-CNN, a region-based network, achieved an 

accuracy of 90.67%. 
[39] 

considered 11 features on the 

tongue surface. 
482 images 

The ResNet-34 architecture has achieved 86% accuracy for 

the 11 features identified. 
[40] 

Tooth-marked tongue related 

to spleen deficiency 
1548 images ResNet-34 architecture, 90% accuracy. [41] 

Gastritis 
263 gastritis patients, 

48 healthy 

Features related to gastritis were extracted using a 

constrained, high-dispersal neural network. 
[42] 

Ada Boost, SVM (support vector machine), and MLP 

(multilayer perceptron classifier) are some examples. 
[43] 

11 disease categories, plus 

healthy tongue images. 

There are 936 images, with 

78 images for each of the 12 

disease categories, including 

healthy ones. 

The VGG-19 network’s extracted tongue features, supported 

by a Random Forest classifier, achieved 93.7% accuracy 
[44] 

12 disease categories, 

including healthy 

936 images 

For each of the 12 disease 

categories, there are 78 

images. 

Designed IoT base automated synergic deep learning 

tongue colour image analysis model providing 98.3% 

accuracy for disease diagnosis and classification. 

[45] 

Iron deficiency 
95 images from the Harvard 

dataset 

Explored the possibility of monitoring health status by 

tongue images using the CNN algorithm, which could be 

deployed on an Android mobile app. 

[46] 

Ref. [47] reviewed current trends in tongue diagnosis. They also trained a classifica-

tion model using Random Forest and Support Vector Machine on a tongue dataset, with 

the tongue region divided into five parts as per the layout of the internal organs and ex-

tracted seven colour spaces from the five extracted parts. Further, they trained VGG and 

ResNet pretrained models on tongue constitution classification. ResNet 50 showed the 

best performance, with 64.52% accuracy. 

Over the past two decades, enormous efforts have been made to effectively utilise the 

full potential of the tongue diagnosis system. Enhancement of tools and techniques for 

achieving the holistic approach and overcoming the subjective nature of diagnosis is an 

ongoing process, and there is a need to set some standard protocols so that they have 

uniform characteristics and are readily acceptable by end users. Most of the research has 
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focused on specific diseases and sought to extract tongue features. Refs. [44,45] achieved 

notable and accurate results by classifying 12 disease categories, including a healthy 

tongue, and assigning a specific single disease label to each tongue sample; they did not 

focus on multi-label classification. None of the references mentioned aimed to classify 

multiple disease labels. 

The aim of this paper is to take a step towards developing a decision support system 

using deep architecture to predict a holistic tongue diagnosis, not just any particular 

tongue features or diseases. In the future, it is proposed to further develop it as a mobile 

app that allows users to consult an expert medical professional and receive a preliminary 

treatment for immediate relief before conducting detailed investigations. 

3. Methodology 

The primary goal of this study is to determine whether smartphone images can yield 

accurate results for tongue analysis, enabling the provision of a preliminary diagnosis 

whenever and wherever needed. Tongue images captured by an individual and symp-

toms mentioned by him or her can aid the medical professional in giving a preliminary 

line of treatment before directing further detailed investigations. We collaborated with 

two consulting physicians to collect data over a two-month period using smart phone de-

vices with a camera resolution greater than or equal to 8 megapixels. Analysis and identi-

fication of the images to be labelled with single and/or multiple disease labels for each 

case are performed. 

We classified seven common ailments, each with a significant number of samples, 

and grouped the remaining diseases diagnosed, with few samples, under a single label, 

‘others’. The doctor’s diagnosis serves as the ground truth for the classification task. The 

approach used for multilabel classification starts with the initial segmentation of the 

tongue area from the complete image. Thereafter, a binary classification architecture dis-

tinguishes an unhealthy tongue from a healthy one, followed by final disease label pre-

diction using a multi-label classifier model. The workflow for implementing a multi-label 

classification model is illustrated in Figure 1. Subsequent sub-sections follow, providing 

brief details of all the steps involved. The strategy for the deep learning classification mod-

els used is as follows: 

• Stratified 5-fold cross-validation for disease risk classification. 

• Ensemble learning strategy: bagging to reduce variance in data. 

• Upsampling of the dataset to set some minimum sample size in each class. 

• Extensive real-time data augmentation is needed for training models. 

• Class-weighted focal loss to tackle class imbalance. 

• Individual training for multi disease classification and disease risk detection. 

 

Figure 1. Proposed pipeline for multi-label disease detection using tongue images. 
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3.1. Tongue Analysis Dataset 

A total of 1095 images of subjects suffering from one or more than one ailment are 

acquired using smartphone cameras with an image resolution greater than or equal to 8 

mega pixels (Samsung A50, iPhone, one plus). A total of 822 images of healthy individuals 

were also collected from willing individuals. All images were collected with the necessary 

consent of individuals eager to be part of our study. Raw images come in a variety of 

resolutions and sizes. For the proposed model, images are annotated with eight conditions 

other than normal and disease risk categories, as listed in Table 2. Other label classes in-

clude some uncommon ones like CAD (coronary artery disease), CKD (chronic kidney 

disease), COPD (Chronic Obstructive Pulmonary Disease), epilepsy, and vertigo. 

Table 2. Annotation frequency for each class in the dataset. 

Disease Samples Disease Samples 

Diabetes (DM) 112 Hepatitis 183 

Blood Pressure (BP) 138 Cold Cough 150 

Acid Peptic Disease (APD) 156 Gastritis 189 

Pyrexia 98 Others 429 

3.2. Preprocessing and Image Augmentation 

The acquired images are of various sizes and formats, and we perform primary pro-

cessing by converting all images to a 256 × 256-pixel jpeg format. These basic prepro-

cessing steps are used ensure a uniformity in all images in the dataset. The next step in-

volves segmentation of the tongue area of interest by Double U-Net architecture [48]. In 

order to increase data variability, further preprocessing methods are used, such as image 

augmentation for upsampling to balance class distribution and real-time augmentation 

during training to obtain unique and novel images in each epoch, thus improving the 

model’s performance. Upsampling is done to ensure each label occurs at least 150 times 

in the dataset, which increased the total number of diseased tongue images to 2729. Rota-

tion, flipping, and altering brightness, saturation, and hue are used for real-time augmen-

tation.  

3.3. Deep Learning Models 

Our pipeline combines two different types of image classification methods: a binary 

classification for normal or diseased tongues and a disease label classifier for multilabel 

annotated images. The AUCMEDI [49] platform is employed to develop our classification 

model; in both cases, we are using pretrained models to reduce the time and cost of train-

ing a fresh model. We apply transfer learning with frozen layers, with the exception of the 

classification head. After 10 epochs of training, the freezing is undone so that the weights 

can be adapted to the new task. 

We chose the two architectures to be compatible with low resource requirements and 

feasible for deployment on the Android platform. A brief introduction to the two archi-

tectures is provided in the following paragraphs, along with the parameter settings for 

each model. 

3.3.1. Diseased Tongue Detector 

MobileNetV2 is used for binary classification to distinguish between normal and un-

healthy tongue images. MobileNet [50] is the first computer vision model open-sourced 

by Google and designed for training classifiers, detectors, and segmentation. The model’s 

highlights are its small, low-latency, and low-power models, which are designed to effec-

tively maximise accuracy while considering resource constraints for on-device or embed-

ded applications. The use of depth-wise separable convolutions significantly reduces the 

number of parameters compared to other regular convolution networks. MobileNetV2, as 
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defined in [50], basically contains 53 convolution layers and 1 average pooling layer, as 

shown in Figure 2a. It incorporates two new architectural elements within its layout: a 

linear bottleneck across the layers and a shortcut between the bottlenecks. The initial layer 

is a fully convolutional layer with 32 filters, followed by 19 residual bottleneck layers. The 

structure consists of two crucial components: 

1. Residual Block inverted; 

2. Residual Bottleneck Block. 

Each block has three different layers, consisting of point-wise 1 × 1 convolution and 

3 × 3 depth-wise convolution. There are Stride 1 blocks and Stride 2 blocks, as shown in 

Figure 2b. Bottleneck is either an inverted residual block, a bottleneck residual block, or a 

Stride 1 or Stride 2 block. Bottleneck layers enhance models’ ability to transition from 

lower-level pixels to higher-level variables identifying image categories. 

 

Figure 2. Basic Blocks of MobileNetV2 (a) Layers in MobileNet V2. (b) Stride 1, stride 2 blocks [50]. 

The use of 5-fold cross-validation with the bagging method for ensembles with Ran-

dom Forest and Soft Majority Voting is done. The dataset is split into three parts: a train, 

a test model, and a test ensemble set. The five-fold cross-validation further divides the 

train set into a train and a validation set, dividing the training set into five parts and per-

forming training on each part. Each time, one of the five parts is used for validation, and 

the other four parts are used for training. Five models are trained according to a 5-fold 

train dataset split; individual models may not give the best results by themselves. The best 

model for each fold is saved. The predictions of the individual models are combined into 

an ensemble in order to produce a single, stable prediction. Two techniques—Random 

Forest (RF) and Soft Majority Voting (SMV)—are used, and results are compared. 

Random Forest 

The Random Forest algorithm itself is an ensemble method. The implementation 

steps begin with a bootstrapped dataset, from which we draw random samples. We can 

draw one sample from the dataset multiple times, resulting in a new set of data that is the 

same size as the original, but does not necessarily contain all of the original dataset. The 

next step is to build a decision tree with random variables based on the number of folds. 

The bootstrapping step is repeated, thereby generating multiple decision trees. The final 

step is tree bagging for the prediction of new data; the most common decision becomes 

the final result of the decision tree. For the bagging method, the Random Forest classifier 

uses an ensemble dataset. 



Appl. Sci. 2024, 14, 4208 7 of 16 
 

Soft Majority Vote 

For SMV, the summation of each model’s prediction is done to create a new predic-

tion matrix. The final prediction for new data then becomes the category having the max-

imum value in the matrix. 

Parameter settings for the said model are as follows; due to the imbalance in the num-

ber of images in the two categories, class weights are computed, and categorical focal loss 

is considered the loss function. Testing of model performance is done on the test data, and 

evaluation metrics for training each fold are computed and saved. Ensemble by 5-fold 

bagging is done by Random Forest and Soft Majority Vote methods. Each model is trained 

for 50 epochs, and the dynamic learning rate is set to a maximum decrease of 1 × 10−7 with 

a factor of 0.1 in case of no improvement. Validation loss is monitored after 5 epochs. Early 

stopping and the model checkpoint method are also used, with a patience level set at 12 

epochs with no improvements in validation loss. Finally, we compare all the individual 

fold F1 scores with the ensemble models to determine which model performs best. 

3.3.2. Disease Label Classifier 

This is a multilabel classifier using the DenseNet-121 [51] architecture for the eight 

disease classes. DenseNet, as its name implies, is a densely connected network that con-

nects each layer to every other layer. The input of a layer is the concatenation of feature 

maps from previous layers. Concatenation requires feature maps of similar size; this issue 

is resolved by dividing the network into multiple densely connected networks, facilitating 

both down sampling and feature concatenation. This keeps the feature map size similar 

within a block. 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, 𝑥2, … 𝑥𝑙−1])  (1) 

where x0 represents the input, Hl represents the non-linear transformation occurring in 

each block, and xl represents the output of the Lth layer. A transition block, consisting of 

a convolution and pooling layer, follows each dense block. Lastly, the dense block is ter-

minated by a classification layer that accepts the feature map of all previous layers of the 

network to perform the classification task. Bottleneck layers are used within each block, 

where 1 × 1 convolution reduces the number of channels in the input, followed by 3 × 3 

convolution for feature extraction. This helps to relax large computational requirements 

while also improving efficiency. DenseNet-121 consists of four dense blocks with 

[6,12,24,16] number of layers in each block as shown in the summary chart in Figure 3. 

This network has the following imperative advantages: it mitigates the vanishing gra-

dient problem, strengthens feature propagation, encourages feature reuse, and has a 

smaller number of parameters. 
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Figure 3. Summary of DenseNet-121 Architecture. 

For this study, multilabel focal loss is used as the loss function along with categorical 

accuracy. The model is trained with hyperparameter settings as mentioned: 100 epochs 

with a dynamic learning rate set to a maximum decrease of 1 × 10−7 with a factor of 0.1 in 

case of no improvement. It is also monitored for validation loss with a patience of 5 epochs. 

Early stopping and the model checkpoint method are also used to stop after 12 epochs 

with no improvements monitored. 

The experiments were performed with the available resources, consisting of a HP 

Pavilion laptop with a 1.60 GHz Intel i5 8th generation processor and 8 GB of RAM. Train-

ing of the model was done on Google Colab Python 3. Backend GPU for Google Compute 

Engine. 

3.4. Evaluation Metrices 

The metrics considered for quantitative evaluation of the model on test data are pre-

cision, recall, and F1-score. 

Precision is the number of true positives divided by the number of total positive pre-

dictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
  

Recall measures the model’s ability to predict the positives; it is the true positive di-

vided by the true positive and false negative. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
  

F1 score is the harmonic mean of precision and recall given by  
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𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

Categorical Accuracy is the percentage of predicted values that match the actual truth 

values. The calculation for the same is done as follows: 

• First, identify the index at which the maximum value occurs using argmax. 

• If it is the same for both predicted and true value, it is considered accurate. 

Here, since the maximum value index is observed, the predicted value can be a logit 

or probability function.  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
  

• Reciever Operating Characteristics Curve 

The receiver operating characteristic (ROC) curve is determined by calculating the 

average ROC for each of the five folds. Practically, for each fold, different false- and true-

positive-rates exist, and the mean cannot be calculated; hence, the first aggregation of all 

False-Positive-Rates (FPR) into one vector is done, serving as the x axis of the average ROC 

curve. The True-Positive Rate (TPR) needs to be interpolated. The TPR represents the cor-

responding y-points to the previously collected x-points. 

4. Results and Discussions 

A disease risk detection model is trained on the dataset with healthy and unhealthy 

tongue images. Upsampling of the unhealthy image data is done to ensure at least 150 

images in each of the 8 categories. Real time Image augmentation is used to increase the 

image set artificially by adding small transformations to the original images, such as rota-

tions or changes in contrast or saturation. Online image augmentation applies the trans-

formations to each image upon loading with the data generator, eliminating the need for 

disk storage. For multilabel disease classification evaluation, one hot-encoded file serves 

as an interface defining true labels for the model. 

4.1. Performance Analysis of Disease Risk Detector 

When trained on a shared GPU from COLAB, the sequential training of the disease 

risk detector with 5-fold cross validation with the MobileNetV2 architecture took approx-

imately 4.5 h with 45 epochs for each fold on average. The disease risk model’s perfor-

mance results with respect to metrics considered on the test model dataset are shown in 

Table 3. The test dataset consists of 485 images in total, with 361 unhealthy tongue images 

and 124 normal, healthy tongue images. Concise ROC Curve Figure 4, for the 5-folds and 

ensemble techniques with a mean value, indicates the model’s appreciable performance 

for binary classification. 

Table 3. Performance metrices for the 5 folds of cross-validation of the disease risk model. 

  Precision Recall F1-Score Accuracy 

Fold-1 
Diseased 0.99 0.91 0.95 

0.92 
Normal 0.78 0.97 0.86 

Fold-2 
Diseased 0.97 0.94 0.96 

0.93 
Normal 0.85 0.90 0.88 

Fold-3 
Diseased 0.98 0.98 0.98 

0.96 
Normal 0.93 0.94 0.93 

Fold-4 
Diseased 0.97 0.94 0.95 

0.93 
Normal 0.84 0.92 0.88 

Fold-5 
Diseased 0.98 0.91 0.95 

0.92 
Normal 0.79 0.95 0.86 



Appl. Sci. 2024, 14, 4208 10 of 16 
 

 

Figure 4. Receiver operating characteristics curve (a) 5-fold cross-validation models. (b) Ensemble 

techniques. 

The best model is saved for each fold of cross-validation. Predictions of each fold on 

a test ensemble dataset with 485 images are combined to form an ensemble. Implementa-

tion of the Random Forest ensemble is done by picking random samples and features to 

build many decision trees on a bootstrapped dataset through a repeated process. Predic-

tion of new data is accomplished by bagging operations, wherein the final decision is the 

most common decision amongst all decision trees.  

The Soft Majority Voting Ensemble aggregates the generated predictions from the 

five folds to create a new prediction matrix. The category with the maximum value is con-

sidered the final prediction for each sample. In this particular case, the ensemble of 5-fold 

predictions with two classes does not show enhanced performance; F1 scores for Random 

Forest and Soft Majority Voting are comparable to the individual fold F1 score as depicted 

in Figure 5. 

 

Figure 5. Comparison bar graph for 5-folds and ensemble techniques. 

4.2. Performance Analysis of the Multi-Label Disease Classification Model  

The DenseNet-121 model is utilised for the classification of diseases. The dataset com-

prised seven distinct disease labels and an additional one, which consisted of all diseases 

with fewer than 10 subjects in each category. Model training stopped at 41 epochs. The 
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disease classification model with DenseNet-121 architecture took over 18 h to train. Table 4 

shows the performance parameters for the eight labels considered in the test data of 474 

images. The ROC curve in Figure 6 gives an idea of true positive predictions for each cate-

gory. 

Table 4. Performance Parameters for the Disease Classification Model. 

Disease Precision F1-Score Accuracy 

DM 0.9722 0.8203 0.9148 

BP 0.9803 0.8658 0.9425 

APD 0.9130 0.8038 0.9240 

Pyrexia 0.9473 0.9183 0.9703 

Hepatitis 0.9885 0.8958 0.9629 

Cold Cough 0.9878 0.8901 0.9629 

Gastritis 0.9798 0.9652 0.9870 

Others 0.9034 0.7553 0.8093 

It is observed that each of the diseased classes achieved an average accuracy of over 

90%. Some sample results presented in Table 5, where bold values indicate the true pre-

dictions with respect to ground truth, the success of the DenseNet-121 model for disease 

classification.  

 

Figure 6. ROC curve for DenseNet-121 model on Test dataset. 

Highlighted rows in the table indicate inaccurate classification for two sample im-

ages. The results for the class “others” were also observed to be slightly less accurate. This 

is also evident from the ROC curve and performance indices. 
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Table 5. Sample test images with prediction probability and truth data. 

Test 

Image 

Samples 

Prediction Probability 

Truth 
DM BP APD PYR HEP CC GAS Others 

 

0.0456 0.0190 0.0400 0.0131 0.7392 0.0207 0.0256 0.7650 
Hepatitis and 

others 

 

0.9177 0.0405 0.0055 0.0001 0.0033 0.9872 0.0071 0.9968 
Diabetes, cold 

cough, others 

 

0.0129 0.0198 0.0118 0.4670 0.0729 0.1006 0.0051 0.3405 Pyrexia 

 

0.4555 0.6903 0.0591 0.0014 0.8166 0.0654 0.0259 0.3004 

Diabetes, 

hypertension, 

hepatitis 

 

0.0059 0.0235 0.7697 0.0071 0.0074 0.0315 0.9693 0.8268 
APD, gastritis, 

others 

 

0.0004 0.0103 0.9436 0.0413 0.0029 0.0142 0.9705 0.7960 
APD, gastritis, 

others 

 

0.0335 0.0188 0.0108 0.0987 0.4677 0.0124 0.7906 0.0795 
Hepatitis, 

gastritis 

 

0.1365 0.0628 0.2372 0.0261 0.0131 0.2798 0.0423 0.5847 Pyrexia 

 

0.0264 0.0036 0.1321 0.1261 0.0083 0.4880 0.1867 0.3476 Cold cough 

 

0.9768 0.8526 0.0079 0.0013 0.0009 0.9293 0.0010 0.9519 

DM, 

hypertension, 

cold cough, 

others 



Appl. Sci. 2024, 14, 4208 13 of 16 
 

The proposed model for multi-disease classification shows satisfactory results. The 

most important outcome of this work is that images captured in different environments 

and on various mobile phones demonstrated appreciable results. Further improvement is 

possible with an ensemble of different deep learning models to achieve high accuracy for 

all disease labels. As it is not practically possible for any individual model to deliver uniform 

accuracy for all classification labels under consideration, multiple models will ultimately 

enhance the overall prediction accuracy. In future work, the aim is to increase the number 

of disease labels to encompass all potential cases that tongue analysis can diagnose, in col-

laboration with a medical expert to compile ground truth data for classification. 

Even with the limitation of a small dataset with a smaller variety of disease classes, 

model performance is appreciable. Since only a single dense model is considered, its per-

formance accuracy for all class labels could not be uniform. As previously mentioned, we 

can enhance this by incorporating the ensemble learning method. 

5. Conclusions and Future Work 

The main challenging aspect of automating tongue analysis for disease diagnosis is 

quantifying the diagnostic features of the tongue image on par with the expert practi-

tioner’s observations. Automating this non-invasive method of diagnosis can facilitate the 

consultation of a sick individual with medical personnel using a telemedicine network, 

even from a remote location. On the Indian continent, with its diverse and large popula-

tion, automatic tongue analysis systems can aid medical personnel to some extent in giv-

ing a preliminary diagnosis and initiating immediate treatment without direct physical 

interaction with the subject. 

In this study, we introduced a powerful multi-disease detection pipeline for tongue 

image analysis that uses ensemble learning to combine the predictions of five individually 

trained models to improve the performance of identifying a diseased tongue. In this par-

ticular case, the ensemble method’s performance is comparable to that of individual mod-

els, showing no notable improvement. A single image of the tongue can be used to predict 

more than one disease by employing techniques like transfer learning, class weighting for 

imbalance in different classes, large amounts of real-time data enhancement, and focal 

loss utilisation in the deep learning architecture. An average accuracy of 90% is achieved 

with the multi-label classification model for eight disease classes. Two different deep 

learning models are specifically used, primarily due to their lower resource requirements 

compared to their counterparts and their potential for Android platform deployment. 

This study’s most significant accomplishment is the successful use of mobile phone 

images for tongue image analysis, which represents a step towards reducing the cost and 

expertise of a high-end, sophisticated image-capturing device and strengthens the possi-

bility of developing an Android-based app for easy and quick prognosis. Automation will 

also be helpful in training aspiring clinicians to use this non-invasive traditional practice 

and enhance their skills with experience. This opens the opportunity to explore more en-

hanced models with a larger dataset for performance improvement.  

In our future work, we aim to build a more robust model with a judicious selection 

of a group of deep learning architectures for an ensemble model capable of classifying all 

possible disease labels achievable using tongue analysis from smartphones. This inher-

ently includes the need to compile an exhaustive tongue image dataset for research. 
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