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Abstract: The raw material purchasing (RMP) problem is to determine the purchasing quantities
of raw materials in given periods or cycles. Raw material purchasing optimization is crucial for
large-scale steel plants because it is closely related to the supply of raw materials and cost savings.
The raw material purchasing of large-scale steel enterprises is characterized by many varieties, large
quantities, and high costs. The RMP objective is to minimize the total purchasing cost, consisting of
the price of raw materials, purchasing set-up costs, and inventory costs, and meet product demand.
We present a mixed integer linear programming (MILP) model and a column generation (CG) solution
for the resulting optimization problem. The column generation algorithm is the generalization of the
branch and bound algorithm while solving the linear programming (LP) relaxation of MILP using
column generation (CG), and its advantage is to handle large-sized MILPs. Experimental results
show the effectiveness and efficiency of the solution.

Keywords: purchasing; optimization; MILP; column generation

1. Introduction

Raw material purchasing is crucial for steel enterprises because it is related to the
supply of raw materials and cost savings [1]. The raw material purchasing of large-scale
steel enterprises is characterized by many varieties, large quantities, and high costs. The
raw materials purchased by steel enterprises include three types: iron, coal, and auxiliary
materials. Iron includes iron ore, pellets, sinter, pig iron, scrap steel, and so on. Coal
includes all pulverized coal, lump coal, and coke. Auxiliary materials, also known as
solvents, include limestone, quicklime, serpentine, etc. In a large-scale iron and steel
enterprise, the purchase volume of raw materials reaches tens of millions of tons and the
purchase expenditure reaches tens of billions of yuan. Therefore, it is very important to
make the optimal raw material purchasing decisions.

Raw material procurement optimization aims to determine the purchasing quanti-
ties of raw materials in some given periods or cycles, make the purchasing total cost
minimal, and meet the production demand. The purchasing cost includes material price,
procurement set-up cost (including negotiation and communication, transportation, etc.),
and inventory cost (including capital occupation, management, maintenance, etc.). Raw
material purchasing is often complex because it involves many factors, such as supplier
selection, raw material price fluctuations, inventory control, product demand, etc., and its
solution also involves many areas [2–4], and it has been a hot area of study in management
and operations research [5–7].

Determining the purchase amount of raw materials is closely related to the number
of varieties of raw materials, which affects the complexity of the problem. According to
the number of varieties purchased, raw material purchasing problems can be naturally
divided into two categories: single-item procurement and multi-item procurement. Single-
variety purchasing decisions determine the purchase of a single raw material for many
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periods. The famous economic order quantity (EOQ) model is a single-item purchasing
example. The EOQ assumes the demand is steady and constant, the price of raw materials
is unchanged, and the supply of raw materials is enough. The EOQ model has an analytic
solution. However, when the assumption of steady-state demand is dropped, the single-
item procurement problem becomes difficult to solve. The W-W [8] problem is a dynamic
version of the EOQ. It allows demand to vary from period to period and can be solved with
dynamic programming; however, as the number of periods increases (e.g., 300), the solution
is time-consuming. The W-W problem still assumes the satisfaction of requirements is
unlimited. When there is a limitation on the availability of raw materials, the problem
becomes NP-hard [9] and is called the single-item capacitated lot-size problem (SCLP).
Most early research interest is focused on this kind of problem [10].

For the multi-item purchasing problem, since complex material structure and process
relationships often need to be considered, mathematical programming models are the
most common choice [1,11,12]. Mathematical programming models have the advantage
of being able to handle complex constraints. There are also some other methods to study
the multi-item procurement problem, such as fuzzy mathematics-based methods and data-
driven methods [13,14]. Fuzzy mathematics based on fuzzy logic has been widely used in
many fields, like industrial process control, production planning and scheduling, image
processing, etc. [15]. Data-driven methods are a hot research topic nowadays and are used
in almost all fields [7].

The main contributions of this paper are: We present a mixed integer programming
for this large-scale raw material procurement problem. We present a column generation
solution for the RMP problem.

The rest of this paper is organized as follows. Section 2 gives a literature review.
Section 3 states the model and the solving method—the column generation. Section 4 gives
the experimental results. Section 5 concludes this paper.

2. Literature Review

Research on raw material purchasing can be generally divided into two categories:
single-item procurement and multi-item procurement. The single-item raw material pur-
chasing problem is the first studied problem [8]. However, general single-item procurement
problems are NP-hard, so most solutions are heuristic [9]. Blackburn and Millen [16] ex-
amine several heuristics for the single-item uncapacitated lot-size version for single-item
purchasing and show that the Silver–Meal heuristic can provide cost-effective performance
superior to that of the W-W algorithm. DeMatteis [17] tests a heuristic called the part-period
algorithm for the above problem and shows that the part-period algorithm is well-suited for
industries whose demand forecast extends for a limited number of periods. Ekici et al. [18]
studied cyclic ordering policies for single-item purchasing to minimize total periodic or-
dering costs consisting of fixed ordering costs, variable purchasing costs, and inventory
holding costs. They show that their heuristic provides better results compared to other
methods in the literature. Tempelmeier [19] proposes a heuristic for supplier selection
and purchase order sizing. The heuristic has been tested as a component of the advanced
planner and optimizer (APO) of software of SAP. Hamid Mirmohammadi et al. [20] propose
a branch and bound-based optimal approach for single-item purchasing with quantity
discounts. Experimental results show the performance of the optimal approach in computa-
tional time measurement. Kania et al. [21] propose an integration model for lot-sizing and
safety strategy placement for handling demand uncertainty. The goal is to store a proper
quantity of items to satisfy demand but concurrently avoid shortages and excess inventory.
The multi-objective model is selected and a computation-effective method is used for the
solution. There is much literature on single-item procurement and interested readers can
refer to relevant publications.

For the multi-item raw material purchasing problem, there are more literature studies
on related issues. Gao and Tang [1] constructed a multi-objective linear programming
(MOLP) model for RMP purchasing and supplier selection, where three optimization objec-
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tives, the minimization of the total purchasing cost, tardy-delivery ratio, and scrap fraction
are used. The constraints considered include the purchasing budget, production demand,
inventory capacity, and technology specifications. The model is solved using the point
estimate weight-sums (PEWS) method. Cunha et al. [11] proposed a mixed integer linear
programming (MILP) model for production lot size and raw materials purchasing based
on the process industry background. The optimization objective is to minimize the raw ma-
terials costs, ordering costs, inventory holding costs, setup costs, and production costs. The
constraints include purchasing, inventory control, packing tasks, and multipurpose storage
tank control. The model is solved with the CPLEX solver. Arnold et al. [12] considered raw
material purchasing with price fluctuations. Their objective is to maximize the net present
value (NPV). The constraints include inventory movement and backorders. The model is
solved by Pontryagin’s maximum principle. Ahmed et al. [22] considered a multi-product
and multi-period production system for minimizing the purchasing cost and inventory
costs. They propose a genetic algorithm (GA) for the solution of the problem. Kazemi and
Davari-Ardakani [23] proposed a multi-objective model that integrates project scheduling
and raw material purchasing simultaneously and solved it with NSGA-II and Taguchi.
Kannan et al. [13] proposed a multi-criteria decision-making (MCDM) approach called
fuzzy axiomatic design (FAD) to select the best green supplier for a Singapore-based plastic
manufacturing company for purchase and supply cycle to ensure the supplier of goods and
meeting of green criteria. Muteki and MacGregor [14] developed a data-driven approach
for raw materials purchasing. A partial least squares (PLS) regression is presented to extract
the latent purchasing raw materials as input for a sequential quadratic programming (SQP)
model that optimizes the raw materials purchasing.

To sum up, although there are some studies on the problem of multi-item procurement,
there are very few studies on iron–steel raw materials, and the existing solution methods
are mainly heuristic, or the optimal solution is only for small-scale problems. The model
and solution proposed in this paper can effectively solve the large-scale iron–steel raw
material purchasing problem that fills the gap.

3. Method
3.1. Model

The real-world RMP problem is from a certain large-scale iron and steel enterprise
(below called M-Steel) in China. M-Steel purchases about 15 million tons of raw materials
per year with about 4.5 billion of CNY of purchase expenditure and the purchased number
of raw material items is over 3000. The total raw materials purchasing cost accounts for
more than 70% of the total operating cost of M-Steel. The purchasing cost is composed
of the raw materials price, purchasing set-up cost, and inventory cost. The optimization
problem is to minimize the sum of the above three costs.

Assumptions:
A1: a single period is set as a month; therefore, a one-year length includes 12 periods.
A2: the inventory of each item of raw materials in each period is known.
A3: the demand quantity of each item in each period is known.
The RMP model is as follows:

min
N

∑
i=1

T

∑
t=1

(pitxit+sitYit + hit Iit) (1)

subject to
Ii,t−1 + xit + Iit = dit, i = 1, . . . , N, t = 1, . . . , T, (2)

xit ≤ MYit, ∀ i, t, (3)

N

∑
i=1

rkixit ≤ Ckt, t = 1, . . . , T; k = 1, . . . , K, (4)

Ii0 = 0, IiT = 0, i = 1, . . ., N, (5)
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xit ≥ 0, Iit ≥ 0, i = 1, . . ., N, t = 1, . . ., T (6)

The model is a MILP. Its symbolic meanings are shown in Table 1. The objective of (1) is
to minimize the sum of raw materials price, purchasing set-up costs, and inventory holding
costs. Constraint (2) represents supply-demand balance. Constraint (3) represents the
incidence relation of Yit and xit, where M is a sufficiently big number (e.g., M ≥ max∑T

k=t dik)
and Yit = 1 if and only if xit > 0. Constraint (4) represents the capacity absorption of each
resource not exceeding the corresponding resource restriction available in each period.
Constraint (5), without loss of generality, assumes that the starting inventory of period 1
and the ending inventory of period T are 0. Constraint (6) indicates that all purchase
quantities and inventory are non-negative.

Table 1. The meanings of notations in the model.

Notion Type Meaning

i index index of the items
j index index of the periods
k index index of the resources
N set number of items
T set number of periods
K set number of resources
dit parameter the demand for item i in period t
M parameter a enough large positive number
rki parameter unit absorption of item i for resource k
Ckt parameter available amount of resource k in period t
sit parameter purchasing set-up cost of item i in period t
pit parameter unit price of item i in period t
hit parameter unit inventory holding cost of item i in period t
xit variable the purchase amount of item i in period t
Iit variable inventory level of item i at the end of period t

Yit variable binary variables, =1, if the item i is purchased in
period t, otherwise =0

The above MILP model is a single-level, multi-item capacitated lot-sizing problem
(CLSP) [24,25]. However, it is a large-scale mixed integer programming problem and is
thus difficult to solve.

3.2. Column Generation Solution

Solving a CLSP is NP-hard [9]; therefore, most existing solutions are heuristic [26–28],
and those exact solutions are only for small-sized problems [29,30]. However, in the actual
industrial production environment, optimization problems are mostly large-sized, such as
the RMP problem in this paper. We developed a column generation (CG) solution [31–33]
for the RMP because it can handle large-sized problems. In the CG algorithm, we first
convert the original problem to an equivalent set partitioning (SP) one and then use column
generation to solve the resulting SP problem.

3.2.1. Set-Partitioning Reformulation

We note that for the original MILP problem, if for each item i ∈ Ω we introduce
a set of schedules, denoted by Ωi, where a schedule is a T-dimension vector with the
purchasing quantities in T periods for the item i, then, deciding the purchasing quantity
of item i in each period t is equivalent to identifying a schedule j ∈ Ωi for that item. We
consider a specific set of schedules that satisfy the extreme flow conditions for each item i,
i.e., Iit−1 × xit = 0 [8]. These schedules are sometimes also called W-W schedules with
the property that the demand at a period is completely supplied by either inventory or
purchasing and/or a purchasing activity happens if and only if the purchased quantity
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satisfies the demands of an integral number of periods for any item. Based on the idea, the
RMP model can be reformulated as a set partitioning problem:

min ∑
i∈Ω

∑
j∈Ωi

bijθij (7)

subject to
∑

j∈Ωi

θij = 1 , ∀ i ∈ Ω (8)

∑
i∈Ω

∑
j∈Ωi

Rk
ijt θij ≤Ckt, ∀ t, k = 1, . . . , K (9)

θij ∈ {0, 1}, ∀ i ∈ Ω, j ∈ Ωi (10)

where, decision variable θij is equal to 1 when schedule j is selected, and 0 otherwise.
K is the number of resources, parameter bij is the cost associated with the jth schedule for
item i and parameter Rk

ijt is the kth resource requirement in period t for schedule j, and

parameter Ck
t is the kth resource capacity available in period t. Let xijt, Yijt, and Iijt denote

the purchasing quantity, purchasing set-up, and inventory variables associated with the
schedule j for item i in period t, respectively. Consequently, hold

bij =
T

∑
t=1

(pitxijt + sitYijt + hit Iijt) (11)

Rk
ijt = rkixijt, t = 1, . . . , T, k = 1, 2 (12)

In the SP model, the objective function (7) minimizes the total sum of purchasing
costs, set-up costs, and inventory holding costs. The partitioning constraint (8) requires
that for each item i, only a schedule can be selected. Constraint (9) requires the resource
absorption of all schedules not to exceed the capacity of each resource in the period t
available. Constraint (10) indicates the decision variable θij is a 0–1 variable.

For the W-W schedules Manne [30] called dominant schedules because there are 2T−1

dominant schedules per item i, generating them may be rather time-consuming or imprac-
tical and the resulting SP problem is far too large to solve. Therefore, a column generation
algorithm is introduced to solve the SP problem, in which not all N·2T−1 of schedules are gen-
erated explicitly. Alternatively, many schedules are handled implicitly by column generation
techniques [34], and, thus, the large-sized SP problem is effectively resolved.

3.2.2. Column Generation Principle

Column generation algorithms are used to solve a MILP problem with numerous
columns. For handling the huge number of variables (columns) of the MILP, the column
generation algorithm instead of explicitly enumerating all columns in the constraint matrix,
called the master problem (MP), only a very small subset of columns for the initial solution
is used and the remaining columns can be added only when needed. We refer to an
MP with only a subset of columns as the restricted master problem (RMP). The column
generation algorithm solves the large-sized MILP by solving some LP relaxations of RMPs.
For finding the added columns to an RMP, we check if there is a potential adding column
with a negative reduced cost by solving an optimization subproblem, called the pricing
problem. If none can be found, the current LP relaxation solution to the RMP is optimal for
the original MILP. If one or more such columns are found, they will be added to RMP, and
the solution process is repeated.

3.2.3. LP Relaxation Solution

Suppose that for each item i ∈ Ω, a subset of feasible schedules Ωi′ is already found
and the RMP has a feasible solution θ, and let U, V be the associated dual solutions and that
the unrestricted dual variables ui (i ∈ Ω) are associated with the partitioning constraints and
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the negative dual variables vkt (k = 1,. . ., K; t = 1, . . ., T) are associated with the kth resource
constraint. From linear programming duality we know that θ is the optimal solution for LP
if and only if for any i ∈ Ω and any j ∈ Ωi, the reduced cost βij is non-negative, i.e.,

βij = bij −
T

∑
t=1

K

∑
k=1

vktrkixijt − ui ≥ 0, for all i ∈ Ω, j ∈ Ωi (13)

Testing the optimality of θ for LP can thus be done by solving the following
pricing problem:

βi = minarg
j

T

∑
t=1

((pit −
K

∑
k=1

vktrki)xijt + sitYijt + hit Iijt) − ui, for all i ∈ Ω (14)

If β ≥ 0 for all i, then θ is optimal for the LP relaxation, otherwise the i, j define a new
entering basis column (clearly βij < 0), Let Ωi′ = Ωi′∪{j}, resolving the RMP.

3.2.4. Pricing Problem

The pricing problem consists of N minimization subproblems.

βi = minarg
j

T

∑
t=1

((pit −
K

∑
k=1

vktrki)xijt + sitYijt + hit Iijt) − ui, for i = 1, . . . , N.

Note that for fixed i, the subscription may be eliminated. Instead of enumerating all
schedules j for the negative reduced costs for item i, the pricing problem instead solves
an uncapacitated single-item lot-sizing problem (ULSi) to find the column with the most
negative reduced cost:

min β (15)

s.t.
It−1 + xt − It = dt, ∀ t (16)

xt ≤ MYt, ∀ t (17)

I0, IT = 0 (18)

xt, It ≥ 0, ∀t (19)

where the meanings of the occurred notations are the same as before. This ULSi problem
can be easily solved by a dynamic programming algorithm [8]. If the cost for all i ∈ Ω holds
β ≥ 0, then the LP relaxation is solved optimally. Otherwise, the solution (column) (with
β < 0) is added to the RMP.

3.2.5. Integer Solution

The LP relaxation solution from (Section 3.2.4) is not the final integer solution we
needed. To obtain integer solutions, we make use of the branch and bound technique to
obtain the integer solutions with a branching scheme designed as follows [35]:

Provided that the LP relaxation solution of the SP problem, ∑
j∈Ωi

xijtθij = α, is fractional,

then we can implement a branching scheme for the MILP: on one branch we let ∑
j∈Ωi

xijtθij ≤ ⌊α⌋

and on the other branch we require ∑
j∈Ωi

xijtθij ≥ ⌈α⌉. The branching scheme can be performed

in the restricted main problem (RMP) by deleting columns for item i that violates the upper
bound on component t on the first branch or the lower bound on the other branch. When a new
column is generated for item i an upper bound of ⌊α⌋ on component t is added to the pricing
problem in the first branch and a lower bound of ⌈α⌉ on the second branch. Then, the traditional
branch and bound procedure is executed until the optimal integer solution is obtained. Now,
we can give the complete column generation algorithm as Algorithm 1.



Appl. Sci. 2024, 14, 4375 7 of 10Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 12 
 

Algorithm 1. Column generation algorithm 

Input: ,  , , ,  ,it it it ki it ktp s h r d C , M, N, T, K. 

1  Solve ULSi, i = 1, …, N, to get the initial solution, xit, i = 1, …, N, t = 1, …, T. 
2  Solve the relaxed RMP of the SP problem with xit, getting the dual solution 

ui, i = 1, …, N, vkt, k = 1, …, K, t = 1, …, T. 
3  Solve the updated pricing problem: 

βi  = min arg
j

))(( 
T

1
 

1
ijtit

t
ijtitijtki

K

k
ktit IhYsxrvp ++− 

= =

 − ui, for i = 1,…,N, 

4  for finding the negative reduced cost βi < 0.  
5    if  βi > 0 for all i then 
6       if   all θij, i ∈ Ω, j ∈ Ωi, is integral 
7           stop 
8       else 
9           go to 14 
10   else  
11      execute step 12. 
12  Generate the adding column: 

T
i
T
i

x
e
 
 
 

, 

where, xi = [xi1, …, xiT], ei, N-dimensional unit row vector with its ith component 
equal to 1 

13  Execute the branch and bound procedure 

14  Add constraints  α≤
Ω∈ ij

ijijtθx  and  α≥
Ω∈ ij

ijijtθx  to the pricing problem 

for the two branches, generate two new RMPs, and solve, until the optimal integer 
solution is obtained. 

Output: itx , i = 1, …, N, t = 1, …, T.  

4. Experimental Results 
4.1. Algorithm Test 

We have implemented the column generation algorithm with Visual C++. For testing 
the effectiveness and rightness, we have used the CG algorithm to solve two examples: 
No. 1 from the literature [25] is a 12-item × 10-period CLSP problem, and No. 2 is a group 
of examples randomly generated for a 10-task × 4-machine generalized assignment prob-
lem (GAP) [33]. The original data are left out and here we only list the computational 
results for verifying the effectiveness; see Tables 2 and 3. 

In Table 2, the LV, DS, ABC1, ABC10, and ABC72 are five heuristics for comparison; the 
interested reader is referred to the related literature. In Table 3, LP value indicates the 
optimal objective function value of the LP relaxation of the root node of the MILP; MILP 
value is the optimal objective function value of the MILP; nodes is the number of nodes 
fathomed; dual gap is defined as the value [(MILP value − LP value)/LP value] × 100%; 
and CPU time is the running time of the algorithm. It can be seen that the column gener-
ation solution is very effective for most computational examples and at least we can eval-
uate the quality of the solution, for example, in example No. 1, although the solution we 
obtained is not the best, the maximum deviation is 2.52%. 

Table 2. Computational results for example No. 1 [25]. 

Algorithm Cost 10 Periods Feasible to Extra Constraint 

4. Experimental Results
4.1. Algorithm Test

We have implemented the column generation algorithm with Visual C++. For testing
the effectiveness and rightness, we have used the CG algorithm to solve two examples:
No. 1 from the literature [25] is a 12-item × 10-period CLSP problem, and No. 2 is a group of
examples randomly generated for a 10-task × 4-machine generalized assignment problem
(GAP) [33]. The original data are left out and here we only list the computational results
for verifying the effectiveness; see Tables 2 and 3.

Table 2. Computational results for example No. 1 [25].

Algorithm Cost 10 Periods Feasible to Extra Constraint

LV 13,924,130 No
DS 13,113,060 No

ABC1 14,523,330 No
ABC10 13,855,930 No
ABC72 13,080,230 No

CG 13,290,690 No
Remark: LV means LV heuristic [10], DS means DS heuristic [36], ABC1, ABC10, and ABC72 heuristics come from
the literature [37]. The CG algorithm with a dual gap of 2.52%; 27 nodes fathomed.
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Table 3. Computational results for example No. 2 (GAP) [33].

Problem LP Value MILP
Value Columns Nodes Dual Gap

(%)
CPU Time

(s)

1 57.4 56 1139 22 0.0024 0.0236
2 57.0 57 2046 38 0.0000 0.4630
3 56.5 56 183 2 0.0089 0.0039
4 57.0 57 379 6 0.0000 0.0091

In Table 2, the LV, DS, ABC1, ABC10, and ABC72 are five heuristics for comparison; the
interested reader is referred to the related literature. In Table 3, LP value indicates the optimal
objective function value of the LP relaxation of the root node of the MILP; MILP value is the
optimal objective function value of the MILP; nodes is the number of nodes fathomed; dual
gap is defined as the value [(MILP value − LP value)/LP value] × 100%; and CPU time is
the running time of the algorithm. It can be seen that the column generation solution is very
effective for most computational examples and at least we can evaluate the quality of the
solution, for example, in example No. 1, although the solution we obtained is not the best, the
maximum deviation is 2.52%.

4.2. Case Study

Now, we make use of the CG algorithm for solving the RMP in Section 2. M-Steel’s
plant purchases its production raw materials from month to month. The number of items
of raw materials is over 3000. However, in the actual decision-making process, it is not
necessary to optimize the procurement of all raw materials. In fact, just choosing those raw
materials with large quantities and high prices can greatly reduce the total procurement
cost. These materials include iron ore and some coal. We selected 50, 100, 150, and 200 raw
materials for purchasing optimization, respectively. The data are from the M-Steel plant
and the computational results are shown in Table 4.

Table 4. Computational results for the RMP.

Problem LP Value MILP Value Columns Nodes CPU (s) Gap (%)

P/50/12/1 439,090,828.8491 439,148,890 861 4 0.4100 0.0132
P/50/12/2 436,811,265.4539 436,983,237 18,543 22 2.8230 0.0394
P/50/12/3 436,495,314.6475 436,992,295 4768 6 0.7600 0.1139

P/100/12/1 862,867,896.6292 862,868,090 3068 4 3.7140 2.24 × 10−5

P/100/12/2 862,858,277.1114 862,868,090 5907 4 2.7462 0.0011
P/100/12/3 862,831,596 862,831,596 660 1 0.8774 0.0000
P/150/12/1 1,311,460,255.2423 1,313,850,978 1680 2 4.1843 0.1823
P/150/12/2 1,309,469,137.4146 1,319,050,475 233 2 5.4000 0.7317
P/150/12/3 1,296,957,435 1,296,957,435 334 1 13.7027 0.0000
P/200/12/1 2,106,130,786.3546 2,109,031,624 207 2 0.8354 0.1377
P/200/12/2 2,094,315,188.635 2,096,631,105 211 2 1.1225 0.1106
P/200/12/3 2,053,716,895.0005 2,055,909,857 226 2 2.8562 0.1068

The computational results show the proposed CG solution is effective. According to
different procurement varieties and quantities, we give four raw material procurement pat-
terns, corresponding to 50, 100, 150, and 200 raw materials respectively. The computational
times are not more than 90 min, and the dual gaps are less than 0.2% for all patterns but
one. This shows the efficiency and effectiveness of the algorithm. It is estimated that the
application of the algorithm will save at least 80 million yuan in procurement costs for the
enterprise every year.

5. Conclusions

Raw material purchasing optimization in steel plants is important because the RMP
cost accounts for a significant fraction. In this paper, we proposed a MILP model and a
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column generation solution for the RMP for a large-scale steel plant. The computational
results show that this solution is quite effective. For different varieties and quantities, we
recommend several patterns for the selection of raw materials. The results show that it can
save a lot in procurement costs, and it is estimated that it can save more than 80 million
yuan in procurement costs every year

During the development of the solution, we note that two issues deserve more atten-
tion in the future. First, developing effective heuristics for finding feasible solutions for the
lot-size problem is still a good topic, especially with tight capacity constraints. The second
is the combination of column generation and neighborhood search techniques.
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