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Abstract: This study delves into the intricate dynamics of urban mobility, a pivotal aspect for
policymakers, businesses, and communities alike. By deciphering patterns of movement within a
city, stakeholders can craft targeted interventions to mitigate traffic congestion peaks, optimizing
both resource allocation and individual travel routes. Focused on Barcelona, Spain, this paper
draws on data sourced from the city council’s open data service. Through a blend of exploratory
analysis, visualization techniques, and modeling methodologies—including time series analysis
and the eXtreme Gradient Boosting (XGBoost) algorithm—the research endeavors to forecast traffic
conditions. Additionally, a study of variable importance is carried out, and Shapley Additive
Explanations are applied to enhance the interpretability of model outputs. Findings underscore
the limitations of traditional forecasting methods in capturing the nuanced spatial and temporal
dependencies present in traffic flows, particularly over medium- to long-term horizons. However,
the XGBoost model demonstrates robust performance, with the area under ROC curves consistently
exceeding 80%, indicating its efficacy in handling non-linear traffic data variables.

Keywords: traffic level; eXtreme Gradient Boosting; forecasting; mobility; open data

1. Introduction

Mobility has evolved as a hallmark of modernity around the world. A key policy
objective in recent decades has been for citizens to move faster and further more safely
and more comfortably. In this process, urban mobility has played a fundamental role,
which is strongly related to mass motorization. European drivers spend around 20 min
on average behind the wheel daily on personal trips on working days and between 25
and 30 min on business trips [1]. Barcelona is the second most populous city in Spain
and the seventh in the European Union (EU) [2]. According to [3], there were more than
6 million daily displacements in 2017; 35.3% corresponds to active mobility, 40.1% to
public transport, and 24.6% to private transport (67.7% and 29.8% correspond to car and
motorcycle, respectively).

Unfortunately, mobility produces negative effects such as congestion, pollution, acci-
dents, deaths from traffic accidents, and greenhouse gas emissions [4,5]. In order to satisfy
its new climate objectives, the EU has launched a series of political initiatives to reduce the
negative effects of cars and, in turn, promote public transport [6].

In this context, accurate real-time prediction of traffic conditions using statistical and
Artificial Intelligence (AI) methods is of vital importance for road users, private sectors,
and governments. For example, identifying commuting trends may help to decide in which
areas public transportation should be reinforced. Knowing mobility trends and urban
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design may enable the selection of the optimal number and location of public charging
stations for electric vehicles, which may increase the use of these vehicles. For companies,
being able to estimate their social and environmental impacts, combined with intelligent
methods, helps them to design distribution processes that minimize these impacts, which
tend to be correlated to economical costs [7]. Thus, high quality data are potentially useful
for modeling and addressing optimization problems related to urban mobility [8].

Regarding the availability of data, there is an increasing number of initiatives aiming
to share data for the common good and for the benefit of anyone. For instance, the city
of Chicago has an open data portal (https://data.cityofchicago.org/, accessed on 2 April
2024) which enables the creation of maps and graphs to gain insights about plenty of facts
(salaries, violence, vaccinations, etc.). One of the advantages of these types of portals is
that data are frequently updated (faster than the statistics typically offered by national
statistics institutes). There are also initiatives proposed by private companies such as
Carbon Footprint Ltd. (https://www.carbonfootprint.com/aboutus.html, accessed on
2 April 2024), which offers some online calculators to estimate the average carbon footprint
of individuals and small businesses for free. Despite the emergence of these initiatives,
ref. [5] states that there is a lack of sufficiently granular indicators and related data on urban
mobility (such as modal split, environmental impacts, congestion, energy use). The reason
is that cities are not required to collect and provide these data. However, the increasing
adoption of Internet of Things technologies (e.g., intelligent traffic lights, road sensors,
or sensors in trash and recycling containers) and awareness of the potential of open data
portals suggest that the availability of data will continue to increase during the next years.

Traffic modelization and prediction constitute an arduous endeavor because of the
high non-linearity and complexity of traffic flow. Recently, classic statistical models have
been challenged by machine learning and deep learning methods in traffic prediction
tasks [9]. This is due to the fact that traditional methods cannot make predictions in the
medium–long term and fail to consider the spatial and temporal dependencies in the
data [10].

In this context, the purpose of this article is to examine the traffic levels in Barcelona
utilizing data from the Ajuntament de Barcelona’s open data service, employing both
classic and machine learning methods. The primary contributions include conducting an
exploratory analysis of the traffic data with visualization techniques, developing predictive
models utilizing both time series analysis and the eXtreme Gradient Boosting (XGBoost)
algorithm, and examining the results along with a discussion. The specific flow of the
research methodology employed in this article is depicted in Figure 1. To our knowledge,
this study represents the first attempt to analyze open data on traffic levels utilizing
visualization techniques, time series analysis, and the XGBoost algorithm.

Next, we outline the structure of the document. Section 2 reviews related work,
focusing on traffic flow studies, prediction, and models in Barcelona. Section 3 details
the methodology, encompassing visualization techniques, time series analysis, and the
XGBoost algorithm. Section 4 outlines the application, detailing the dataset employed
and presenting and discussing the results obtained through the various components of
the methodology. Section 5 provides a discussion based on the results obtained in the
previous sections. Finally, Section 6 draws pertinent conclusions and outlines potential
lines of future research.

https://data.cityofchicago.org/
https://www.carbonfootprint.com/aboutus.html
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Figure 1. Diagram of research flow.

2. Related Work
2.1. Traffic Flow Prediction

Traffic flow prediction offers accurate projections of traffic volume within a specified
area at future time intervals. The exploration of traffic forecasting proves valuable in
alleviating congestion and promoting safer, more cost-effective travel [11]. The number of
studies on traffic flow prediction has increased significantly during recent years due to a
rising awareness of the environmental and social impacts of the increasing traffic congestion
in most cities and the development of big data and deep learning methodologies. There are
different approaches to predict traffic flow.

For instance, recently, ref. [12] reviewed and compared hybrid deep learning models.
The authors recognized the escalating complexity of models, which now incorporate a
growing array of finer-grained, multi-type data sourced from transportation systems. Most
of the approaches reviewed use convolutional neural networks, recurrent neural networks,
and long- and short-term memory units. Ref. [13] provided a quick review of machine
learning algorithms for short-term traffic forecasting and introduced the challenges, fol-
lowed by various ways for modeling temporal and/or geographical dependencies. Also,
ref. [14] integrated a bootstrap methodology with the conventional parametric ARIMA
model to form an ensemble approach. This ensemble, derived from random subsamples
of data, aims to enhance prediction accuracy while maintaining adherence to theoretical
principles.

The traffic flow data are classified as similar, volatile, and irregular parts. Based on
the autoregressive integrated moving average and generalized autoregressive conditional
heteroscedasticity (ARIMA-GARCH) model, ref. [15] created a methodology to forecast the
similar and volatile portions. Also, the study compared the strengths and weaknesses of
linear and non-linear hybrid methods.

Ref. [16] harnessed cutting-edge object detection and tracking technologies to pinpoint,
categorize, monitor, and gauge vehicles on the road via video analysis. This comprehensive
approach offers sturdy backing for urban traffic management strategies and future planning.
Leveraging digital twin technology, they created a virtual replica of traffic patterns using
camera data, forming the foundation for training various algorithmic models.
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2.2. Traffic Models in the City of Barcelona

There has been several recent works on traffic models analyzing the specific case of
Barcelona. For instance, ref. [17] compared the performance of different traffic assignment
models through simulation. Such methodologies evaluate traffic levels within a track or
road network based on its physical attributes, functional dynamics, and anticipated traffic
volume. The case study focused on the province of Barcelona, and experiments compared
five static traffic assignment approaches (all or nothing, stochastic assignment with a
simulation-based method, the method of successive averages, incremental assignment, and
user equilibrium using the Frank and Wolfe algorithm). Regression analysis was used
to study the differences between estimated and observed flow. The best model was user
equilibrium with an R2 index of 0.93 for light vehicles and 0.89 for heavy vehicles.

Moreover, ref. [18] introduced two models, one for taxi stand services and the other
for one-way carsharing, in the context of Barcelona’s taxi demand. Each model determines
optimal factors such as the number of cars and depots, depot capacity, system unitary
costs, and level of service. Results indicate comparable operation between the two systems,
although taxi services prove up to three times costlier due to driver hiring expenses.
Ref. [19] developed a coupled macroscopic traffic and emission modeling system tailored
to the Barcelona metropolitan area to estimate hourly road transport emissions at the road
link level. Their analysis included an emission sensitivity assessment and investigation into
typically high-uncertainty emission factors. The study found significant sensitivity to inputs
such as vehicle fleet composition and meteorological impacts on diesel engines, with non-
exhaust sources contributing substantially to total PM emissions. Discrepancies between the
macroscopic and microscopic systems increased with congestion levels, particularly in NOx
emissions, reaching up to 65%. Ref. [20] examined methods for evaluating the impacts of
pluvial flooding events on traffic flows under current and future climate change scenarios
in Barcelona and Bristol. Using both meso-scale and micro-scale traffic models, they
found that increased flood intensity led to greater disruptions in traffic flows, with climate
change exacerbating these effects. Ref. [21] conducted a quantitative assessment of shared
mobility service usage among residents in the Barcelona metropolitan region. Through 600
questionnaires responses from commuting travelers, they identified preferences based on
factors such as age, regular commutes, and personal incomes. Findings revealed varied
trends for intra-city and inter-city commutes, with younger demographics showing higher
predicted use of ridesharing, carsharing, and ride-hailing services. Additionally, passengers
tended to opt for the services that best suited their needs on each occasion rather than
relying solely on one mode of transportation.

3. Methodology

To examine traffic levels in Barcelona utilizing data from the Ajuntament de Barcelona’s
open data service, this paper employs visualization techniques, time series analysis, and
the XGBoost algorithm.

3.1. Visualization Techniques

Visualizing traffic data is crucial for effective city traffic management. It aids in
comprehending the dynamics of moving entities and uncovering patterns related to traffic,
social dynamics, spatial geography, and economic trends [22]. Some aspects of the potential
application field of traffic visualization are identifying real-time traffic jams by monitoring
traffic situations, discovering mobility patterns of vehicles and pedestrians, and improving
route planning according to the traffic density. Commonly used visualization techniques
include line charts, bar charts, heatmaps, histograms, and geospatial maps. Geospatial
maps represent the most commonly employed method for visualizing traffic data, and 2D
visualization is more commonly used in the literature than its 3D counterpart [23].

While 2D geospatial maps provide a good representation of the spatial dimensions of
data, they fail to present the temporal dimension of data, which is especially important in
traffic data visualizations. There are different approaches for representing spatial data with
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temporal components. The most widely studied method in the literature is the space–time
cube (STC) model [24]. In an STC model, the spatial components of the data are depicted
along the x and y axes, while the temporal dimension is represented along the z axis. This
model works well with small-to-medium-sized data; however, when the data are too large,
the visualization becomes difficult.

Another common approach to represent space and time is to perform animation of
a map to display geospatial changes in time. The visualization technique used in this
article uses the HeatMapWithTime plugin of Folium library [25]. A heatmap is a powerful
visualization method for storytelling, especially for geospatial data. This plugin allows
creation of an interactive animation of heatmaps that allows end users to manipulate the
visual representation according to their needs. Some of the potential interaction options
are overview, zoom, pause, play, loop, and also play at different speeds for a period of
time. The heatmap allows us to visualize the traffic density of different sections of the
city throughout the day. Every dot in the heatmap represents the location of a vehicle; by
analyzing the location of vehicles at different time intervals, potential mobility patterns of
vehicles and the traffic density of the streets can be identified. The dataset employed in
this article (described in Section 4.1) does not contain vehicle information but only street
section data; however, with the provided information, we can manually assign a certain
number of vehicles for every street section according to the traffic density of the sections,
i.e., higher-traffic-density sections have a higher number of vehicles, and lower-density
sections have a lower number of vehicles.

3.2. Time Series Analysis

The predictive models used are autoregressive integrated moving average (ARIMA)
models [26]. The general case of ARIMA (p,d,q) can be written as follows:

Yt = α1Yt−1 + · · ·+ αpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q (1)

where the parameters α are the autoregresive part (ar), and θ are the moving average
part (ma). The models are built by section because the behavior is more stable. They are
implemented using free software R (version 4.03) [27] and the forecast package for R [28].
As these models have been widely utilized across various applications for an extended
period, we direct interested readers to [29] for further elaboration.

3.3. eXtreme Gradient Boosting

eXtreme Gradient Boosting [30] (XGBoost) is a scalable machine learning technique for
tree gradient boosting. XGBoost employs a methodology similar to other gradient boosting
techniques, constructing a mathematical framework to predict yi from input xi

Specifically, XGBoost forms an ensemble F = { f (x) = wq(x)}(q : Rm → T, w ∈ RT)
comprising K Classification and Regression Trees (CART). Each fk corresponds to a distinct
tree q with its own structure characterized by the number of leaves T and the set of leaf
weights w.

Given this established framework, the predicted output is determined by a K additive
function as follows:

ŷi = ϕ(x) =
K

∑
k=1

fk(xi), fk ∈ F (2)

In this specific instance, the data values xi include factors such as the geographical
location of the evaluated section, the time of data collection, and other data engineering
variables discussed later. Rather than purely categorizing like conventional decision trees,
this model incorporates continuous scores obtained from the weights wi associated with
each leaf across all defined trees q.
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To enable the learning process of the K specified trees, a convex loss function acts as a
regularized objective:

L(ϕ) =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk) (3)

Here, l represents a differentiable loss function measuring the disparity between the
target ŷi and the predicted value yi, while Ω is defined as a regularization term penalizing
potential overfitting of the model expressed as follows:

Ω( f ) = λT +
1
2

λ||w||2 (4)

Instead of adhering to optimization methods based in the Euclidean space, XGBoost
undergoes training via an additive approach. In this method, for a given i-th instance at
the t-th iteration, a distinct ft is introduced to minimize the objective function, represented
as follows:

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft) (5)

Here, ŷ(t) denotes the prediction at that specific instance and iteration. This process
means that ft is incrementally included based on its performance across optimization
instances and iterations. The objective function, derived by expanding the loss function’s
second-order Taylor series with respect to ŷi for optimization purposes, is expressed using
its first- and second-order gradient statistics gi and hi, following

L(t) ≃
n

∑
i=1

[
l(yi, ŷ(t−1) + gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft)

where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and

hi = ∂2
ŷ(t−1) l(yi, ŷ(t−1)).

(6)

L̃(t) ≃
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (7)

Furthermore, expanding the objective function through its regularization term Ω for a
leaf set Ij within a given structure q(xi) can be achieved as follows:

L̃(t) ≃
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ γT +

1
2

λ
T

∑
j=1

w2
j (8)

This formulation enables the determination of the optimal leaf weight w∗
j for leaf j

and assesses the fit of the overall structure q(x) using the following:

w∗
j = −

∑i∈Ij
gi

∑i∈Ij
hi + λ

(9)

L̃(t)(q) = −1
2

T

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ γT (10)

XGBoost employs a greedy algorithm, initially starting from a single leaf and sub-
sequently adding branches at each iteration using the scoring function in Equation (10)
to evaluate improvements in the general tree structure q. The potential gain is assessed
within an instance I = IL ∪ IR, where IL and IR denote the sets of nodes on each branch
after splitting.
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Gain =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (11)

3.3.1. Evaluation Metrics

The classification system’s evaluation is determined using the area under the ROC
curve (AUC) with an Over to Rest (OrV) strategy, a widely recognized measure of perfor-
mance for machine learning models. In the OrV strategy, any misclassification is considered
erroneous regardless of which two classes are mistaken. The AUC method is defined as
follows:

AUC = ∑
i
{(1 − βi × ∆α) +

1
2
[1 − β∆α]} (12)

Here, α represents the probability of a false positive, and 1 − β denotes the probability
of a true positive.

3.3.2. Shapley Additive Explanations

Shapley Additive Explanations (SHAP) are a tool rooted in game theory used to
interpret machine learning models [31]. It assesses the contribution of each variable to the
final output by iteratively introducing one variable into the model at a time and evaluating
the expected value of the model’s output function. This method allows SHAP to calculate
the average contribution while considering the effects of all potential variable orderings.

The average contribution of variable x in model f can be calculated as follows:

g(x′) = ϕ0 +
M

∑
i=1

ϕix′i (13)

where x′ ∈ {0, xi}M represents the count of input variables, and ϕi ∈ R.
SHAP, and, in particular, Tree SHAP [32], provides insights into how variables impact

tree-based machine learning models. It examines three fundamental properties: local
accuracy ensures that the function linking x to x′, denoted as hx(x′), matches the set of
variables x, ensuring the approximation of f corresponds to the output of f ; missingness
stipulates that absent values have no bearing on the model’s output (x′i = 0 → ϕi = 0);
and consistency guarantees that if an input’s contribution to the model increases or stays
constant, the Shapley value follows suit, regardless of other inputs. Tree SHAP analyzes
the model using an input dataset X of dimensions N × M, generating a matrix of SHAP
values for each variable in every tuple in X, ensuring consistent explanations for individual
predictions while highlighting contributions with sign indicators.

3.4. Variable Analysis

Once the model is computed, the importance scores for each variable can be extracted.
This presents a score for how valuable each variable selected is in absolute terms and
averaged across all the trees that form the XGBoost model. We study the importance of
each parameter following three main scoring systems:

• Gain: It denotes the relative contribution of each variable to the model, calculated by
summing up the contribution of each variable for every tree generated. It shows the
importance of a variable when generating a prediction;

• Cover: It indicates the relative importance of each variable based on the number of
observations associated with it. This is determined by summing the second derivative
of the loss function over all training data points falling into each node defined by
the variable;

• Frequency: It represents the percentage indicating how often a specific variable ap-
pears in the trees of the model relative to the total number of trees.
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The model is implemented using standard Python 3.10.8 distribution [33] with its
correspondent libraries for XGBoost implementation.

4. Application

This section describes the dataset explored and presents the results obtained from
applying the visualization techniques and models introduced in the preceding section.

4.1. Description of the Dataset

The dataset is called “Traffic state information by sections of the city of Barcelona” and
is freely accessible from the dataset catalogue of the Open Data BCN service (opendata-
ajuntament.barcelona.cat/en, accessed on 2 April 2024). According to its website, Open
Data BCN constitutes “a movement driven by public administrations with the main objec-
tive of maximize available public resources, exposing the information generated or guarded
by public bodies, allowing its access and use for the common good and for the benefit of
anyone and any entity interested”.

The dataset contains historical data collected since December 2017 and is updated
monthly. It describes the traffic state for a set of 527 sections and has an update frequency
of 5 min. The traffic states are 0 = no data, 1 = very fluid, 2 = fluid, 3 = dense, 4 = very
dense, 5 = congestion, and 6 = cut off (closed). The traffic state is assessed using various
sensors embedded beneath the asphalt, including those detecting magnetic field changes
caused by passing metal masses (vehicles), infrared sensors, and cameras equipped with
image processing capabilities. Data from each detection station are qualitatively interpreted,
typically using a scale ranging from 1 to 5, based on predefined thresholds specific to each
station.

To explore the city of Barcelona’s traffic situation information in March 2022, the
software used was R version 4.0.3 (10 December 2020) [27], employing RStudio as integrated
development environment [34]. The dataset contains five variables: ID section (where
section refers to road segment in Barcelona), data (year, month, day, hour, minute, and
second), current state, and expected state. There are 4,599,656 rows since the information of
the 527 sections is updated approximately every 5 min. First, we transform the dataset to
consider the current state every 5 min exactly. This process requires introducing new rows
with a 0 (no data) both in current and expected states.

The distribution of the seven current traffic states is shown in Figure 2. Overall,
congestion (0.7%) and ‘no data’ (42.9%) have the minimum and maximum proportions,
respectively. The rest of the states, sorted by proportion, are fluid (29.1%), very fluid (20.1%),
dense (4.7%), very dense (1.7%), and cut off (0.8%).

Figure 2. Distribution of traffic states. Data source: “Traffic state information by sections of the city of
Barcelona” (Open Data BCN)—March 2022.

opendata-ajuntament.barcelona.cat/en
opendata-ajuntament.barcelona.cat/en
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4.2. Visualization Techniques

Figure 3 represents the traffic state of the city of Barcelona for Friday 25 March 2022
at different time intervals. The lines represent the sections of the streets, with each color
indicating the traffic condition of those sections: light blue for very fluid, dark blue for
fluid, yellow for dense, orange for very dense, and red for congestion. As we can observe,
most sections of the city have a traffic state of 1 to 2 (very fluid to fluid traffic), and rush
hours (9:00 a.m.) have more sections with dense or higher traffic (3–5) than non-rush hours
(3:00 p.m.).

Figure 3. Geospatial traffic state map. Traffic state at 9:00 (left) and at 15:00 (right).

Figure 4 shows the traffic state for the same time intervals as Figure 3 but in heatmap
form. The top two subfigures depict a broader area, whereas the bottom two subfigures
concentrate on the central area. As we can observe, the dense area of the heatmap (that is,
areas marked with an orange color) is located in sections with higher traffic or areas with a
higher number of sections.

4.3. Time Series Analysis

The predictive models are applied to data from the city of Barcelona’s traffic situation
information in March 2022. Due to the large number of monitored sections, it is important
to know whether their behavior is similar. For this purpose, 10 sections belonging to the
same street are chosen. We would like to highlight that, even though the sections belong
to the same street, there are times when the traffic conditions are not similar, even with
changes depending on whether it is a weekend or a working day.

Table 1 shows the output of the time series models. The first two columns identify the
section and the fitted model. The subsequent five columns display the coefficients, while
the last two columns present the performance measures AIC and BIC. It is not necessary
to differentiate the series in any case because the models are stable. Table 2 shows the
Mean Error (ME) and the Root-Mean-Square Error (RMSE) of each model. The tests of
independence (Box–Ljung test for residuals), homoscedasticity (Box–Ljung test for squared
residuals), and normality (Shapiro–Wilk normality test) are applied to each of the models,
and their p-values are shown. None of the models complies with the initial assumptions,
which leads us to confirm that these models do not explain the behavior of the data very
well. In conclusion, due to the high non-linearity and complexity of the traffic flow, classical
methods cannot make good predictions; moreover, they do not fit well with the space–time
structure of the traffic data. For this reason, in the next subsection, a machine learning
method is applied.
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Figure 4. Heatmap traffic state map. Traffic state at 9:00 (left) and at 15:00 (right).

Table 1. Output of time series by section.

Section Model ar1 ar2 ar3 ma1 ma2 AIC BIC

1 ARIMA(2,0,2) 1.568 −0.655 −0.839 −0.315 934.270 961.940
2 ARIMA(3,0,1) 0.067 0.824 −0.211 0.965 105.650 133.320
3 ARIMA(2,0,1) 1.799 −0.872 −0.910 −39.040 −15.980
4 ARIMA(2,0,2) 1.668 −0.742 −0.639 −0.193 1126.190 1153.860
5 ARIMA(2,0,2) 1.506 −0.583 −0.622 −0.249 1469.640 1497.310
6 ARIMA(1,0,1) 0.638 0.259 1172.080 1190.520
7 ARIMA(2,0,1) 1.785 −0.850 −0.900 69.040 92.100
8 ARIMA(1,0,0) 0.589 1138.790 1152.620
9 ARIMA(2,0,0) 0.788 −0.227 1541.360 1559.800

10 ARIMA(2,0,1) 1.778 −0.838 −0.867 −33.030 −9.970
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Table 2. Output of time series errors by section.

Section Model ME RMSE Independence
Test (p-Value)

Homoscedasticity
Test (p-Value)

Normality Test
(p-Value)

1 ARIMA(2,0,2) 5.27 × 10−5 0.449 0.7556 <2.2 × 10−16 <2.2 × 10−16

2 ARIMA(3,0,1) 0.0008 0.257 3.5 × 10−11 0.078 <2.2 × 10−16

3 ARIMA(2,0,1) −0.0005 0.234 1.594 × 10−11 4.331 × 10−6 <2.2 × 10−16

4 ARIMA(2,0,2) −0.0001 0.511 0.00015 5.707 × 10−6 <2.2 × 10−16

5 ARIMA(2,0,2) 0.0007 0.644 0.2001 3.201 × 10−10 <2.2 × 10−16

6 ARIMA(1,0,1) 0.0009 0.529 5.668 × 10−9 2.065 × 10−14 <2.2 × 10−16

7 ARIMA(2,0,1) −0.0001 0.251 5.951 × 10−8 0.093 <2.2 × 10−16

8 ARIMA(1,0,0) −0.0002 0.518 0.1294 1.208 × 10−8 <2.2 × 10−16

9 ARIMA(2,0,0) 0.0003 0.678 1.056 × 10−5 1.762 × 10−8 <2.2 × 10−16

10 ARIMA(2,0,1) 3.99 × 10−5 0.235 4.441 × 10−16 1.478 × 10−7 <2.2 × 10−16

4.4. eXtreme Gradient Boosting

For streamlined parameter importance analysis, we classify the diverse densities
derived from the original dataset into separate classification categories: 0 = very fluid,
1 = fluid, 2 = dense, 3 = very dense, 4 = congestion. The dataset, organized according to
Table 3, contains information spanning the entirety of 2019. We partition the dataset into
distinct sets for both training and testing stages during the evaluation process. Specifically,
70% of the dataset is earmarked for training purposes, while the remaining 30% is preserved
for parameter evaluation. Data spanning January to March 2022 are processed for final
analysis and predictions as presented in the model performance section.

Table 3. Description of the dataset for the XGBoost model.

Variable Description Type Range

Status Current traffic status of the section. number 0 to 4
FromNorth Starting Latitude (North). number 2099 to 2222

FromWest Starting Longitude (West). number 41,338 to 41,450

ToNorth Ending Latitude (North). number 2100 to 2223

ToWest Ending Longitude (West). number 41,338 to 41,449

DailyHour Measurement hour. number 0 to 23

DailyMinute Measurement minute. number 0 to 60

Weekday Weekday of the measurement. number 1 to 7

DayMonth Measurement day of the month. number 1 to 31

Holiday Boolean value representing the existence of a
holiday on that day. Boolean False or True

Number of records: 24,533,298

To optimize XGBoost’s performance, parameter tuning is conducted using a cross-
validation technique known as grid search with five folds. This involves exploring various
parameter configurations within sensible ranges, as detailed in Table 4.

Table 4. Parameter matrix for XGBoost.

Parameter Selected value Options
max_depth 10 5, 7, 9, 10, 11

eta 0.3 0.1, 0.2, 0.3, 0.4
gamma 1 0.5, 1, 1.5, 2, 5

subsample 1 0.6, 0.8, 1
objective multi:softmax -

num_class 5 -
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The Area Under the Curve (AUC) depicted in Figure 5 illustrates the consistently
strong performance of the model, with AUC values exceeding 80% across all ROC curves.
Notably, the model exhibits particularly strong performance in extreme cases, with a true
positive rate exceeding 85%. However, there is a slight decline in performance observed in
intermediate classes.

On average, this model achieves an accuracy rate of 74.48% for the 2019 dataset;
therefore, we can affirm that this model represents with accuracy the importance of the
parameters with a relevant correlation between the true labels and the predicted ones.

Computing time can also be counted in model performance once it is trained, like in
Table 5. For reference, average times for predictive values for a particular day, week, or
month’s worth of data are presented considering that this model’s training and execution
was carried out on an 11th Gen Intel(R) i5-1135G7 that runs at 2.40 GHz with 16 GB of
RAM and Windows 10 Pro 22H2—64 bits as the main operative system. It is concluded
that this technology is perfectly adaptable for a dynamic interpretation of the data if this is
to be implemented as a prediction tool by Barcelona council.

For this model, Figure 6a shows the parameters ranked by frequency of appearance,
where FromNorth, DailyHour, and DayMonth represent the majority of the relevance
in order to classify the data rows. FromWest also shows a relatively superior relevance.
These results are consistent with our initial hypotheses since the geographical location,
the time, and the day of the month influence, and, therefore, help to explain, the behavior
of current traffic status. Variables like DailyMinute and Weekday appear to be labeled as
less determinant in the model. Moreover, checking not only the frequency of appearance
but its cover (the relative number of observations linked in prediction with the variable)
in Figure 6b and its gain (the relative contribution of each variable on each tree for every
prediction) in Figure 6c, it can be seen how variables such as ToWest and ToNorth, even
though their percentage of appearance is not outstanding compared to others in terms
of variable importance, have gain and cover which show how this is also defining the
behavior of the model and therefore have a relevant impact on the outcome.

Figure 5. Area Under the Curve for the XGBoost model.
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Table 5. Computing times.

Time Lapse Average Times after 50 Runs (s)

One day 0.037577
One week 0.229319

One month 1.363848

(a) Frequency

(b) Cover

(c) Gain

Figure 6. Variable analysis of the XGBoost model.
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As Figure 7 implies, classes 0, 1, and 2 obtain their explainability from DayMonth in
the majority of cases. The rest of the classes find their explanation impact from coordinates
like ToWest and FromWest.

Figure 7. SHAP variable importance plot by classes.

Lastly, Figure 8 illustrates the model’s effect on various combinations of variables for
each class. For class 0, the hour and day of the week have the greatest impact on the model.
For class 1, the hour and North coordinates are the most important. For class 2, the hour
and West coordinates have the greatest impact. For class 3, the hour and day of the week
coordinates are the most important. In class 4, all four coordinates have the most impact on
the model.

(a) Class 0 (b) Class 1

(c) Class 2 (d) Class 3

Figure 8. Cont.
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(e) Class 4

Figure 8. Impact on model output by predicted class.

5. Discussion

Due to the increasing importance of traffic prediction for urban transportation manage-
ment, numerous traffic flow prediction models have been studied over recent decades. This
paper utilizes visualization techniques, such as heatmaps, to illustrate the traffic density
across various city sections throughout the day. Analyzing vehicle locations at different
time intervals reveals mobility patterns and street traffic density. An interactive animation
plugin is identified, enabling end users to customize the visual representation with options
including overview, zoom, pause, play, loop, and variable playback speeds.

Subsequently, traffic prediction is approached as a time series analysis problem, with
ARIMA models being employed to forecast traffic flow across ten sections of the same street.
Time series analysis, particularly ARIMA models, has historically been popular for traffic
prediction due to ease of implementation and relatively high accuracy [35]. Nevertheless,
the intricate non-linear spatio-temporal dependencies, coupled with external factors such
as weekends, holidays, and weather, present challenges that surpass the capabilities of
ARIMA. Our results indicate that none of the ARIMA models built satisfies the assumptions
of independence, homoscedasticity, and normality. Thus, classical methods struggle to
make accurate predictions and are not well suited to the spatio-temporal structure of
traffic data.

To tackle this challenge, an XGBoost model is employed for traffic prediction. XGBoost
requires less prior knowledge of traffic patterns, handles non-linear variables effectively,
and consistently achieves robust performance with the area under ROC curves exceeding
80%. Its use facilitates analysis of variable importance and enhances interpretability through
Shapley Additive Explanations.

In summary, while visualization techniques aid real-time analysis of traffic density
and interactive animations for clearer pattern recognition, the XGBoost model provides
insights into variable importance, interpretable outputs, and accurate predictions.

By accurately predicting traffic patterns, decision-makers can make more informed
about transportation infrastructure, such as the location and number of roads, highways,
and public transportation systems. This can help to optimize the use of limited resources
and improve the efficiency of the transportation network [36]. In terms of reducing con-
gestion and emissions, accurate traffic prediction can help decision-makers to implement
strategies to reduce congestion and improve air quality. For instance, they could implement
demand-management strategies like variable tolls or congestion pricing. These measures
aim to incentivize drivers to opt for alternative modes of transportation or travel during
off-peak hours. Also, traffic prediction can help to identify areas where accidents are more
likely to occur, allowing them to implement strategies to reduce the likelihood of accidents
and improve road/street safety. Hence, by foreseeing and outlining the variables that
contribute to the forecast, this paper’s contribution can assist a decision-maker in making
quick and effective decisions in order to enhance traffic management and mitigate traffic
congestion [37]. In this study, the significant variables that contribute to the forecast are the
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geographical location, especially when the section starts in the North direction, the time,
and the day of the month. However, some limitations need to be highlighted. In order to
increase the usefulness of the data and analysis, data must be accessible, interconnected,
and quantifiable to facilitate decision-making and drive innovation. In the case of the city
council, this is not fully achieved, as the availability of information and the interconnection
between datasets are severely restricted by the format and structure in which they are
delivered. This hinders a broader perspective on some possible research questions and
impedes the ability to unlock the full potential of the data. No clear descriptions were
given for some of the data sources, a large number of missing data were detected, and the
quantification of terms like traffic density was not available. Possible data connections with
other datasets on the same portal were also not available.

6. Conclusions and Further Research

Studying the mobility patterns in smart cities may provide useful insights to support
decision-making related to urban mobility. Optimizing processes such as the placement
of electric vehicle charging stations or designing efficient routes may minimize economic
costs while contributing to reducing the environmental impacts and increasing social
welfare. In this context, this paper explored mobility patterns in the city of Barcelona
(Spain), relying on the open data service of the Ajuntament de Barcelona. An exploratory
analysis, visualization techniques, and predictive models have been presented. In addition,
a discussion regarding the potential of these tools for policymakers has been provided.

The primary limitation of this research lies in its reliance on data spanning only
one month. While the selection of this period facilitated building models and yielded
intriguing insights, examining a more extended period (spanning years) would enable
exploration of trends, seasonal fluctuations, variability, and the influence of COVID-19
and lockdown policies on traffic patterns, among other factors. This work opens up
several lines of future research. First, the use of more variables could lead to more robust,
powerful, and interpretable models. Interesting variables to consider are related to weather
(rainwater level, temperature, etc.), traffic accidents, and events that attract a lot of people
such as football games and international conferences. In addition, comparing open data
portals of smart cities across the world (regarding datasets related to urban mobility and
characteristics such as update frequency, granularity, and documentation) and studying
the use that different agents have for them is another promising research line. Further lines
in this topic could involve comparing the results of XGBoost to those of other machine
learning algorithms and examining ways to improve its interpretability. Research on the
potential benefits of combining XGBoost with the use of more advanced spatio-temporal
models, in order to capture the spatio-temporal dependence, is another promising option
for implementing better predictive models.
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