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1. Introduction

Nanophotonics, at the forefront of science and engineering, intrigues researchers
across disciplines with its transformative potential for diverse technologies. The Special
Issue of Applied Sciences titled “Recent Advances and Future Trends in Nanophotonics II”
offers a thorough summary of the latest breakthroughs and their impact across various
application areas. It covers a broad spectrum of topics, from exploring new directions in
nanophotonic science to driving innovation in information processing, communications,
biomedical sciences, and imaging and environmental sustainability.

To leverage existing microelectronics technology, silicon (Si) is recognized as the pri-
mary material for investigating integrated photonic circuits, driving the increasing interest
in silicon-based nanophotonics over recent decades. Fabrication techniques in micro- and
nano-silicon photonics enable the cost-effective integration of electronic, photonic, and
sensing devices on a single chip. Extensive efforts have been dedicated to developing
novel silicon photonic components, resulting in innovative solutions with applications
in telecommunications and multichip optical interconnections, promising to enhance the
performance of future commercial processors.

2. An Overview of Published Articles

In contribution 1, Kaps and coauthors investigate various strategies employed to
improve the in-plane performance of conventional s-SNOM probes. For instance, efforts
have been made to optimize the shape of the SFM tip [1] and to tilt the tip cone in relation
to the normal sample surface [2]. Additionally, enhancing the sample’s in-plane response
can be achieved by incorporating dedicated nano-antennas onto the sample surface [3].
Furthermore, both theoretical [4] and experimental [5] evidence has shown that exciting
the sample close to its optical resonance yields a notable in-plane signal even with standard
s-SNOM tips. This in-plane response is closely linked to resonant excitation, thereby increas-
ing its sensitivity to local sample properties within that frequency range. Consequently,
subtle variations in local sample properties, such as mechanical stress [6] and permittivity
anisotropies [5,7,8], are anticipated to significantly influence the in-plane contributions
in s-SNOM.

In contribution 2, Menahem and Malka highlight how back-reflection poses a signifi-
cant challenge to the efficacy of transmitter systems, particularly the reflection back into
the laser source. In Si-based MMI couplers, reflections may occur due to the self-imaging
phenomenon and refractive index mismatches between Si and SiO2 [9].

Studies indicate that polycarbonate polymer optical fiber can serve as a multiplexer
or demultiplexer for RGB signals with insertion losses (ILs) ranging from 0.6 dB to
1.2 dB [10,11]. Additionally, a four-channel demultiplexer operating in the green light
spectrum has been realized using a multi-slot waveguide structure based on gallium nitride
(GaN) [12]. Furthermore, researchers have successfully divided four [13] and eight [14]
channels in the visible and C-band spectrums, respectively, utilizing GaN MMIs. However,
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it is noteworthy that these studies did not consider the back-reflection effect, which is
crucial for transmitter functionality [15].

In contribution 3, Hatifi and coauthors investigate fluorophores that find widespread
biomedical utility as tracers and markers, such as when linked to DNA strands in devices
for virus detection in blood samples. The application of such techniques in lab-on-a-chip
setups holds promise [16], especially during pandemics, offering rapid virus detection
in airports or other public areas. Additionally, they can serve as markers for verifying
the authenticity of certain manufactured goods, thwarting counterfeiting attempts, as
proposed here. Fluorimetry boasts rapid response times, sensitivity of excited states to local
environments, and the ability to incorporate fluorophores into chips/devices, enabling
simultaneous measurement of multiple samples in a short duration [17]. While fluorophores
are commonly used for tracing and marking [17,18], operating them in the strong-coupling
regime is unusual. Recent advancements have explored strong coupling for potential
quantum chip applications, employing fluorophores tethered to oligonucleotide strands
and integrated into cavities [19]. These DNA or RNA oligonucleotide strands offer the
flexibility to position the probe within the cavity or link it with a plasmonic nanoobject
(e.g., a gold nanosphere), akin to an external cavity [20,21]. However, this advantage
is counterbalanced by the relatively high design and purification costs associated with
oligonucleotides, compounded by aging issues (stability of oligonucleotide probes within
the cavity). Contribution 3 introduces a novel fluorescence technique leveraging the intense
light–matter interaction of an embedded nanoprobe within a plasmonic cavity. The strong
light–matter interactions between nanoprobes and cavity modes typically manifest as
changes in the excitation spectrum (electronic or vibrational) of the coupled system [22].

The article by Jia et al. (contribution 4) introduces an innovative design for a surface-
enhanced Raman spectroscopy (SERS) substrate, aiming to achieve exceptional sensitivity
and rapid, intimate contact between the target structure and the optical hotspots. The
proposed substrate offers an enhancement factor of 108 or greater, potentially enabling the
detection of immunomagnetically densified bacteria. Indeed, rapid detection of bacterial
infections is a pressing concern in infectious disease diagnostics and treatment, with sepsis
alone claiming over 25 percent of its victims [23]. However, the current clinical standards
for sepsis diagnosis can take up to five days to culture and identify bacteria [24].

SERS emerges as a label-free optical biosensing technique, leveraging a modified form
of Surface Plasmon Resonance (SPR). In Raman spectroscopy, when laser light interacts
with a sample, it undergoes inelastic scattering, resulting in a change in wavelength
according to the vibrational modes of the molecules [25]. This shift provides detailed
vibrational information about the chemical bonds, offering high spatial resolution [26].
SERS enhances Raman signals using metallic nanomaterials, typically in the form of SERS
tags, which consist of modified metallic nanoparticles equipped with specific capturing
probes or Raman reporter molecules [27]. This study introduces a new SERS substrate
design aimed at achieving high sensitivity and rapid, close contact between the target
structure and optical hotspots for immunomagnetic bacteria concentration. The substrate
utilizes inverted nanocone structures made of transparent PDMS, guiding light to plasmonic
gold nanorods positioned at the top of the cones. With a highly reflective and low-loss
outer layer, photons undergo multiple reflections, significantly increasing photon density
at hotspots, potentially enabling the detection of immunomagnetically densified bacteria.

Finally, contribution 5 is an interesting review by Piergentili et al. on quantum infor-
mation with integrated photonics. Authors highlight how the ongoing challenge revolves
around establishing a scalable and convenient platform for the practical implementation of
quantum technologies, which encompass protocols and devices capable of computations
significantly faster than their classical counterparts. IBM [28] and Google [29] have recently
developed prototypes of commercial quantum computers utilizing superconducting qubits
through the superposition of supercurrents in Josephson junctions, requiring extremely
low temperatures for operation. Additionally, research has explored superconducting
opto-electronic circuits integrated with photonic components for rapid, energy-efficient
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computation [30], photon detection [31], and polarization-sensitive imaging [32,33]. How-
ever, for these new quantum technologies to be seamlessly integrable into existing systems
and infrastructures developed for digital and telecom information technologies, there is
a growing emphasis on the development of integrated photonics chips in silicon for the
generation, modulation, and detection of light [34,35].
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