
Citation: Benito, T.; Barrientos, A. An

Intelligent Human–Machine Interface

Architecture for Long-Term Remote

Robot Handling in Fusion Reactor

Environments. Appl. Sci. 2024, 14,

4814. https://doi.org/10.3390/

app14114814

Academic Editors: Benjamim Fonseca,

Daniel Schneider, António Correia

and Tommi Kärkkäinen

Received: 11 April 2024

Revised: 14 May 2024

Accepted: 28 May 2024

Published: 2 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Intelligent Human–Machine Interface Architecture
for Long-Term Remote Robot Handling in Fusion
Reactor Environments
Tamara Benito *,† and Antonio Barrientos

Centro de Automática y Robótica, Universidad Politécnica de Madrid—Consejo Superior de Investigaciones
Científicas, 28006 Madrid, Spain; antonio.barrientos@upm.es
* Correspondence: tamara.benito@alumnos.upm.es
† Current address: GTD Science, Infrastructures and Robotics, Av. Leonardo Da Vinci, 28906 Getafe, Spain.

Abstract: This paper addresses the intricate challenge posed by remote handling (RH) operations in
facilities with operational lifespans surpassing 30 years. The extended RH task horizon necessitates a
forward-looking strategy to accommodate the continuous evolution of RH equipment. Confronted
with diverse and evolving hardware interfaces, a critical requirement emerges for a flexible and
adaptive software architecture based on changing situations and past experiences. The paper explores
the inherent challenges associated with sustaining and upgrading RH equipment within an extended
operational context. In response to this challenge, a groundbreaking, flexible, and maintainable
human–machine interface (HMI) architecture named MAMIC is designed, guaranteeing seamless
integration with a diverse range of RH equipment developed over the years. Embracing a mod-
ular and extensible design, the MAMIC architecture facilitates the effortless incorporation of new
equipment without compromising system integrity. Moreover, by adopting this approach, nuclear
facilities can proactively steer the evolution of RH equipment, guaranteeing sustained performance
and compliance throughout the extended operational lifecycle. The proposed adaptive architecture
provides a scalable and future-proof solution, addressing the dynamic landscape of remote handling
technology for decades.

Keywords: remote handling; robotic; intelligent human–machine interface; software architecture
evolution; fusion energy; modular architecture; software lifecycle

1. Introduction

Nowadays, the field of remote handling (RH) integrates many technical fields (elec-
tronics, communications, control, computer vision, artificial intelligence, augmented reality,
etc.), and all of them, in general, work synergistically. Currently, there are outstanding
new fields that add intelligence to RH robots; this is something very interesting because it
simplifies the traffic and criticality of the information exchanged from/towards the opera-
tor, letting the robot act on its own [1]. Moreover, if we were able to model how the best
operator carries out a series of complex tasks, we could reduce task times and human error
risks introduced due to fatigue, boredom, or lack of experience.

These technological advances and others that RH is currently working on have made it
possible to achieve great innovations in the nuclear fusion sector. Since 1930, scientists and
increasingly also engineers have been continuously searching to discover how to recreate
and harness nuclear fusion to provide virtually limitless clean, safe, and affordable energy
to meet the world’s energy demand. Fusion can generate four times more energy per
kilogram of fuel than fission, which is used in nuclear power plants, and nearly four million
times more energy than burning oil or coal.

More than 50 countries have carried out multiple nuclear fusion and plasma physics
research, and fusion reactions have been successfully produced in many experiments.

Appl. Sci. 2024, 14, 4814. https://doi.org/10.3390/app14114814 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114814
https://doi.org/10.3390/app14114814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0009-1417-2165
https://orcid.org/0000-0003-1691-3907
https://doi.org/10.3390/app14114814
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114814?type=check_update&version=1

Appl. Sci. 2024, 14, 4814 2 of 21

Different designs and magnet-based machines have been developed to initiate fusion, like
stellarators and tokamaks (this design is under study in this thesis), as well as approaches
that rely on lasers, linear devices, and advanced fuels.

One of these countries is France, where the world’s largest international fusion facility,
named ITER, is being designed and manufactured across the world [2]. ITER endeavors
to demonstrate the scientific and technological viability of producing fusion energy and
validate technology and concepts for future fusion power plants that will generate electricity,
referred to as DEMO. ITER will initiate its initial experiments in the latter half of the 2020s,
and full-power tests should begin in the latter half of the 2030s [3]. The timeline for DEMO
varies among different countries, but experts agree that an electricity-generating fusion
power plant could be constructed and operational by 2050.

All these facilities have the same problem: the RH control systems will need to be
operated from a dedicated remote control room that consists of many modules and tech-
nologies that must be operational over the lifetime of the fusion project (estimated at more
than 30 years, including initial assembly and final decommissioning in the case of the ITER
project). Therefore, the operation and supervision of these RH systems in environments
requiring long-term flexibility and safety have increasingly necessitated the adoption of
efficient graphical interfaces, prompting the need for a new innovative architecture pro-
posal: Multiple Agent Managerial Intelligent Control (MAMIC). The MAMIC model allows
the interaction of these systems with the operator in a unique, fast, and simple manner in
response to varying situations and past experiences. Moreover, the repeatability required
for industrialization underscores the significant importance of having reference models
rather than each implementation being custom-built.

Section 2 reviews the evolution of software architecture in recent decades due to the
increasing complexity of computing systems and the need to adapt to rapid technologi-
cal changes and concludes that combining different approaches can lead to more robust
architectures, such as those that RH facilities require. Section 3 presents the preliminary
stages of the study (requirements and software lifecycle) aimed at developing a proposal
for an architecture model that integrates multiple methodologies. Section 4 explores a
completely new architecture model that addresses the anticipated needs in the techni-
cal specification phase while considering its lifetime, cost reduction, and risk mitigation
over time. Last, the model application in the ITER case is summarized for convenience
in Sections 5 and 6, including the model validation into the requirement phase, while
Section 7 provides a short conclusion and future work. Following a list of acronyms, the
article concludes with one appendix. Appendix A provides a detailed description of the
remote robot handling intelligent human–machine interface architecture requirements.

2. Software Architecture Models Evolution Study

In the past decades, the software architecture landscape has witnessed significant
evolution driven by the escalating complexity of computing systems and the imperative
to adapt to a rapidly changing technological environment. During this period, diverse
architectural frameworks and methodologies have emerged and evolved to address the
unique challenges faced by software developers and architects. Among these architec-
tures and methodologies, the most influential in the aforementioned environments are
the following:

• Anthropomorphic approach: Rooted in human-centered design principles, the anthro-
pomorphic approach places a strong emphasis on understanding and accommodating
human needs and behaviors in system design [4]. While it enhances the user expe-
rience and adaptability, it may introduce complexity in implementation and require
extensive user research.

• Predictive modeling: Leveraging data analytics and machine learning techniques,
predictive modeling enables systems to anticipate future events and trends based on
historical data. This fosters informed decision-making and resource optimization, but
may be limited by data quality and the dynamic nature of real-world scenarios [5,6].

Appl. Sci. 2024, 14, 4814 3 of 21

• Cognitive architecture: Inspired by human cognition, cognitive architecture seeks
to replicate cognitive processes within software systems, enabling them to perceive,
reason, and adapt like humans. While it enhances system intelligence and user
interaction, it may entail significant computational overhead and require complex
modeling [7].

• Hexagonal architecture: Offering a modular and adaptable design approach, hexago-
nal architecture decouples core system logic from external dependencies, promoting
scalability and maintainability. However, it may introduce additional architectural
complexity and require careful planning to ensure seamless integration [8].

• Design thinking: Design thinking fosters innovation by empathizing with user needs,
ideating creative solutions, and iterating through prototyping and feedback cycles [9].
Its user-centric approach enhances solution relevance and usability, yet may lead to
ambiguity in requirements and feasibility.

• Lean startup: Rooted in rapid experimentation and customer feedback, lean startup
accelerates product development and validation. While it fosters agility and
market responsiveness, it may prioritize speed over quality and overlook long-
term scalability [10].

• Domain-driven design (DDD): DDD focuses on modeling complex business domains
to align software architecture with business requirements [11]. By promoting a shared
understanding of domain concepts, it enhances system flexibility and maintainabil-
ity. However, it may require extensive domain expertise and introduce overhead in
domain modeling.

• Agile development: Agile methodologies emphasize iterative development, collabora-
tion, and adaptability to changing requirements [12]. They enhance transparency and
stakeholder engagement but may pose challenges in managing scope and ensuring
comprehensive documentation.

• Service-oriented architecture (SOA): SOA organizes systems as interoperable services,
facilitating flexibility and reusability [13]. It promotes modular design and interoper-
ability, yet may introduce complexity in service orchestration and governance.

While these architectures and methodologies offer a range of advantages, they also
present unique challenges and limitations that must be carefully addressed. When eval-
uating and selecting an architecture or methodology for a specific project, it is crucial to
consider the business needs and objectives, as well as the project’s context and technical
requirements. In the realm of complex system design, as mentioned before, the adoption of
a singular methodology or approach may not suffice to address all dimensions and chal-
lenges that arise. It is within this context that the notion of combining different approaches
and methodologies to create more robust and adaptable architectures emerges.

In this regard, the integration of approaches such as the anthropomorphic approach,
predictive modeling, and cognitive architecture, along with the hexagonal architecture,
can provide a more comprehensive and holistic vision in the design and development of
advanced systems.

The advantages of this integration are manifold and significant. Whereas the an-
thropomorphic approach emphasizes the importance of understanding human needs and
expectations in system design, leading to an enhanced user experience and greater accep-
tance of proposed solutions, predictive modeling offers the ability to forecast future events
based on historical data, facilitating informed decision-making and resource optimization
across various contexts.

Furthermore, the inclusion of cognitive architecture provides a framework for model-
ing human cognitive processes, enabling the design of systems that are more intuitive and
adaptable to human interaction. Finally, the hexagonal architecture offers a flexible and
modular structure for software development, promoting the separation of concerns and
facilitating adaptation to technological and business changes.

By combining these approaches, an architecture can be achieved that is not only
technically sound but also sensitive to human needs and behaviors, capable of anticipating

Appl. Sci. 2024, 14, 4814 4 of 21

future events, and easily adaptable to changes in the environment. This integration offers
a holistic approach to complex system design, allowing developers to effectively and
efficiently tackle a wide range of challenges.

In the subsequent analysis (Table 1), how each of these approaches can complement
and reinforce one another in the creation of advanced system architectures to transition
from a flexible model to an intelligent open model is explored in detail.

Table 1. Analysis of the different architecture evolutions, focusing on the anthropomorphic approach,
predictive modeling, cognitive architecture, and hexagonal architecture.

Architecture Origin Evolution Current Application

Anthropomorphic Approach

This approach has deep roots
in human–computer interac-
tion and cognitive psychol-
ogy. The aim is to create sys-
tems that better understand
and adapt to human needs and
preferences [4].

Over the decades, this ap-
proach has evolved with ad-
vances in understanding hu-
man psychology, ergonomics,
and user-centered design [14].

This approach is used in the de-
sign of user interfaces, virtual
assistants, artificial intelligence
systems, and robotics [15].

Predictive Modeling: ARCH

It has existed in various forms
throughout history but has un-
dergone rapid development
with the advent of computing
and access to large amounts of
data [5,6].

With the advancement of sta-
tistical and machine learning
techniques, predictive mod-
eling has become a power-
ful tool for forecasting future
events in a variety of do-
mains [16].

It is used in a wide range of ap-
plications, from weather pre-
diction to product recommen-
dations on e-commerce plat-
forms. It is also fundamen-
tal in areas such as person-
alized medicine and financial
risk management [17].

Cognitive Architecture: RCS

Developed in the fields of ar-
tificial intelligence and cogni-
tive psychology to understand
and replicate human cognitive
processes [7,18–21]. An RCS is
similar to other cognitive archi-
tectures by representing proce-
dural knowledge through pro-
duction rules and hldeclara-
tive knowledge (abstract data
structures: frames, classes,
and semantic nets [22]). RCSs
originated as a real-time intel-
ligent control system designed
to operate real machines inter-
acting with actual objects in
the tangible world.

Over the decades, researchers
have developed a variety of
cognitive architecture mod-
els to simulate human men-
tal functions, such as per-
ception, attention, memory,
and reasoning. Through-
out its developmental stages,
all symbols within the RCS
world model have been firmly
linked to objects and states
in the tangible world. The
latest iteration, 4D/RCS, in-
corporates elements of Dick-
manns’ 4D approach to ma-
chine vision [23,24] within the
RCS control architecture.

Applied in decision support
system training and simula-
tion systems. Initially, it
served as a sensory-interactive,
goal-directed controller for a
laboratory robot [25]. Over
time, RCSs have evolved into
an intelligent controller appli-
cable to industrial robots, ma-
chine tools, intelligent manu-
facturing systems, automated
mail facilities, stamp distribu-
tion systems, mining equip-
ment, unmanned underwa-
ter vehicles, and unmanned
ground vehicles [26,27].

Hexagonal Architecture

Proposed by Alistair Cock-
burn (early 2000s) to improve
the design of complex soft-
ware systems. The key distinc-
tion from others is the business
logic separation from technical
implementation details, mak-
ing business logic easier to test,
evolve, and change indepen-
dently of the underlying tech-
nology [8].

Since its initial proposal,
hexagonal architecture has
gained popularity as an
effective approach for creating
scalable, flexible, maintainable,
and easily testable software
systems [13].

Currently, hexagonal architec-
ture is widely used in software
development across a variety
of domains, from web applica-
tions to embedded systems. It
is especially popular in envi-
ronments where high flexibil-
ity and adaptability to techno-
logical and business changes
are required [13].

Combining all the mentioned approaches can be an interesting and potentially benefi-
cial challenge, as each brings unique perspectives and can address different aspects of a
complex system:

Appl. Sci. 2024, 14, 4814 5 of 21

• Multidisciplinary analysis: Conduct a multidisciplinary analysis of the problem you
are addressing, considering both the technical and cognitive/human aspects involved.
This will help you better understand the context and the system’s needs.

• User-centered design: Utilize the anthropomorphic approach to design systems that better
adapt to users’ needs, expectations, and behaviors. This may include designing intuitive
interfaces and considering emotional and cultural factors in human–computer interaction.

• Cognitive modeling: Integrate cognitive models, inspired by cognitive architecture, to
understand how users interact with and process information within the system. This
can help identify behavioral patterns and optimize system usability.

• Prediction and optimization: Employ predictive modeling techniques to forecast future
events and optimize system performance. For example, you can apply predictive
analytics techniques to anticipate resource demand and optimize resource planning
and allocation accordingly.

• Modular and decoupled architecture: Implement hexagonal architecture to organize
the system design into clearly defined and decoupled layers. This will facilitate
system modification and maintenance over time while providing flexibility to adapt
to technological or requirement changes.

• Validation and feedback: Incorporate continuous feedback loops and validation with
real users to iterate and constantly improve the system design. This can help ensure
that the system meets users’ expectations and needs, as well as identify improve-
ment opportunities.

3. Software Lifecycle in the Remote Handling Environment

Defining a software lifecycle plays a fundamental role in designing an architecture that
blends all the aforementioned approaches. Moreover, reliability, availability, maintainability,
and safety (RAMS) are eminent requirements of RH systems. The primary software lifecycle
phases extracted from ISO-12207 [28] are as follows:

• Software Requirement Analysis Process.
• Software Architectural Design Process.
• Software Detailed Design Process.
• Software Construction Process.

– Coding.
– Module testing.

• Software Integration Process.

– Integration.
– Integration testing.

• Software Qualification Testing Process.

The development and operation of a system of this complexity require rigorous adherence
to safety engineering, quality assurance, validation and verification, requirement management,
and requirement traceability processes to ensure reliability and fail-safe operation.

In short, an architecture that integrates multiple approaches must be designed, pay-
ing special attention to requirement gathering and the software lifecycle (Table 2). Both
processes must be adapted to leverage the strengths of each approach and ensure that the
resulting system meets the business needs and end-user’s expectations.

Appl. Sci. 2024, 14, 4814 6 of 21

Table 2. Requirement gathering and software lifecycle definition from the perspective of the various
architecture approaches under study.

Architecture Requirements Software lifecycle

Anthropomorphic Approach

In this approach, the needs, expectations,
and behaviors of end-users are crucial.
Also, it emphasizes the importance of
comprehending human characteristics to
design systems that adapt to them. Dur-
ing requirement gathering, cognitive and
emotional aspects influencing human–
computer interaction must be identified.

In defining the software lifecycle, specific
stages for user-centered design should be
included, where usability testing is con-
ducted and user feedback is gathered for
iterative design.

Predictive Modeling: ARCH

This approach starts by analyzing his-
torical data, trends, and behavioral pat-
terns influencing system requirements
over time, which are the main actions dur-
ing requirement identification. Due to this
phase, predictive modeling to anticipate
future user needs is leveraged.

In this model, the software lifecycle plans
and optimizes the development phase.
This includes estimating necessary re-
sources, predicting delivery times, and
identifying potential obstacles or risks.

Cognitive Architecture: RCS

This approach searches for requirements
associated with human cognitive pro-
cesses: understanding how users interact
with the system, which mental processes
are involved, and how systems can be de-
signed to better fit these processes.

The software lifecycle includes stages of
modeling and validating human cognitive
processes. This involves simulating user–
system interactions to evaluate the effec-
tiveness of the cognitive architecture in
practice.

Hexagonal Architecture

This architecture prioritizes modularity
and flexibility as its essential require-
ments. Identifying functional and non-
functional requirements that determine
the modular structure of the system is cru-
cial for designing a scalable and adaptable
architecture.

Defining the software lifecycle incorpo-
rates agile development practices that
leverage the modularity and flexibility of
the hexagonal architecture. This includes
frequent iterations, unit testing, and con-
tinuous refactoring to maintain code qual-
ity and consistency.

4. MAMIC System: A New Model Generation

A reference model architecture delineates the functionalities, entities, events, relation-
ships, and information flow occurring within and across functional modules. It furnishes
a framework for delineating functional requirements, designing software to fulfill those
requirements, and testing components and systems. By combining the anthropomorphic
approach, predictive modeling, and cognitive architecture with the hexagonal architecture,
more comprehensive and effective systems can be created that address both technical and
cognitive/human aspects holistically.

It is important to note that the application of each approach should be tailored to the
project’s specific context and requirements, and the appropriate blend will depend on the
domain characteristics and user needs.

Through the combination of these architecture approaches, a novel model emerges
named the Multiple Agent Managerial Intelligent Control (MAMIC) system. The MAMIC
system requires careful consideration of each component’s functionality and interactions.
In Table 3, some special aspects are detailed to understand how the anthropomorphic
approach, predictive modeling, and cognitive architecture could be integrated into the
hexagonal architecture.

Appl. Sci. 2024, 14, 4814 7 of 21

Table 3. Component’s functionalities of anthropomorphic approach, predictive modeling, and
cognitive architecture used to combine them into the hexagonal architecture.

Architecture Special Consideration

Anthropomorphic Approach

1. Design user interfaces and interactions that are intuitive and adaptive to
human behavior.

2. Gather user feedback through surveys, interviews, or usability testing to
understand user preferences and needs.

3. Implement features such as personalized recommendations or natural lan-
guage processing to enhance user experience.

Predictive Modeling: ARCH

1. Collect and analyze historical data on user behavior, system performance,
and external factors.

2. Develop predictive models to anticipate future user actions or system events.
3. Integrate predictive analytics into the system to dynamically adjust behavior

or resources based on anticipated events.

Cognitive Architecture: RCS

1. Model cognitive processes such as perception, learning, and decision-making
within the system.

2. Implement algorithms inspired by cognitive science to simulate human-like
behavior or reasoning.

3. Design interfaces and interactions that align with human cognitive abilities
and limitations.

Integrating these approaches within a hexagonal architecture involves structuring the
system into layers with a clear separation of concerns:

• Domain layer: The domain is the innermost layer. It encompasses all core business
logic and functionality of the system and remains agnostic of the other layers. It
should only vary based on the needs of the business, uninfluenced by external factors.
In this layer, the data model is located or “Read model is housed”, and it is crucial
to consider modeling it based on the requirements rather than the database model.
Furthermore, within this layer, business validations are located in “Value Objects”
and “Entities”, as well as the ports of the MAMIC system (adapter interfaces and
domain services).

• Application layer: The application layer contains the use cases needed for each
“Bounded context” or unit of the MAMIC system. The role of application classes
is to orchestrate the necessary classes to execute an action requested by the exter-
nal systems. Additionally, it handles the translation of primitive data received into
objects managed by the domain. The application layer should never be aware of
infrastructure details.

• Infrastructure layer: The infrastructure layer is responsible for communication be-
tween the MAMIC system and external factors, and vice versa. Its classes are tightly
coupled to specific technologies such as frameworks, database engines, specific queu-
ing systems, external libraries, and other infrastructure components. Within this layer,
some modules translate information received/sent by other components and entry
points to the MAMIC system, among other functionalities.

The MAMIC model, Figure 1, facilitates the integration of these approaches by provid-
ing a modular and flexible structure. Each model can be encapsulated within its respective
layer, allowing for independent development, testing, and evolution. Additionally, the
architecture promotes the separation of concerns, making it easier to maintain and extend
the system over time:

• Anthropomorphic approach: Implemented primarily in the application layer, where
user interfaces and interaction components reside. User-centric design principles
guide the development of interfaces and interactions.

Appl. Sci. 2024, 14, 4814 8 of 21

• Predictive modeling: Integrated into both the domain and application layers. Predic-
tive models are part of the business logic in the domain layer, while data processing
and analysis components reside in the application layer.

• Cognitive architecture: Implemented within the domain layer, where cognitive pro-
cesses are modeled and simulated. Algorithms inspired by cognitive science are
embedded into the business logic to enable human-like behavior.

An
th

ro
po

m
or

ph
ic

Application

Infrastructure

Domain

Predictive

Predictive
Cognitive

External
Frameworks

UI Console
Adapter

Ad
ap

te
rAdapter

Virtual
Reality

Ad
ap

te
r

Automatic
Testing

P

P

P

P

Hexagonal
Driving actors Driven actors

Figure 1. MAMIC model generation and integration.

In summary, while the MAMIC model proposal offers valuable insights and capabili-
ties, it presents specific challenges related to complexity, resource utilization, technological
constraints, and ethical implications.

• Initial complexity: Deploying this methodology could necessitate increased design
and configuration efforts owing to its intricate structural nature.

• Resource overhead: The modular nature of this architecture may result in elevated
layers and abstractions, which could pose maintenance challenges and overhead.

• Technological limitations: The MAMIC model could be limited by existing technologi-
cal capabilities, impacting its ability to faithfully replicate human behavior or achieve
precise predictive outcomes.

• Computational cost: Sophisticated predictive models may require substantial compu-
tational resources, impacting scalability and practical deployment capabilities.

• Ethical considerations: Applying MAMIC principles raises ethical considerations
concerning human perception and technology-related expectations.

Appl. Sci. 2024, 14, 4814 9 of 21

5. Application to a Specific Case Study: ITER Divertor Remote Handling System
5.1. ITER Environment

The ITER remote handling (RH) [29] system will be operated from a dedicated control
room, approx. 1km away from the reactor and designed for full remote operation. The
intention is to manage all the necessary equipment for specific RH tasks from a single
operations bench known as the RH standard work cell. Given that numerous RH operations
will be executed concurrently, the plan is to incorporate multiple work cells within the RH
control room.

The ITER RH control system comprises various modules and technologies, necessitat-
ing sustained operational functionality throughout the ITER project’s estimated 30-year
lifespan, encompassing assembly and decommissioning.

To streamline initial integration and ongoing maintenance, a modular approach is
advocated. ITER mandates a fixed modular architecture for all systems, emphasizing
a straightforward principle to foster interoperability and maintainability: each control
system element should meet its requirements without imposing specific solutions on other
elements. For the implementation of the RH standard work cell, this modular approach
was realized. Figure 2 illustrates the different modules that configure a work cell.

Figure 2. The four-person work cell tasks. (a) The responsible officer oversees operations. (b) The
deputy manages cameras and support tools. (c) The “mover“ operates casks, transporters, and cranes.
(d) The “manipulator” controls the master arm and other manipulative devices. Reprinted with
permission from Ref. [30]. 2024, D. Hamilton.

The ITER remote maintenance system (IRMS) [31] is required to provide full remote
handling capability (including rescue) inside the in-vessel area. The IRMS remote handling
equipment is the divertor remote handling system (RHS) (DTP2), which is illustrated in
Figure 3:

Appl. Sci. 2024, 14, 4814 10 of 21

Figure 3. The ITER Maintenance System serves various areas within the ITER facility. (a) Full capabil-
ity for its manual maintenance within the hot cell, NB cell, and test stand. (b) Full remote handling
capability, including rescue operations, within the in-vessel, hot cell, and NB cell. (c) Complete
remote handling capabilities for the recovery of casks within the lift, gallery, and hot cell. (d) Remote
handling capabilities that can be seamlessly combined with local manual support within the NB cell,
hot cell (part), port cell, and test stand area.

The divertor RHS (toroidal system) is required to perform the following key functions:

• Insertion/extraction of divertor cassettes and their transportation to/from a transfer
cask docked at divertor-level RH ports.

• Insertion/extraction of divertor-level diagnostic assemblies and their transportation
to/from a transfer cask docked at divertor-level RH ports.

• Removal/replacement of the divertor-level RH port primary closure plate (PCP).
• Dust removal within and around the divertor region during the cassette-removal process.

A work cell to control the divertor RHS will be established based on the latest ITER
specifications for the control room and work cell design, incorporating the remote handling
and control room software developed for F4E/ITER:

1. General-purpose controller (GENROBOT): GENROBOT is a software controller appli-
cation built to command particular RH systems used across the ITER remote handling
environment and is integrated to command RH systems via the RH-IHMI application.

2. Remote robot handling intelligent human–machine interface (RH-IHMI): The RH-
IHMI software is a single application that provides the operator interface to control
and command the different ITER remote handling systems (RHSs) via a customizable
graphical user interface. The RH-IHMI software application also allows one to receive
information about all the steps present in the presently active method and any step
containing an SL instruction designed for RH-IHMI application.

Appl. Sci. 2024, 14, 4814 11 of 21

3. Virtual reality (VR): The VR software GUIs at ITER RH possess the capability to
receive external commands via an interface port. Certain commands trigger script
files, referred to as VR internal commands, which enable adjustments to the VR
configuration and display. These script files are pre-programmed within the VR
models and are also stored within them.

4. Input devices: Comprising a joystick and haptic arms. The area where the haptic arms
are usually located will be used for exoskeleton/VR and new technologies.

5. Operation management systems (OMSs): The OMS software tools are a component
of the RH software suite within the high-level control system (HLCS). It establishes
communication with various other components of the HLCS, primarily situated within
or near the remote handling control room (RHCR). The primary goal of the OMS
involves the planning and execution of task procedures. These procedures involve the
entire sequence of manual actions necessary to carry out tasks; in the end, the OMS
tool essentially drives the remote handling process.

6. The RH database (RHDB): This constitutes an integral component of the OMS, along
with the OMS task builder and the OMS task executor. It encompasses a comprehen-
sive range of RH task information, covering the following:

• Super-tasks, sub-tasks, methods, and steps.
• Instances of RH tools and RH equipment (cross-referenced within super-tasks,

sub-tasks, methods, and steps).
• Associations with external multimedia files (referenced within super-tasks, sub-

tasks, methods, and steps).
• Records of task logs (inclusive of annotations and links generated during task

execution).
• Profiles of RH users and OMS login credentials, with varying permission tiers.

7. Mixed reality: Designs an interactive experience in which the sensor readings are
combined with HMI-generated content. The content can span multiple sensory
modalities, including visual, auditory, haptic, somatosensory, and olfactory. Moreover,
other techniques, such as augmented reality, are designed as a system that incorporates
three basic features: a combination of real and virtual worlds, real-time interaction,
and accurate 3D registration of virtual and real objects.

8. Data analysis with artificial intelligence: Incorporating user perception and operator
fatigue into the application model operation involves integrating computer vision
techniques to effectively direct the operator’s attention to the ongoing tasks. Addi-
tionally, to enhance configurability and usability for the operator, artificial intelligence
(AI) is integrated into the general application. This requires further investigation into
determining optimal operator inputs to train the AI model, including factors such
as work hours, RH device activity, task development duration, and more. All these
functionalities will be performed under the operator’s supervision, allowing manual
intervention at any time to restore the system to a safe state.

5.2. ITER Requirements

The essential requirements of ITER organization [32] for the RH-IHMI software in a
critical environment are outlined in Appendix A.

In this table, it is remarkable that providing a user-friendly interface supporting
real-time communications with RH systems is necessary. Additionally, the interface must
be efficient in monitoring and visualizing large datasets and incorporate robust security
measures to prevent unauthorized access. It should also be adaptable to various screen sizes
and resolutions and comply with industry standards for reliability and safety. Furthermore,
comprehensive logging and auditing features, along with multi-language localization
support, are essential. Customizable dashboards and reporting tools, modular architecture
for easy maintenance, built-in error handling, and support for integration with other
systems complete the list of requirements for this critical software system.

Appl. Sci. 2024, 14, 4814 12 of 21

Ultimately, the architecture design process will be guided by hazard and risk assess-
ments, with a recommendation to adopt the ISO-10218 [33] standard for industrial robots
to comply with the European Machinery Directive. Furthermore, the ITER nuclear safety
control tier is utilized for I&C related to nuclear safety.

ISO-10218-1:2011 §5.4.2 [33]: Safety-related parts of control systems shall be designed
so that they comply with PL=d with structure category 3, as described in ISO-13849-1:2006
[34], or so that they comply with SIL 2 with a hardware fault tolerance of 1 with a proof
test interval of not less than 20 years, as described in IEC 62061:2005 [35].

5.3. ITER Software Lifecycle Definition

Due to the complexity of the proposed requirements (Annex 1), interaction with numer-
ous external agents, modular integration across different environments, and maintainability
over long periods, an iterative software development cycle was chosen. It offers numer-
ous benefits, including increased flexibility, risk mitigation, and stakeholder satisfaction,
making it a preferred approach for many software development projects. Integrating an
iterative software development cycle within a MAMIC architecture involves structuring the
development process to align with the principles of iterative development while leveraging
the modular and flexible nature of the MAMIC architecture.

Several steps are necessary to be carried out for the culmination of an iterative software
cycle, as has been followed in the case of ITER:

1. Incremental development: Breaks down the software development process into
smaller increments or iterations, each focused on delivering specific functionality or
features. This aligns with the iterative approach, allowing for continuous feedback
and improvement.

2. Feedback loops: Establishes feedback loops at the end of each iteration to gather input
from stakeholders, users, and team members. This feedback informs the next iteration,
guiding adjustments and refinements to the system.

3. Modular design: Utilizes the modularity of the MAMIC architecture to encapsulate
different components and functionalities within distinct modules. Each module
represents a self-contained unit with well-defined interfaces, facilitating incremental
development and testing.

4. Separation of concerns: Maintains a clear separation of concerns within the MAMIC
architecture, with distinct layers for domain logic, application logic, and infrastructure.
This separation ensures that changes and updates can be made to specific components
without affecting the entire system.

5. Continuous integration and verification and deployment: Implements automated
testing and continuous integration and verification practices to ensure that changes
introduced during each iteration are seamlessly integrated into the codebase. This
allows for rapid feedback and the early identification of potential issues.

6. Adaptability and flexibility: Embraces the flexibility of the MAMIC architecture
to accommodate changes and updates throughout the development process. The
modular design and separation of concerns enable developers to respond quickly to
evolving requirements and priorities.

7. Iterative refinement: It continuously refines and improves the system with each itera-
tion based on feedback and lessons learned. This iterative refinement process ensures
that the software evolves incrementally, gradually meeting the desired objectives and
quality standards.

Taking into account a classic software lifecycle and the considerations carried out
in the MAMIC architecture, the following iterative development methodology (IDM) is
presented in Figure 4.

Appl. Sci. 2024, 14, 4814 13 of 21

Figure 4. Software development, verification, and validation lifecycle.

5.4. ITER MAMIC Model Definition

By integrating an iterative software development cycle within a MAMIC architecture,
teams can effectively manage complexity, respond to change, and deliver high-quality
software that meets the evolving needs of stakeholders and users. Focusing on the ITER
environment, the MAMIC architecture presents an approach for building software systems
with a centralized core that is separate from its interactions with external interfaces. This is
realized through the utilization of ports and adapters, as depicted in Figure 5.

The driving agents (primary) are those that initiate the interaction: the external input
controller transfers data to the application through a port, the RH task operations in
structure language process it in an automatic or semi-automatic way, and third-party
frameworks send the data through the adapter to carry out some actions. The driven agents
(secondary) are those that respond to the application’s request: a database adapter is called
upon by the application to retrieve the data, an RH controller device is commanded by the
application layer and also publishes status information through the port, and mixed reality
is presented to visualize the in-vessel critical environment.

The domain layer is divided into several bounded contexts. These are a self-contained
and delimited space where a specific set of business problems can be solved in isolation
from the rest and without affecting anything beyond this context. Each context has its
own set of concepts, terms, and specific domain models and may have its own technical
implementation. The different bounded contexts depicted in the figure, which comprise
the domain layer, are as follows:

• Configuration domain: The MAMIC architecture provides a flexible configuration
mechanism that allows customization of the design and the internal logic behavior of

Appl. Sci. 2024, 14, 4814 14 of 21

the RH-IHMI. This customization is achieved through configuration parameters that
are stored in the configuration files and loaded during start-up time.

• Error handling domain: The error management process defines the software behavior
when an error occurs during its execution. The basic steps in an error management
process are detection, identification, handling, mitigation, and resolution or recovery.
Moreover, this domain is in charge of gathering controller event messages from RH
devices and VR, AR, RHDB, and OMS actions.

• Task prediction domain/application: This domain is based on predictive modeling, in
which artificial intelligence can be included in the RH-IHMI to be more configurable,
considering its usability by the operator. Therefore, it is necessary to incorporate the
best operator inputs to train the artificial intelligence model, such as work hours, when
the RH device is working, how much time has been spent on the development of
the task, and so on. This domain allows the driving of processes in an automatic or
semi-automatic way. This domain operates under continuous operator supervision,
enabling manual intervention to return the system to a safe state at any time.

• World interaction domain: An interactive experience in which the sensor readings
are combined with HMI-generated content. The content can span multiple sensory
modalities, including visual, auditory, haptic, somatosensory, and olfactory. Moreover,
other techniques, such as augmented reality, are designed as a system that incorporates
three basic features: a combination of real and virtual worlds, real-time interaction,
and accurate 3D registration of virtual and real objects.

• Assistant operation domain: In this domain, a cognitive architecture is applied, di-
viding the bounded context in different node behavior generation; world modeling,
which interacts with the world interaction domain; sensory processing, adding user
perception and operator fatigue state; and a value judgment process together with
a knowledge database. In each node, there exists both a deliberative and a reactive
component. At the lower level, each node completes a reactive control loop driven
by feedback from sensors. At the higher level, each node formulates and executes
plans intended to fulfill task objectives, priorities, and limitations communicated by
commands from above. Within each node, deliberative plans are integrated with
reactive behaviors.

• Communication domain: Different communication protocols need to be configured to
establish efficient data handling with the RH devices, RH database, augmented reality,
virtual reality, I/O input devices, third-party frameworks, CODAC workstations, and
OMS applications.

The ITER MAMIC model proposal aims to overcome the deficiencies or constraints
of prior architectural models (anthropomorphic, predictive, cognitive, and hexagonal) by
implementing the following strategies:

• Adopting a clear, well-defined separation of concerns (bounded context) so the initial
complexity can be managed more effectively.

• Minimizing dependencies between modules and optimizing resource allocation, which
can mitigate the risk of increased layers and abstractions.

• Designing elements to gracefully degrade or adapt based on available capabilities,
allowing for progressive enhancement as technology evolves.

• Employing a scalable MAMIC model that can dynamically allocate resources based
on workload can enhance scalability and reduce costs.

• Implementing mechanisms for facilitating user understanding and control over tech-
nology interactions.

Appl. Sci. 2024, 14, 4814 15 of 21

Figure 5. ITER MAMIC architecture generation integrating (a) driving actors, such as external input
devices, third-party frameworks, OMS, and CODAC workstations, (b) driven actors, such as VR, AR,
RHDB, and RH robots, and (c) an easy automatic integration testing framework into the different
bounded context using the port–adapter pair.

6. Architecture Model Validation

In today’s rapidly evolving technological landscape, ensuring the quality and relia-
bility of any software system is crucial. One crucial aspect of this process is requirement
validation, which represents the concluding phase of requirement engineering. The objec-
tive of this stage is to review the final draft of a requirement document to confirm that it
accurately represents an acceptable description of the system to be implemented. Inputs
to the validation process include the requirement specification, organizational standards,
and implicit organizational knowledge. Outputs consist of a list of identified requirement
issues and agreed-upon actions to resolve these issues. Applying this rigorous valida-
tion methodology, future developments can mitigate risks, enhance user satisfaction, and
deliver iterative versions that meet or exceed expectations.

In this section, the validation process of the MAMIC architecture is conducted against
a requirement matrix provided in Appendix A and consists of tracing the requirements
established by ITER to address the scenarios defined in the RHS divertor against the
software lifecycle and various layers that make up the reference model architecture, shown
in Table 4. A detailed model validation analysis is included in the last column of this matrix.

This systematic approach verifies that each requirement is sufficiently addressed and
implemented within the software solution, adhering to metrics outlined in ISO-9001 and
CODAC SWIL-2 standards [36].

Appl. Sci. 2024, 14, 4814 16 of 21

Table 4. Validation traceability used to link ITER requirements to the MAMIC architecture components.

Requirement Level Validation Result

Applicable policies, processes, and
requirements

1. The IDM ensures that the software planning activities produce the software
plans and standards that direct MAMIC architecture development processes
and others, such as configuration management and quality.

2. The IDM is developed following supplier QA processes to have good reliabil-
ity and avoid delays in RH operations.

3. Risk management is performed systematically during the development to
allow the reduction and control of the identified risks.

General requirements: application
initialization and file management

1. The MAMIC architecture provides a flexible configuration mechanism that
allows customization of the design and the internal logic behavior of the
RH-IHMI.

2. The error management bounded context in the domain layer defines the
software behavior when an error occurs during its execution.

3. The GUI adapter serves as an intermediary component responsible for facili-
tating communication between the core application logic and the CODAC
workstation dependencies.

HMI design requirements

1. The application layer ensures that any action requested by the external sys-
tems is processed correctly and any primitive data received are translated
into specific objects managed by the domain layer.

2. The error management context specifies the software’s response and behavior
in the event of an error occurring during its execution.

3. The GUI adapter functions as an intermediary module tasked with facilitating
communication between the core application logic and the dependencies of
the CODAC workstation.

Interfaces

1. Assistant operation domain ensures the execution of plans intended to fulfill
task objectives, priorities, and limitations.

2. Communication domain establishes efficient data handling with the different
external applications using specific protocols, such as HLC and RAPI.

3. Task prediction context allows the RH-IHMI to be more configurable, consid-
ering its usability by the operator.

In conclusion, the MAMIC model covers all the requirements established, with the
advantage that it is flexible enough to introduce changes to its structure within short
timeframes and with moderate effort.

7. Conclusions and Future Works

The MAMIC model proposal, in which the hexagonal architecture is integrated with
an anthropomorphic approach, predictive modeling, and cognitive architecture, provides a
robust strategy for developing flexible, maintainable, and testable software. Through the
implementation of ports and adapters, a clear separation of concerns is achieved, enhancing
the resilience of the RH-IHMI to technological shifts and enabling adaptation to evolving
business needs. With the MAMIC architecture, the RH-IHMI is engineered to endure
the passage of time, safeguarding the core business logic at its core and demonstrating
resilience against future changes in technology and delivery mechanisms.

Moreover, using the MAMIC model, agents can operate autonomously until human
supervision is required or a problem is detected by the supervisor. The MAMIC design
strategy aims to create a versatile system applicable to different RH device controllers.
We leverage the benefits of autonomous systems while allowing human control through
a human–machine interface. The MAMIC architecture equips the supervisor with tools
to interact with all processing levels of the RH device controllers. These interactions can
rectify unexpected moves or address decisions that might lead an autonomous system into
an unstable state. One of the MAMIC goals is to specify task assignments, teleoperate

Appl. Sci. 2024, 14, 4814 17 of 21

agents, display sensory data, override process conclusions, and reconfigure the system in
response to various sensory and agent failures.

Additionally, having a model architecture greatly aids industrialization by providing a
common model and language for remote handling (RH) across the industry. This facilitates
the integration of multiple systems and subsystems.

Due to the model generation having been validated with the ITER requirements,
the MAMIC architecture is perfectly valid to cover the current and future needs of ITER
facilities. Furthermore, considering the remote handling needs of future fusion facilities,
such as IMIF-DONES [37–39] and DEMO [40–42], an update of the model could be made
by including new bounded contexts in the domain layer and new ports and adapters in the
application and infrastructure layers.

Author Contributions: Conceptualization, T.B.; methodology, T.B.; validation, T.B.; formal analysis,
T.B.; investigation, T.B.; resources, T.B.; data curation, T.B.; writing—original draft preparation, T.B.;
writing—review and editing, A.B.; visualization, T.B.; supervision, A.B.; project administration, A.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: We extend our sincere gratitude to the reviewers Juan Ramón Acarreta Rodriguez
and José Acebrón Antón for their invaluable time, expertise, and constructive feedback, which
significantly contributed to the enhancement and refinement of this paper. Their meticulous review
and insightful suggestions undoubtedly elevated the quality and clarity of our work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
API Application programming interface
AR Augmented reality
CDN Control and diagnostic network
CIP Controller interface protocol
CODAC Control, data acquisition, and communication
GENROBOT General-purpose controller
HLC High-level CIP
HLCS High-level control system
HMI Human–machine interface
IØ Input/output devices
I&C Instrumentation and control
IDM Iterative development methodology
ITER International Thermonuclear Experimental Reactor
IRMS ITER remote maintenance system
ISO International Organization for Standardization
MAMIC Multiple Agent Managerial Intelligent Control
OMS Operation management system
PCP Port primary closure plate
RAPI Remote API
RCS Real-time control system
RH Remote handling
RHDB Remote handling database
RH-IHMI Remote handling intelligent human–machine interface

Appl. Sci. 2024, 14, 4814 18 of 21

RHS Remote handling systems
SW Software
SWIL Software integrity level (CODAC)
UI User interface
VR Virtual reality

Appendix A. Remote Robot Handling Intelligent Human–Machine Interface
Architecture Requirements

This appendix shows a summary of the essential requirements of the ITER organization
necessary to support the ITER remote maintenance system in the divertor RHS.

This summary of requirements has been compiled after extensive collaborative efforts
with the Fusion for Energy organization, encompassing all the specified needs outlined in
references [32,43,44].

Table A1. Applicable policies, processes, and requirements.

Identifier Description Model Validation

IHMI-REQ-001 The IHMI system shall adhere to the requirements outlined in the RH Software Quality
Policy [45] for Software Category 1 [ISO-9001 and QA based on CODAC SWIL-2]. Covered by the IDM.

IHMI-REQ-002
The model shall be responsible for conducting software module evaluations for the RH-
IHMI system, utilizing the specified form outlined in the RH Software Quality Evaluation
Procedure [43].

Covered by the IDM.

Table A2. General requirements: application initialization file management.

Identifier Description Model Validation

IHMI-REQ-003 The RH-IHMI system shall utilize a user rights
file stored within a specific server. Configuration domain, GUI adapter

IHMI-REQ-004
The RH-IHMI system shall establish operator
roles by referencing the user log-in name speci-
fied in the user rights file.

Configuration domain, error handling domain, GUI adapter

IHMI-REQ-005
The RH-IHMI system shall be tasked with gath-
ering event messages from external agents and
storing them within a session log file.

Error handling domain, GUI adapter

Table A3. HMI design requirements.

Identifier Description Model Validation

IHMI-REQ-006

The HMI Style Guide HMI Style Guide and Toolkit [45]
shall be adhered to as a set of guidelines for develop-
ing the RH-IHMI, ensuring a consistent IO style that
includes the use of colors, text, symbols, and widgets.

Application layer

IHMI-REQ-007

The RH-IHMI shall offer different areas [46] to com-
mand and visualize data from the I/O devices, robot
controller, VR module, IA module, RHDB module, and
OMS module

Communication domain, error handling domain, data
model, task prediction domain, assistant operator do-
main, application layer, device adapter, GUI adapter,
I/O adapter, RHDB adapter, VR adapter

IHMI-REQ-008
The RH-IHMI system shall utilize the controller’s EDD
configuration file to ascertain the applicability of com-
mands to the current operation mode.

Configuration domain, data model, application layer,
GUI adapter

IHMI-REQ-009 The RH-IHMI shall offer functionality for the automatic
execution of RHSL instructions [47].

Communication domain, error handling domain, data
model, task prediction domain, application layer, de-
vice adapter, GUI adapter, OMS adapter

Appl. Sci. 2024, 14, 4814 19 of 21

Table A4. Interfaces.

Identifier Description Model Validation

IHMI-REQ-010
The RH-IHMI system shall establish a connection to the
gigabit Ethernet file network using a dedicated network
interface card (NIC).

Communication domain, error handling domain, OMS
adapter

IHMI-REQ-011

The RH-IHMI system shall utilize the file network [48]
for various purposes, including general communica-
tions and data transfers, such as file transfers and load-
ing applications and data from servers, accessing the
OMSDB, communications with the OMS using the low-
level communication (LLC) protocol, communications
with the VR using the RAPI protocol, communications
with the IA module.

Communication domain, error handling domain, OMS
adapter

IHMI-REQ-012

The RH-IHMI system shall utilize the high-level Com-
mon Industrial Protocol (CIP) library, which incorpo-
rates the GENROBOT Remote Interface library. This
communication library is specifically designed for in-
teracting with GENROBOT-type controllers over the
RH control network.

Communication domain, error handling domain, de-
vice adapter

IHMI-REQ-013 The RH-IHMI system shall subscribe to published
events from controllers in the list of selected controllers.

Communication domain, error handling domain, de-
vice adapter

IHMI-REQ-014

The RH-IHMI application shall interface with the Post-
greSQL database (OMSDB) through the RH file net-
work to retrieve RHSL parameters. This procedure
will utilize an encrypted password to ensure that it is
executed by a user with appropriate privileges.

Communication domain, error handling domain,
RHDB adapter, OMS adapter.

IHMI-REQ-015 The RH-IHMI system shall subscribe to published
events from controllers in the list of selected controllers.

Communication domain, error handling domain, de-
vice adapter

IHMI-REQ-016

The RH-IHMI application shall interface with the vir-
tual reality (VR) system to transmit external commands
that make use of a script file name, thereby triggering
actions such as altering the displayed model configura-
tion.

Communication domain, error handling domain,
world interaction domain, VR adapter.

IHMI-REQ-017

The RH-IHMI application shall interface with the
data acquisition and IA processing module to process
the sensor readings, which are combined with HMI-
generated content.

Communication domain, data model, task prediction
domain, assistant operator domain, OMS adapter, I/O
adapter, RHDB adapter.

IHMI-REQ-018

The RH-IHMI application shall interface with the data
acquisition and IA processing module to incorporate
user perception and operator fatigue into the appli-
cation model operation, which involves integrating
computer vision techniques.

Communication domain, data model, assistant opera-
tor domain, OMS adapter, I/O adapter, RHDB adapter.

IHMI-REQ-019
The RH-IHMI application shall interface with the data
acquisition and IA processing module to enhance con-
figurability and usability for the operator.

Communication domain data model, task prediction
domain, OMS adapter, I/O adapter, RHDB adapter.

References
1. Jaquero, V.; Montero, F.; Molina, J.P.; González, P. Intelligent User Interfaces: Past, Present and Future. In Engineering the User

Interface; Redondo, M., Bravo, C., Ortega, M., Eds.; Springer: London, UK, 2009; pp. 1–12.
2. ITER Organization. ITER Research Plan within the Staged Approach. ITR-18-003 Level III—Provisional Version; ITER Organization:

Saint-Paul-lez-Durance, France, 2018.
3. Stroth, U.; Aguiam, D.; Alessi, E.; Angioni, C.; Arden, N.; Arredondo Parra, R.; Artigues, V.; Asunta, O.; Balden, M.; Bandaru, V.

Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development.
Nucl. Fusion 2022, 62, 042006.

Appl. Sci. 2024, 14, 4814 20 of 21

4. Zdravković, M.; Luis-Ferreira, F.; Jardim-Goncalves, R.; Trajanović, M. On the formal definition of the systems’ interoperability
capability: An anthropomorphic approach. Enterp. Inf. Syst. 2017, 11, 389–413.

5. Kuhn, M.; Johnson, K. Applied Predictive Modeling, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–26.
6. Abbott, D. Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst, 1st ed.; Wiley: Hoboken, NJ, USA,

2014; pp. 1–82.
7. Archer, R.; Lebiere, C.; Warwick, W.; Schunk, D. Integration of Task Network and Cognitive Models to Support System Design. In

Proceedings of the Collaborative Technology Alliances Conference 2003 Advanced Decision Architectures, College Park, MD,
USA, 29 April–1 May 2003.

8. Cockburn, A.; Becker, A.P. Crystal Clear: A Human-Powered Methodology for Small Teams: A Human-Powered Methodology for Small
Teams, 1st ed.; Addison-Wesley Professional: Boston, MA, USA, 2004.

9. Highsmith, J.; Descalzo Mascarós, A. Application of Design Thinking Principles in UI/UX Design of Software Development; TFGM,
Universitat Politècnica de València: Valencia, Spain, 2022.

10. Ries, E. The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, 1st ed.;
Crown Currency: New York, NY, USA, 2011.

11. Kapferer, S.; Zimmermann, O. Domain-Driven Service Design–Context Modeling, Model Refactoring, and Contract Generation.
In Proceedings of the 4th Symposium and Summer School on Service-Oriented Computing, Crete, Greece, 13–19 September 2020.

12. Highsmith, J.; Cockburn, A. Agile software development: The business of innovation. Computer 2001, 34, 120–127.
13. Khan, S.M. Popular Software Architecture Used in Software Development, 1st ed.; Kindle Publisher: Seattle, WA, USA, 2023.
14. Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A.; Riboni, D. A survey of context modeling and

reasoning techniques. Permis. Mob. Comput. 2010, 6, 161–180.
15. Panetto, H.; Zdravkovic, M.; Jardim-Goncalves, R.; Romero, D.; Cecil, J.; Mezgár, I. New Perspectives for the Future Interoperable

Enterprise Systems. Comput. Ind. 2016, 79, 47–63.
16. Avouris, N.M. Intelligent interface design. Hanbook Hum. Comput. Interact. 2022, 56, 1–72.
17. Ding, Z.; Ji, Y.; Gan, Y.; Wang, Y.; Xia, Y. Current status and trends of technology, methods, and applications of Human–Computer

Intelligent Interaction (HCII): A bibliometric research. Multimed. Tools Appl. 2024.
18. Langley, P.; Laird, J.E.; Rogers, S. Cognitive Architectures: Research Issues and Challenges, Cogn. Syst. Res. 2009, 10, 141–160.
19. Newell, A.; Simon, H. Human Problem Solving, 1st ed.; Echo Point Books and Media: Brattleboro, VT, USA, 2019; Chapters 3 and 4.
20. Laird, J. The Soar Cognitive Architecture, 1st ed.; MIT Press: Cambridge, MA, USA, 2019; Chapters 1, 2 and 3.
21. Shavlik, J.W. Extending Explanation-Based Learning by Generalizing the Structure of Explanations, 1st ed.; Elsevier Science: Amsterdam,

The Netherlands, 2014; Chapters 1 and 4.
22. Albus, J. Brains, Behavior, and Robotics; BYTE/McGraw Hill: Peterborough, NH, USA, 1983.
23. Albus, J. 4-D/RCS reference model architecture for unmanned ground vehicles. In Proceedings of the IEEE International

Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 4, pp. 3260–3265.
24. Kuvich, G. Integration of image/video understanding engine into 4D/RCS architecture for intelligent perception-based behavior

of robots in real-world environments. In Proceedings of the SPIE—The International Society for Optical Engineering, Philadelphia,
PA, USA, 25–28 October 2004; Volume 5608.

25. Barbera, A.J.; Albus, J.S.; Fitzgerald, M.L. Hierarchical control of robots using 10 microcomputers. In Proceedings of the 9th
International Symposium on Industrial Robots, Washington, DC, USA, 13–15 March 1979.

26. Chadli, M.; Coppier, H. Command-Control for Real-Time Systems, 1st ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 7–319.
27. Gazi, V.; Passino, K.M. The RCS Handbook: Tools for Real-Time Control Systems Software Development, 1st ed.; Wiley-Interscience:

Hoboken, NJ, USA, 2001; Chapters 2.
28. ISO/IEC 12207:2017; Systems and Software Engineering—Software Life Cycle Processes. International Organization for Standard-

ization: Geneva, Switzerland, 2017.
29. Haist, B. TO12 RH Control System Standard Work Cell—Final Report. 1110-PAR-P/002-TO012/B2208300/MAI/0001 ITER Organi-

zation: Saint-Paul-lez-Durance, France, 2012.
30. ITER. ITER NEWSLIN. 2004. Available online: https://www.iter.org/newsline/singleprint/-/1125 (accessed on 31 May 2024).
31. Tesini, A.; Rolfe, A.C. ITER Remote Maintenance Management System (IRMMS). Fusion Eng. Des. 2009, 84, 236–241.
32. Hamilton, D. Remote Handling Control System Design Handbook; 2EGPEC v3.0; ITER Organization: Saint-Paul-lez-Durance,

France, 2017.
33. ISO 10218-1:2011; Robots y Dispositivos robóTicos. Requisitos de Seguridad para Robots Industriales. Parte 1: Robots. ISO:

Geneva, Switzerland, 2012.
34. ISO 13849-1:2006; Safety of Machinery—Safety-Related Parts of Control Systems—Part 1: General Principles for Design. Interna-

tional Organization for Standardization: Geneva, Switzerland, 2006.
35. IEC 62061:2005; Safety of Machinery—Functional Safety of Safety-related Electrical, Electronic and Programmable Electronic

Control Systems. International Electrotechnical Commission: Geneva, Switzerland, 2005.
36. Hamilton, D. RH Software Quality Policy; TF7PP2 v1.1; ITER Organization: Saint-Paul-lez-Durance, France, 2017.
37. Ibarra, A.; Arbeiter, F.; Bernardi, D.; Cappelli, M.; García, A.; Heidinger, R.; Krolas, W.; Fischer, U.; Martin-Fuertes, F.; Micciché, G.

The IFMIF-DONES project: Preliminary engineering design. IAEA Nucl. Fusion 2019, 58, 105002.
38. IFMIF International Team. IFMIF Comprehensive Design Report, Broader Approach IFMIF/EVEDA; IFMIF: Rokkasho, Japan, 2004.

https://www.iter.org/newsline/singleprint/-/1125

Appl. Sci. 2024, 14, 4814 21 of 21

39. Tien, K.; Arbeiter, F.; Ascott, M.; Crofts, O.; McIntyre, G.; Micciche, G.; Mitchell, G.; Qiu, Y.; Tóth, M.; Ibarra, A. Preliminary
analysis on a maintainable test cell concept for IFMIF-DONES. Fusion Eng. Des. 2019, 146, 505–509.

40. Federici, G.; Bachmann, C.; Barucca, L.; Biel, W.; Boccaccini, L.; Brown, R.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.;
Coleman, M.; et al. DEMO design activity in Europe: Progress and updates. Fusion Eng. Des. 2018, 136, 729–741.

41. Federici, G.; Kemp, R.; Ward, D.; Bachmann, C.; Franke, T.; Gonzalez, S.; Lowry, C.; Gadomska, M.; Harman, J.; Meszaros, B.; et al.
Overview of EU DEMO design and R&D activities. Fusion Eng. Des. 2014, 89, 882–889.

42. Bachmann, C.; Ciattaglia, S.; Cismondi, F.; Eade, T.; Federici, G.; Fischer, U.; Franke, T.; Gliss, C.; Hernandez, F.; Keep, J.; et al.
Overview over DEMO design integration challenges and their impact on component design concept. Fusion Eng. Des. 2018, 136,
87–95.

43. Hamilton, D. RH Software Quality Evaluation Procedure; SJNDD6 v1.0; ITER Organization: Saint-Paul-lez-Durance, France, 2016.
44. F4E. PROVISION OF I&C INTEGRATION SERVICES: Development and Validation of the RH Command and Control Application;

F4E-OFC-0811-01-16 v1.10; ITER Organization: Saint-Paul-lez-Durance, France, 2021.
45. Utzel, N. HMI Style Guide and Toolkit 3XLESZ v3.8; ITER Organization: Saint-Paul-lez-Durance, France, 2018.
46. Tesini, A. ITER Process for Human Machine Interface (HMI) Development; 3T9UK2 v2.0; ITER Organization: Saint-Paul-lez-Durance,

France, 2016.
47. Katragadda, Y.V.K.A. RH Structured Language Implementation Using Xtext and Xtend; NNUNMC v1.0; ITER Organization: Saint-

Paul-lez-Durance, France, 2014.
48. Hamilton, D. IS-23.03-23.07-005 Interface between Cask and Plug RH System (PBS 23.03) and Remote Handling Control System (PBS

23.07): Communications; Q6GF4F v1.3; ITER Organization: Saint-Paul-lez-Durance, France, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Software Architecture Models Evolution Study
	Software Lifecycle in the Remote Handling Environment
	MAMIC System: A New Model Generation
	Application to a Specific Case Study: ITER Divertor Remote Handling System
	ITER Environment
	ITER Requirements
	ITER Software Lifecycle Definition
	ITER MAMIC Model Definition

	Architecture Model Validation
	Conclusions and Future Works
	Appendix A
	References

