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Abstract: Spectral unmixing attempts to decompose a spectral ensemble into the constituent pure
spectral signatures (called endmembers) along with the proportion of each endmember. This is
essential for techniques like hyperspectral imaging (HSI) used in environment monitoring, geological
exploration, etc. Several spectral unmixing approaches have been proposed, many of which are
connected to hyperspectral imaging. However, most extant approaches assume highly diverse
collections of mixtures and extremely low-loss spectroscopic measurements. Additionally, current
non-Bayesian frameworks do not incorporate the uncertainty inherent in unmixing. We propose a
probabilistic inference algorithm that explicitly incorporates noise and uncertainty, enabling us to
unmix endmembers in collections of mixtures with limited diversity. We use a Bayesian mixture model
to jointly extract endmember spectra and mixing parameters while explicitly modeling observation
noise and the resulting inference uncertainties. We obtain approximate distributions over endmember
coordinates for each set of observed spectra while remaining robust to inference biases from the lack
of pure observations and the presence of non-isotropic Gaussian noise. As a direct impact of our
methodology, access to reliable uncertainties on the unmixing solutions would enable robust solutions
to noise, as well as informed decision-making for HSI applications and other unmixing problems.

Keywords: hyperspectral unmixing; probabilistic modeling; data-driven algorithms

1. Introduction

Mixing is ubiquitous in nature, ranging from the slow mixing in the Earth’s mantle to
manufacturing processes involving the blending of viscous polymers or even the dispersion
of solids into rubber [1]. The process and mathematics of mixing are of great interest in
physics and engineering applications, from mixing in process engineering to the chaotic
mixing of horseshoe maps. The reverse of this process, referred to as unmixing, segregation,
or separation, is also of great interest but challenging. It involves recovering information
lost through the changes in entropy due to mixing. The process is possible computationally
if the mixing is incomplete (i.e., there is variation in the mixing fractions at different sites
in the material), and sufficient spectral signal is discernible from the individual mixture
components. Unmixing is commonly attempted for cases where the equations govern-
ing mixing are linear [2], although non-linear unmixing methods, such as kernel-based
approaches and neural networks, have also been developed. Computational unmixing is
critical for understanding and controlling processes like electrolysis refining [3], petroleum
refining [4], and chemical analysis via chromatography [5], besides others. Spectral un-
mixing, a specific application of computational unmixing, aims to identify and quantify
material components in mixed signals by comparing sets of spectral measurements to a
library of known signatures. Each observation in such a set of measurements contains a
spectral footprint corresponding to the underlying material mixture. The subsequent task is
inverting these data to identify each endmember’s unique spectral signature and quantify
the proportion of each endmember in each mixture. This process finds applications in
diverse fields, from geology and agriculture to astronomy and material sciences. However,
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unmixing represents an ill-posed problem, and the solutions may not be unique. In this
light, it is essential to represent the uncertainties associated with the unmixing process.

To illustrate the property of mixture diversity, consider a color photograph represented
as a set of multi-dimensional arrays of weights, with endmembers identifiable as distinct
colors: red, blue, and green. A color photograph is an example of a heterogeneously mixed
set of observations that can be mapped to points on a 3-simplex, and the maximally diverse
color photograph is that which contains at least one each of a pure (or completely) red pixel,
a pure blue pixel, and a pure green pixel (i.e., the vertices of the simplex).

The concept of an endmember extends beyond discrete colors in many scientific appli-
cations. The array of weights can be multi-dimensional, including non-spatial components
like time, scattering vectors, chemical compositions, red-shifts, and more. Rather than
viewing hyperspectral imaging as the sole technique, we adopt a broader perspective where
the observations need not be a specific type of spatial map. Instead, they can be treated
as an unordered set of spectra in which other descriptors (e.g., spatial parameters) are not
necessarily needed for the endmember extraction, and thus, the problem we are addressing
is the more general task of spectral unmixing.

The success of spectral unmixing relies on the selection of a spectral tool to analyze the
data, the spectral distinctiveness of the endmembers, and the diversity of available mixtures.
Given a particular choice of spectral measurement tool, the most salient considerations
are noise and mixture diversity. Additional challenges arise from factors such as non-linear
mixing and data distortions. Noise, or, more accurately, noise relative to the spectral separation
between endmembers, determines the ease of distinguishing hypothetical pure spectral
signatures. Thus, noisy observations can complicate extraction as can homogeneous mixtures,
in which endmember extraction becomes nearly impossible even in the absence of noise.
Conversely, if endmembers are immiscible—meaning the mixing fraction of an endmember
in a given observation is either 0 or 1—extraction is trivial as long as the noise level is small
compared to the spectral separation between endmembers. Here, we focus primarily on the
challenging, but tractable, intermediate case of heterogeneously mixed linear observations.

2. Related Work

In the broad landscape of spectral unmixing, several techniques have emerged, in-
cluding geometrical methods (e.g., N-FINDR), statistical approaches, non-negative matrix
factorization (NMF), and sparse regression-based methods [6,7]. These methods can be
broadly categorized into deterministic and probabilistic approaches. Deterministic methods,
which are overwhelmingly more common among the state of the art, include approaches
such as sparse regression and simplex-based techniques. These deterministic methods
provide point estimates of endmembers and abundances. Some deterministic methods,
like sparse unmixing with L1 regularization, can provide a limited form of uncertainty
quantification through the selection of regularization parameters.

Geometric simplex methods, such as N-FINDR [6], rely on the assumption that the spectral
signatures of the endmembers are distinct and that the observed mixed pixels lie within a
simplex formed by the endmembers. This assumption is related to the underlying principle
of manifold learning techniques, which assume that high-dimensional data lie on a lower-
dimensional manifold. N-FINDR includes a dimensionality reduction step using orthogonal
subspace projection (OSP) techniques such as SVD, PCA, or MNF before searching for the
endmembers. However, while N-FINDR uses linear dimensionality reduction and aims to
find the endmembers in the reduced space, manifold learning methods are designed to handle
non-linear manifolds and aim to uncover the intrinsic low-dimensional structure of the data.

Non-probabilistic machine learning approaches have gained popularity in spectral un-
mixing due to their ability to learn complex representations and relationships from data. NMF,
a widely used technique, decomposes the spectral data matrix into non-negative endmember
and abundance matrices [8]. NMF-based methods have been extended to incorporate various
constraints and regularizations to improve their performance and to handle different types of
spectral variability [9]. Sparse unmixing methods, on the other hand, exploit the fact that each
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pixel in hyperspectral images is often a mixture of only a few endmembers, incorporating
sparsity constraints to estimate the abundances [10,11]. Manifold learning techniques [12],
such as locally linear embedding (LLE) [13] and isometric feature mapping (ISOMAP) [14],
have been applied to spectral unmixing by assuming that the high-dimensional spectral data
lie on a low-dimensional manifold. These methods aim to uncover the intrinsic structure of
the data and can handle non-linear spectral variability to some extent. Dictionary learning
approaches, which learn a dictionary of endmember spectra directly from the hyperspectral
data, have also shown potential in adapting to the specific characteristics of the input data.

More recently, deep learning models, such as convolutional neural networks (CNNs) and
autoencoders, have been applied to spectral unmixing [15–17]. For example, Palsson et al. [15]
propose an autoencoder-based method for blind hyperspectral unmixing. Their method uses
a deep autoencoder to extract endmembers and estimate abundances in an unsupervised
manner. The architecture is designed to enforce the linear mixing model, with the decoder
weights representing the endmembers. While their approach is unsupervised, scalable, and
compares favorably to benchmark methods in reconstruction accuracy, it does not model
endmember uncertainties. Generally, while non-probabilistic machine learning approaches
have shown promise in addressing specific challenges in spectral unmixing, they typically
generate point estimates of the endmember spectral signatures and abundances.

Thus, this wide array of non-probabilistic approaches offers advantages in interpretability
and robustness (with respect to spectral variability) over conventional methods but falls short
in handling both epistemic uncertainties in the endmember spectra and fractional abundances,
as well as the aleatoric uncertainties arising from noise in the measurements.

Our approach is probabilistic and demonstrates the ability of a hierarchical Bayesian
mixture model to account for these uncertainties intrinsic to the unmixing problem fully.
We retain the conceptual simplicity of a simplex method, but unlike N-FINDER, which
relies on the assumption of fixed endmembers, our Bayesian mixture model explicitly
accounts for the uncertainty in both individual observations and underlying endmember
signatures, leading to more realistic and informative unmixing results.

The intent is to highlight the advantage of probabilistic modeling over point-estimate
approaches, as the Bayesian approach explicitly acknowledges and incorporates the epis-
temic uncertainties inherent to the unmixing process. Additionally, Bayesian approaches
can incorporate aleatoric uncertainties in the problem arising from (for example) noisy
measurements. The final solutions engendered by such a Bayesian approach reflect the
model’s confidence in its prediction. Having access to such predictive uncertainties can
assist in informed decision-making under uncertainty.

3. Methods

We begin with a physical mixing model, where each endmember k ∈ 1, . . . , K is
characterized by a latent absolute spectral signature c⃗k and a global relative concentration
wk, with ∑k wk = 1. We assume a linear mixing process, where the observed D-dimensional
spectrum y⃗i of mixture i is:

y⃗i = ∑
k

wik⃗ck + e⃗i

Here, wik is the relative concentration of endmember k in mixture i, satisfying ∑k wik = 1,
and e⃗i ∼ N (0, Σ) is Gaussian observation noise. The standard linear mixing model as-
sumes fixed endmember signatures c⃗k, limiting its flexibility to capture spectral variability
across mixtures.

To address this limitation, we propose a hierarchical Bayesian model that treats the c⃗k
as random variables with prior distributions representing the variability of each endmember.
The model priors are:

c⃗k ∼ N (µ⃗k, Σk), µ⃗k = 0⃗, Σk = I

w⃗i ∼ Dir(α1w⃗), w⃗ ∼ Dir(α01)

e⃗i ∼ N (0, Σ), Σ = diag(⃗s), sd ∼ U (σ/2, 3σ/2)

(1)
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The key components of this model, as shown in the plate diagram of Figure 1, are:
Endmember spectra c⃗k are drawn from multivariate Gaussian priors with zero mean

and identity covariance. This allows for variation in the spectral signatures across mixtures.
Mixture-specific abundances w⃗i are drawn from a Dirichlet distribution with parameters

α1w⃗, where α1 controls the diversity of mixtures, and w⃗ are global relative concentrations.
Global concentrations w⃗ are drawn from a symmetric Dirichlet prior with concen-

tration parameter α0. Observation noise e⃗i is Gaussian with zero mean and diagonal
covariance Σ parameterized by scale variables sd with uniform priors.

The use of two Dirichlet distributions in our hierarchical model reflects the non-negativity
and sum-to-one constraints on the endmember global weights and mixture fractions. The
first Dirichlet distribution serves as a prior for the global endmember frequencies, while the
second governs the variability of mixing fractions within each observed mixture.

In contrast to non-probabilistic methods—including the simplex-type approach N-
FINDR, which relies on a strong assumption of noise-free data—this probabilistic frame-
work explicitly includes observation noise, allows for incomplete sampling of the endmem-
ber simplex, and models the endmember parameters as distributions. By incorporating
epistemic uncertainty and supporting the inference of full posterior distributions over
endmember parameters, our approach offers a more flexible and principled avenue for
unmixing tasks compared to traditional methods that rely on fixed endmember signatures.

The proposed approach can be seen as a Bayesian generalization of simplex-based
unmixing methods like N-FINDR, which normally assume the presence of at least one pure
pixel per endmember. Our model relaxes this assumption and allows endmembers to vary
according to the specified priors, while still enabling the posterior estimates of c⃗k to adapt
to the data at hand.

~wk ~ck

~wi sd

obsi

K

D

N

D(α0
~1) N(~0, ~I)

U(σ/2, 3σ/2)D(α1 ~wk)

N(C ~wi,Σ)

Figure 1. Plate diagram for the Bayesian endmember mixture model. The top-level variables w⃗k, sd
and c⃗k are given by Equation (1) and represent the prevalence of each mixture component, the extent
of noise, and the endmember coordinates, respectively. ‘obs’, for ‘observation’, represents an observed
mixture, of which N samples from the underlying distribution constitute one generated dataset.

Data Generation and Inference

Sampling under this model is performed once per mixture component k to determine
endmember parameters (for a total of K, the number of endmembers); per dth spectral
dimension to scale the variance of observation noise in each dimension (for a total of
D = K − 1, the number of spectral dimensions); and per ith observed data point. The
choice of D = K − 1 follows from the desire for a direct comparison between the Bayesian
hierarchical model and N-FINDR [6]. N-FINDR, in turn, specifies this value of D because
its convex set geometry formulation establishes a correspondence between the spectral
space and the rank K − 1 space of allowed mixing coefficients.
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This coupling of D to K simplifies the approach but would, in a practical setting,
require prior dimensionality reduction in the data. Second, and more significantly, we have
assumed that K is known. The suitability of this assumption is likely domain-dependent.
To take a particular example, in the context of phase identification in materials science, the
assumption may be reasonable to the extent that K is constrained by considerations such as
the Gibbs phase rule.

In a bird’s eye overview of our method, we generate simulated data of multiple points
and then rely on two methods for inference of endmembers, Hamiltonian Monte Carlo
(HMC) and variational inference (VI). Once a probabilistic model has been derived and
established in the form of the model expression, one needs to infer the distributions of the
parameters in the model expression. This inference is generally intractable for any realistic
model due to the integrals involved in the Bayesian estimation [18]. To circumvent this
intractability, alternative approaches are utilized. The gold standard in deriving parameter
uncertainty is sampling-based Markov Chain Monte Carlo (MCMC) [19] methods, such as
Metropolis Hastings. However, these have poor scaling and are computationally infeasible
for high-dimensional problems. Recent developments of HMC and, specifically, the No
U-Turn Sampler (NUTS) have transformed this status quo [20]. HMC avoids the random
walk dynamics of classical MCMC algorithms by using the information in the gradient
of the target distribution to inform sampling. NUTS regulates the frequency of sampling
and together, HMC-NUTS enables sampling-based uncertainty estimation approaches to be
extended to higher dimensions. However, in many cases with higher dimensions, HMC-
NUTS may still not scale well and be time consuming. Thus, we also test inference using
VI via the mean field approximation. Stochastic VI [21] reduces the sampling problem to an
optimization exercise, wherein the divergence between the posterior distribution and a family
of parameterized distributions is minimized. This enables the use of classical gradient-based
optimizers to solve the problem rapidly and scale to even higher dimensions. However,
in line with the no free lunch theorem, these advantages in scaling are accrued at the cost
of being unbiased. Based on the assumptions made during VI to simplify the problem for
computational and scaling expense, the final solution can be biased [19,22]. This may lead
to over-confidence and under-prediction of the uncertainty. To this end, we compare and
contrast the solutions that we generate via HMC-NUTS and mean-field VI.

4. Results

After generating 100 simulated datasets of N = 500 observations each in the aforemen-
tioned manner, we infer endmember coordinates in two ways: first, by using the model
distribution function to sample from the posterior over model parameters with the no-U
turn (NUTS) HMC sampler; second, with mean-field stochastic variational inference (SVI)
using the ADAM optimizer and a learning rate of 0.005. To mitigate failures to converge (a
common issue with mixture models), we run multiple rounds of inference with different
random initializations. We select between 3 starts per dataset for HMC and 10 for VI; in
each case, we retain only the inference round that produces the highest log likelihood for
the dataset under the posterior samples (HMC) or approximation (VI). Per dataset, the
sampling and inference are run for a total of 10 min on 12 CPU cores.

Figure 2 juxtaposes the endmember coordinates determined through N-FINDR and
the hierarchical Bayesian model using HMC with the NUTS sampler. Specifically, it shows
representative outcomes of these two methods under the four possible extreme conditions
of hyperparameters α1 and σ: low α1 with low σ, low α1 with high σ, high α1 with low
σ, and high α1 with high σ. This comparison provides a qualitative contrast of the data
distribution and the respective behaviors of the two endmember extraction approaches
in different corners of the space of parameters α1 and σ, which, we reiterate, capture the
degree of mixing and severity of noise in the formulation. In this comparison, N-FINDR
serves not as an example of a state-of-the-art model but rather as a representative instance
of deterministic endmember extraction.
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Figure 2. Comparison of endmember coordinates extracted using N-FINDR vs. through sampling of
the model posterior using HMC and the no-U turn (NUTS) sampler in Pyro [23]. The panels (a,b) on
the top row represent the results of endmember extraction on datasets generated under different
conditions of the concentration hyperparameter α1: small and large, respectively, coupled with a
small noise scale parameter (σ). The bottom row panels (c,d) depict inference results for large noise
scale parameter (σ), again contrasting between small and large α1.

Further, Figure 3 compares the reconstruction accuracy for 100 instances of this
simulation-inference procedure, with 100 distinct combinations of the hyperparameters α1
and σ. For VI and HMC, we use Monte Carlo samples from the posterior to estimate the
central tendency (i.e., estimated mean from MC samples) for the prediction. This is used
as the approximation for the point prediction for the Bayesian approaches. With N finder,
we use Monte Carlo samples over different seeds, and average these samples for the mean
N-FINDR prediction. In each of the cases, due diligence is carried out to ensure that the
number of MC samples is sufficient for a robust final prediction. Subsequently, we use the
Frobenius norm of the difference between the point prediction and ground truth as our
figure of merit for the reconstruction accuracy.

Figure 3 compares the reconstruction accuracy of HMC-NUTS, mean field VI, and the
N-FINDR baseline under varying conditions of mixture diversity (α1) and noise (σ). High
α1 and σ values pose the most difficulty for all approaches, while low values yield better
performance. However, when either α1 or σ is large, HMC-NUTS significantly outperforms
N-FINDR. The superior performance of HMC-NUTS in these scenarios aligns with the
expected benefits of the Bayesian mixture model approach. N-FINDR assumes the presence
of pure endmembers and relies on finding the maximum-volume simplex enclosing the data,
struggling when pure endmembers are absent (high α1). In contrast, the Bayesian approach
explicitly models mixing and uncertainty, handling low mixture diversity more effectively.
Similarly, the deterministic nature of N-FINDR makes it sensitive to high noise levels (large
σ), while the Bayesian model incorporates noise through the likelihood function, providing
robustness. The results in Figure 3 confirm these expectations, highlighting the advantages
of the probabilistic mixture model approach in challenging conditions where deterministic
methods like N-FINDR may falter.

Finally, we investigate posterior approximation with VI as a computationally cheaper
alternative to HMC. Figure 4 presents a three-way comparison of the reconstruction error
for endmember coordinates under HMC, VI and N-FINDR. As is evident in the figures,
HMC and N-FINDR generate the highest- and lowest-quality reconstructions, respectively.
Further, mean field VI leads to reconstructions that lie between HMC and N-FINDR.
However, VI provides an approximately 100-fold advantage in computation time over
HMC, on average.
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MCMC: median log likelihood-2.00×10! VI: median log likelihood-3.48×10! N-FINDR: median log likelihood-1.12×10!

Figure 3. L2 reconstruction error for endmember coordinates via HMC posterior samples (left), mean
field variational inference (center), compared to N-FINDR (right), with varying values of the hyper-
parameters α1 and σ. The reconstruction error is a sum in quadrature of the L2 distance between
the point prediction and the ground truth. The log likelihood of the predictions is also reported in
the figure.
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Figure 4. Scatter plots of reconstruction error (horizontal axis) and ground truth (vertical axis),
concatenated over the individual scalar components of the endmember coordinates under HMC
sampling (right), mean field variational inference (center), and N-FINDR (left). The blue curve
in each panel is a smoothed density estimate along the horizonal axis—it represents the empirical
probability distribution, over all datasets, for the scalar difference between the endmember coordinate
estimates and ground truth.

5. Summary and Future Directions

In summary, we applied a probabilistic mixture model for the extraction of endmem-
bers from spectral mixtures. Our approach formulates the retrieval of endmember spectra
and per-observation endmember weights as a Bayesian inference problem using relatively
uninformative priors for the phase-mixing and observation processes. Using simulated
datasets, we sampled the model posterior with HMC and found that the resulting recov-
ered endmember parameters are more robust to observation noise and absence, in the
data, of pure endmember spectra compared to the popular N-FINDR algorithm. This
Bayesian approach provides a principled framework for incorporating relevant prior infor-
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mation without introducing undue assumptions and opens the door to other intrinsically
probabilistic analyses, such as uncertainty quantification.

Both the baseline model (N-FINDR) and our Bayesian approach assume that the
number of endmembers is known. Unlike deterministic approaches such as N-FINDR, the
probabilistic formulation would allow one to relax this potentially onerous assumption by
replacing the fixed number of mixture components and corresponding endmember weights
by a set of samples from a stick-breaking distribution [24] as in a Dirichlet process mixture
model. Assumptions about K would thus be condensed into a single hyperparameter, the
concentration parameter of the stick-breaking process. Additionally, our approach can
be generalized to incorporate more flexible, non-linear mappings using Bayesian Neural
Networks (BNNs) to infer embeddings.
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